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Abstract

We present an integrated framework for using Convolutidtetivorks for classi-

fication, localization and detection. We show how a multisead sliding window

approach can be efficiently implemented within a ConvNet. &lge introduce a
novel deep learning approach to localization by learningrémlict object bound-
aries. Bounding boxes are then accumulated rather tharressgaa in order to
increase detection confidence. We show that different teshkde learned simul-
taneously using a single shared network. This integratddwork is the winner
of the localization task of the ImageNet Large Scale Viswaidynition Challenge
2013 (ILSVRC2013) and obtained very competitive resultdtie detection and
classifications tasks. In post-competition work, we estald new state of the art
for the detection task. Finally, we release a feature etdrdmom our best model

called OverFeat.

1 Introduction

Recognizing the category of the dominant object in an image fasks to which Convolutional

Networks (ConvNets) [17] have been applied for many yeahgtiaer the objects were handwritten
characters[[16], house numbersi[24], textureless foys fi&ffic signs[[3] 26], objects from the

Caltech-101 datasé€t [114], or objects from the 1000-catefjoageNet dataset [15]. The accuracy
of ConvNets on small datasets such as Caltech-101, whilenflebas not been record-breaking.
However, the advent of larger datasets has enabled ConwNsignificantly advance the state of
the art on datasets such as the 1000-category ImageNet [5].

The main advantage of ConvNets for many such tasks is thagritiee system is trainednd to
end from raw pixels to ultimate categories, thereby allevigtihe requirement to manually design
a suitable feature extractor. The main disadvantage is theénous appetite for labeled training
samples.

The main point of this paper is to show that training a contiohal network to simultaneously

classify, locate and detect objects in images can boostassification accuracy and the detection
and localization accuracy of all tasks. The paper proposesvaintegrated approach to object
detection, recognition, and localization with a single @det. We also introduce a novel method for
localization and detection by accumulating predicted loingboxes. We suggest that by combining
many localization predictions, detection can be performigdout training on background samples
and that it is possible to avoid the time-consuming and carafgdd bootstrapping training passes.
Not training on background also lets the network focus galalpositive classes for higher accuracy.
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Experiments are conducted on the ImageNet ILSVRC 2012 ahd @8tasets and establish state of
the art results on the ILSVRC 2013 localization and detediisks.

While images from the ImageNet classification dataset axgelp chosen to contain a roughly-
centered object that fills much of the image, objects of @gesometimes vary significantly in size
and position within the image. The first idea in addressing ithto apply a ConvNet at multiple
locations in the image, in a sliding window fashion, and omerltiple scales. Even with this,
however, many viewing windows may contain a perfectly idf&itle portion of the object (say,
the head of a dog), but not the entire object, nor even theecefithe object. This leads to decent
classification but poor localization and detection. Thiae,decond idea is to train the system to not
only produce a distribution over categories for each windaw also to produce a prediction of the
location and size of the bounding box containing the objelettive to the window. The third idea is
to accumulate the evidence for each category at each |locatio size.

Many authors have proposed to use ConvNets for detectiofoaatization with a sliding window
over multiple scales, going back to the early 1990’s for iveliaracter strings [20], facels [30], and
hands[[22]. More recently, ConvNets have been shown to gieligd of the art performance on text
detection in natural images|[4], face detectior [8, 23] aedgstrian detectioh [25].

Several authors have also proposed to train ConvNets tctljifgedict the instantiation parameters
of the objects to be located, such as the position relativtheoviewing window, or the pose of
the object. For example Osadchyal. [23] describe a ConvNet for simultaneous face detection
and pose estimation. Faces are represented by a 3D mamifiid hine-dimensional output space.
Positions on the manifold indicate the pose (pitch, yaw, @ijl. When the training image is a
face, the network is trained to produce a point on the mashiélthe location of the known pose.
If the image is not a face, the output is pushed away from theifisld. At test time, the distance
to the manifold indicate whether the image contains a faceé tlae position of the closest point on
the manifold indicates pose. Taylet al. [27,[28] use a ConvNet to estimate the location of body
parts (hands, head, etc) so as to derive the human body pbsg.ufe a metric learning criterion
to train the network to produce points on a body pose manifbliditon et al. have also proposed
to train networks to compute explicit instantiation parseng of features as part of a recognition
process[12].

Other authors have proposed to perform object localizatiarConvNet-based segmentation. The
simplest approach consists in training the ConvNet to iflafise central pixel (or voxel for vol-
umetric images) of its viewing window as a boundary betwesgjians or not[[13]. But when the
regions must be categorized, it is preferable to perfsemantic segmentatiothe main idea is to
train the ConvNet to classify the central pixel of the viegvimindow with the category of the ob-
ject it belongs to, using the window as context for the decisiApplications range from biological
image analysid [21], to obstacle tagging for mobile rob@€j to tagging of photos [7]. The ad-
vantage of this approach is that the bounding contours netldenrectangles, and the regions need
not be well-circumscribed objects. The disadvantage isitlraquires dense pixel-level labels for
training. This segmentation pre-processing or object@sapstep has recently gained popularity in
traditional computer vision to reduce the search space sitipn, scale and aspect ratio for detec-
tion [19,[2,[6]29]. Hence an expensive classification metiasdbe applied at the optimal location
in the search space, thus increasing recognition accufsdyjitionally, [29,[1] suggest that these
methods improve accuracy by drastically reducing unlikddject regions, hence reducing potential
false positives. Our dense sliding window method, howeseable to outperform object proposal
methods on the ILSVRC13 detection dataset.

Krizhevskyet al. [15] recently demonstrated impressive classificationgrerince using a large
ConvNet. The authors also entered the ImageNet 2012 campetvinning both the classification
and localization challenges. Although they demonstratedrgressive localization performance,
there has been no published work describing how their appro®ur paper is thus the first to
provide a clear explanation how ConvNets can be used folitati@mn and detection for ImageNet
data.

In this paper we use the terms localization and detectionwayathat is consistent with their use in
the ImageNet 2013 competition, namely that the only diffieeeis the evaluation criterion used and
both involve predicting the bounding box for each objechia image.
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Figure 1:Localization (top) and detection tasks (bottom).The left images contains our predic-
tions (ordered by decreasing confidence) while the righgesashow the groundtruth labels. The
detection image (bottom) illustrates the higher difficdfythe detection dataset, which can contain
many small objects while the classification and localizatmages typically contain a single large
object.

2 Vision Tasks

In this paper, we explore three computer vision tasks ineasing order of difficulty: i classi-
fication, (i) localization, andi{i) detection. Each task is a sub-task of the next. While aksas
are adressed using a single framework and a shared featurgnig base, we will describe them
separately in the following sections.

Throughoutthe paper, we report results on the 2013 Imadeddge Scale Visual Recognition Chal-
lenge (ILSVRC2013). In the classification task of this chiafie, each image is assigned a single
label corresponding to the main object in the image. Fivesgeg are allowed to find the correct
answer (this is because images can also contain multipsbaldd objects). The localization task
is similar in that 5 guesses are allowed per image, but intaddia bounding box for the predicted
object must be returned with each guess. To be consideregkctothe predicted box must match
the groundtruth by at least 50% (using the PASCAL criteribardon over intersection), as well as
be labeled with the correct class (i.e. each predictiondbealland bounding box that are associated
together). The detection task differs from localizatiorthat there can be any number of objects
in each image (including zero), and false positives are [pggthby the mean average precision



(mAP) measure. The localization task is a convenient inggliaite step between classification and
detection, and allows us to evaluate our localization n&thdependently of challenges specific to
detection (such as learning a background class). In[FFig.elsivow examples of images with our

localization/detection predictions as well as corresprogndroundtruth. Note that classification and

localization share the same dataset, while detection asatditional data where objects can be
smaller. The detection data also contain a set of imagesendestain objects are absent. This can
be used for bootstrapping, but we have not made use of itsnatbik.

3 Classification

Our classification architecture is similar to the best ILSMR architecture by Krizhevslet al.[15].
However, we improve on the network design and the inferetege Because of time constraints,
some of the training features in Krizhevsky’s model wereexqtlored, and so we expect our results
can be improved even further. These are discussed in theefwork sectionlb
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Figure 2:Layer 1 (top) and layer 2 filters (bottom).

3.1 Model Design and Training

We train the network on the ImageNet 2012 training set (1l2aniimages and” = 1000 classes)
[5]. Our model uses the same fixed input size approach prdgms&rizhevskyet al. [15] during
training but turns to multi-scale for classification as disd in the next section. Each image is
downsampled so that the smallest dimension is 256 pixelsthéfe extract 5 random crops (and
their horizontal flips) of size 221x221 pixels and presemsthto the network in mini-batches of
size 128. The weights in the network are initialized randowith (x,0) = (0,1 x 1072). They
are then updated by stochastic gradient descent, accoatplapimomentum term df.6 and anés
weight decay oft x 10~°. The learning rate is initiallyy x 10~2 and is successively decreased by
a factor of0.5 after (30, 50, 60, 70, 80) epochs. DropOuf[11] with a rate 6f5 is employed on the
fully connected layers (6th and 7th) in the classifier.

We detail the architecture sizes in talilés 1[@nd 3. Note gl training, we treat this architecture
as non-spatial (output maps of size 1x1), as opposed to theeirce step, which produces spatial
outputs. Layers 1-5 are similar to Krizhevsiyal. [15], using rectification (felu”) non-linearities
and max pooling, but with the following differences: (i) nontrast normalization is used; (ii)
pooling regions are non-overlapping and (iii) our model laager 1st and 2nd layer feature maps,
thanks to a smaller stride (2 instead of 4). A larger strideeiseficial for speed but will hurt accuracy.
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Output
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Layer L« [ - [ s [ 4] &

8
Stage conv + max | conv + max conv conv conv + max full full full
# channels 96 256 512 1024 1024 3072 | 4096 1000
Filter size 11x11 5x5 3x3 3x3 3x3 - - -
Conv. stride 4x4 Ix1 Ix1 Ix1 Ix1
Pooling size 2x2 2x2 - - 2x2
Pooling stride 2x2 2x2 - - 2x2
Zero-Padding size] - - IxIxIx1 | IxIxIx1 IxIx1x1 - - -
Spatial input size 231x231 24x24 12x12 12x12 12x12 6X6 Ix1 Ix1

Table 1: Architecture specifics for fast model. The spatial size of the feature maps depends on
the input image size, which varies during our inference ¢see Tablé]5 in the Appendix). Here
we show training spatial sizes. Layer 5 is the top convohalidayer. Subsequent layers are fully
connected, and applied in sliding window fashion at tesetiffihe fully-connected layers can also
be seen as 1x1 convolutions in a spatial setting. Similassiaraccuratemodel can be found in
the Appendix.

In Fig.[2, we show the filter coefficients from the first two cohutional layers. The first layer filters
capture orientated edges, patterns and blobs. In the sémyerdthe filters have a variety of forms,
some diffuse, others with strong line structures or ori¢etdges.

3.2 Feature Extractor

Along with this paper, we release a feature extractor nar@eetFeatf] in order to provide power-
ful features for computer vision research. Two models ao®iged, afastandaccurateone. Each
architecture is described in tablds 1 &hd 3. We also compairesizes in Tablgl4 in terms of param-
eters and connections. Thecuratemodel is more accurate than tfasstone (14.18% classification
error as opposed to 16.39% in Taple 2), however it requirady®vice as many connections. Using
a committee of Accuratemodels reaches 13.6% classification error as shown i Fig. 4.

3.3 Multi-Scale Classification

In [15], multi-view voting is used to boost performance: &fixset of 10 views (4 corners and center,
with horizontal flip) is averaged. However, this approadhiggore many regions of the image, and
is computationally redundant when views overlap. Addiilby it is only applied at a single scale,
which may not be the scale at which the ConvNet will resportt wptimal confidence.

Instead, we explore the entire image by densely runningehgark at each location and at multiple
scales. While the sliding window approach may be computatip prohibitive for certain types
of model, it is inherently efficient in the case of ConvNetsgsectiof 315). This approach yields
significantly more views for voting, which increases roloests while remaining efficient. The result
of convolving a ConvNet on an image of arbitrary size is aispatap ofC-dimensional vectors at
each scale.

However, the total subsampling ratio in the network desatibbove is 2x3x2x3, or 36. Hence
when applied densely, this architecture can only produdassification vector every 36 pixels in
the input dimension along each axis. This coarse distobutif outputs decreases performance
compared to the 10-view scheme because the network windewmawell aligned with the objects
in the images. The better aligned the network window and tijeob, the strongest the confidence of
the network response. To circumvent this problem, we takapgmoach similar to that introduced
by Giustiet al.[9], and apply the last subsampling operation at every tffEkis removes the loss
of resolution from this layer, yielding a total subsampliagjo of x12 instead of x36.

We now explain in detail how the resolution augmentationegfigrmed. We use 6 scales of input
which result in unpooled layer 5 maps of varying resolutieeg( Tabl€l5 for details). These are then
pooled and presented to the classifier using the followingedure, illustrated in Fig] 3:

(a) Forasingle image, at a given scale, we start with the olegdayer 5 feature maps.

http:/icilvr.nyu.edu/doku.php?id=software:overfetirt
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(b) Each of unpooled maps undergoes a 3x3 max pooling opar@tion-overlapping regions),

repeated 3x3 times fq\,;, A,) pixel offsets of{0, 1, 2}.
(c) This produces a set of pooled feature maps, replicate®) (8nes for differen{A,, A,) com-

binations.

(d) The classifier (layers 6,7,8) has a fixed input size of 5xb @roduces &'-dimensional output
vector for each location within the pooled maps. The classifi applied in sliding-window
fashion to the pooled maps, yieldidgdimensional output maps (for a givén,, A,) combi-
nation).

(e) The output maps for differeifh,;, A, ) combinations are reshaped into a single 3D output map
(two spatial dimensions & classes).
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Figure 3: 1D illustration (to scale) of output map computatior classification, using-dimension
from scale 2 as an example (see TdHle 5). (a): 20 pixel unddaler 5 feature map. (b): max
pooling over non-overlapping 3 pixel groups, using offsdta = {0, 1, 2} pixels (red, green, blue
respectively). (c): The resulting 6 pixel pooled maps, fifiedent A. (d): 5 pixel classifier (layers
6,7) is applied in sliding window fashion to pooled maps)djiieg 2 pixel by C maps for each\.
(e): reshaped into 6 pixel by output maps.

These operations can be viewed as shifting the classifienvgng window by 1 pixel through pool-
ing layers without subsampling and using skip-kernels enftillowing layer (where values in the
neighborhood are non-adjacent). Or equivalently, as amgplshe final pooling layer and fully-
connected stack at every possible offset, and assembkng#ults by interleaving the outputs.

The procedure above is repeated for the horizontally flipgesion of each image. We then produce
the final classification by (i) taking the spatial max for ealass, at each scale and flip; (ii) averaging
the resulting”-dimensional vectors from different scales and flips anptéking the top-1 or top-5
elements (depending on the evaluation criterion) from teamrclass vector.

At an intuitive level, the two halves of the network — i.e. tieg extraction layers (1-5) and classifier
layers (6-output) — are used in opposite ways. In the feaduteaction portion, the filters are
convolved across the entire image in one pass. From a cotignabperspective, this is far more
efficient than sliding a fixed-size feature extractor overithage and then aggregating the results
from different locatiorlé& However, these principles are reversed for the classifietiqn of the
network. Here, we want to hunt for a fixed-size represematiche layer 5 feature maps across
different positions and scales. Thus the classifier has a-fikee 5x5 input and is exhaustively
applied to the layer 5 maps. The exhaustive pooling scherth @ingle pixel shifts(A,, A,))
ensures that we can obtain fine alignment between the ctasaifil the representation of the object
in the feature map.

3.4 Results

In Table2, we experiment with different approaches, andgamethem to the single network model
of Krizhevskyet al. [15] for reference. The approach described above, with Bscachieves a
top-5 error rate of 13.6%. As might be expected, using fewales hurts performance: the single-
scale model is worse with 16.97% top-5 error. The fine stedanique illustrated in Figl 3 brings a
relatively small improvementin the single scale regime i®also of importance for the multi-scale
gains shown here.

20ur network with 6 scales takes around 2 secs on a K20x GPlbt@ps one image



Top-1 Top-5

Approach error % | error %

| Krizhevskyet al.[15] [ 407 | 182 |
OverFeat - astmodel, scale 1, coarse stride 39.28 17.12
OverFeat - Fastmodel, scale 1, fine stride 39.01 16.97

OverFeat - astmodel, 4 scales (1,2,4,6), fine stridg¢ 38.57 16.39
OverFeat - Fastmodel, 6 scales (1-6), fine stride 38.12 16.27
OverFeat - Jaccuratemodel, 4 corners + center + flip 35.60 14.71

OverFeat - Jaccuratemodel, 4 scales, fine stride 35.74 14.18
OverFeat - Fastmodels, 4 scales, fine stride 35.10 13.86
OverFeat - /accuratemodels, 4 scales, fine stride 33.96 13.24

Table 2: Classification experiments on validation setFine/coarse stride refers to the number of
A values used when applying the classifier. Fide= 0, 1, 2; coarse:A = 0.

. . ImageNet11 pre-training 1.2%
Clarifai 1.7%
NUS validation fine-tuning 13.0%
ZF 13.5%
Andrew Howard ]gggjo
7 big models -0 7a
OverFeat 7 fast models 14.2%
UVA - Euvision 14.3%
Adobe 15.2%
VGG 15.2%
SuperVision 7 models + ImageNet11 15.3%
Cognitive Vision 16.1%
SuperVision 5 models 16.4%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%

Top 5 error rate

| ILSVRC12 MILSVRC13 m Post competition |

Figure 4: Test set classification results.During the competition, OverFeat yielded 14.2% top 5
error rate using an average of 7 fast models. In post-cotigretvork, OverFeat ranks fifth with
13.6% error using bigger models (more features and moredpye

We report the test set results of the 2013 competition indFighere our model (OverFeat) obtained
14.2% accuracy by voting of 7 ConvNets (each trained witfedght initializations) and ranked 5th
out of 18 teams. The best accuracy using only ILSVRC13 dataiar%. Pre-training with extra
data from the ImageNet Fall11l dataset improved this nunth&it2%. In post-competition work,
we improve the OverFeat results down to 13.6% error by usiggds models (more features and
more layers). Due to time constraints, these bigger modelsat fully trained, more improvements
are expected to appear in time.

3.5 ConvNets and Sliding Window Efficiency

In contrast to many sliding-window approaches that compatentire pipeline for each window of

the input one at a time, ConvNets are inherently efficientwdggplied in a sliding fashion because
they naturally share computations common to overlappiggprs. When applying our network

to larger images at test time, we simply apply each convatutiver the extent of the full image.

This extends the output of each layer to cover the new imagge eventually producing a map of
output class predictions, with one spatial location forreagindow” (field of view) of input. This
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Figure 5:The efficiency of ConvNets for detection During training, a ConvNet produces only a
single spatial output (top). But when applied at test timeravlarger image, it produces a spatial
output map, e.g. 2x2 (bottom). Since all layers are appl@ma/alutionally, the extra computa-
tion required for the larger image is limited to the yellowgians. This diagram omits the feature
dimension for simplicity.

is diagrammed in Fid.]5. Convolutions are applied bottomsepthat the computations common to
neighboring windows need only be done once.

Note that the last layers of our architecture are fully catea linear layers. At test time, these
layers are effectively replaced by convolution operatiaits kernels of 1x1 spatial extent. The
entire ConvNet is then simply a sequence of convolutiong-pwoling and thresholding operations
exclusively.

4 Localization

Starting from our classification-trained network, we repldhe classifier layers by a regression
network and train it to predict object bounding boxes at egudtial location and scale. We then

combine the regression predictions together, along wetlctassification results at each location, as
we now describe.

4.1 Generating Predictions

To generate object bounding box predictions, we simultaskyorun the classifier and regressor
networks across all locations and scales. Since these steasame feature extraction layers, only
the final regression layers need to be recomputed after ciimgpthe classification network. The
output of the final softmax layer for a classit each location provides a score of confidence that
an object of class is present (though not necessarily fully contained) in theesponding field of
view. Thus we can assign a confidence to each bounding box.

4.2 Regressor Training

The regression network takes as input the pooled featurs fnap layer 5. It has 2 fully-connected
hidden layers of size 4096 and 1024 channels, respectieé/final output layer has 4 units which
specify the coordinates for the bounding box edges. As wahstfication, there are (3x3) copies
throughout, resulting from th&,, A, shifts. The architecture is shown in Hig. 8.



Figure 6: Localization/Detection pipeline. The raw classifier/detector outputs a class and a con-
fidence for each location (1st diagram). The resolution e§¢hpredictions can be increased using
the method described in section]3.3 (2nd diagram). The seigme then predicts the location scale
of the object with respect to each window (3rd diagram). €hesunding boxes are then merge and
accumulated to a small number of objects (4th diagram).
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Figure 7:Examples of bounding boxes produced by the regression netwo, before being com-
bined into final predictions. The examples shown here aresitgle scale. Predictions may be
more optimal at other scales depending on the objects. Hergt, of the bounding boxes which are
initially organized as a grid, converge to a single locaton scale. This indicates that the network
is very confident in the location of the object, as opposedtodspread out randomly. The top left
image shows that it can also correctly identify multipledtion if several objects are present. The
various aspect ratios of the predicted bounding boxes stimatghe network is able to cope with
various object poses.

We fix the feature extraction layers (1-5) from the clasdificanetwork and train the regression
network using arfs loss between the predicted and true bounding box for eaahm@ea The final
regressor layer is class-specific, having 1000 differendioas, one for each class. We train this
network using the same set of scales as described in Séttidie Tompare the prediction of the
regressor net at each spatial location with the groundi-tsatinding box, shifted into the frame of
reference of the regressor’s translation offset withindbevolution (see Fid.]8). However, we do
not train the regressor on bounding boxes with less than 5@8ap with the input field of view:
since the object is mostly outside of these locations, itlvélbetter handled by regression windows
that do contain the object.

Training the regressors in a multi-scale manner is impoftarthe across-scale prediction combi-
nation. Training on a single scale will perform well on thaale and still perform reasonably on
other scales. However training multi-scale will make peéidns match correctly across scales and
exponentially increase the confidence of the merged piedgt In turn, this allows us to perform
well with a few scales only, rather than many scales as i€&lfyithe case in detection. The typical
ratio from one scale to another in pedestrian detecfionif2&hout 1.05 to 1.1, here however we use
a large ratio of approximately 1.4 (this number differs faclk scale since dimensions are adjusted
to fit exactly the stride of our network) which allows us to ur system faster.

4.3 Combining Predictions

We combine the individual predictions (see [Flg. 7) via a dyemerge strategy applied to the regres-
sor bounding boxes, using the following algorithm.

(a) Assign toC; the set of classes in the tdpfor each scales € 1...6, found by taking the
maximum detection class outputs across spatial locatmrthat scale.

(b) Assign toB; the set of bounding boxes predicted by the regressor nefiepdach class ilds,
across all spatial locations at scale

10



(a) Layer 5 pooled maps | (b) Regression
Layer 1 maps

X 256 channels x 4096 channels
X (3x3) (Ax,Ay) shifts | x (3x3) (Ax,Ay) shifts

(c) Regression (d) Regression
Layer 2 maps Layer 3
(per-class)
X 4 channels
(top, left, bottom,
x 1024 channels right box edges)

X (3x3) (Ax,Ay) shifts X (3x3) (Ax,Ay) shifts

Figure 8: Application of the regression network to layer &téges, at scale 2, for example. (a)
The input to the regressor at this scale are 6x7 pixels dlyatig 256 channels for each of the
(3x3)A,, A, shifts. (b) Each unitin the 1st layer of the regression nebimected to a 5x5 spatial
neighborhood in the layer 5 maps, as well as all 256 chan8kifting the 5x5 neighborhood around
results in a map of 2x3 spatial extent, for each of the 409@wcbis in the layer, and for each of
the (3x3)A,, A, shifts. (c) The 2nd regression layer has 1024 units andlig dohnected (i.e. the
purple element only connects to the purple element in (bpsscall 4096 channels). (d) The output
of the regression network is a 4-vector (specifying the sdg¢he bounding box) for each location
in the 2x3 map, and for each of the (3x8),, A, shifts.

(c) AssignB <« J, Bs

(d) Repeat merging until done:

(e) (b7,b3) = argmin, ;. pmatch score(by,by)
() If match_score(bj,bl) > ¢, stop.

(9) Otherwise, seB < B\{b}, b3} Uboxmerge(b7, b3)

In the above, we computeat ch_scor e using the sum of the distance between centers of the two
bounding boxes and the intersection area of the bokes_nmer ge compute the average of the
bounding boxes’ coordinates.

The final prediction is given by taking the merged boundingdsonith maximum class scores. This
is computed by cumulatively adding the detection classustpssociated with the input windows
from which each bounding box was predicted. See[Rig. 6 foxamele of bounding boxes merged
into a single high-confidence bounding box. In that exarrgaeeturtle andwhalebounding boxes
appear in the intermediate multi-scale steps, but disappeiae final detection image. Not only do
these bounding boxes have low classification confidencedat th11 and 0.12 respectively), their
collection is not as coherent as thearbounding boxes to get a significant confidence boost. The
bearboxes have a strong confidence (approximately 0.5 on avg@mgscale) and high matching
scores. Hence after merging, margarbounding boxes are fused into a single very high confidence
box, while false positives disappear below the detectioestmold due their lack of bounding box
coherence and confidence. This analysis suggest that oroabpis naturally more robust to false
positives coming from the pure-classification model thadittonal non-maximum suppression, by
rewarding bounding box coherence.
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Figure 9:Localization experiments on ILSVRC12 validation set.We experiment with different
number of scales and with the use of single-class regreéSioR) or per-class regression (PCR).

4.4 Experiments

We apply our network to the Imagenet 2012 validation setgitie localization criterion specified
for the competition. The results for this are shown in EigF®y.[10 shows the results of the 2012
and 2013 localization competitions (the train and test degdhe same for both of these years). Our
method is the winner of the 2013 competition with 29.9% error

Our multiscale and multi-view approach was critical to @titag good performance, as can be seen
in Fig.[9: Using only a single centered crop, our regresstwaoik achieves an error rate of 40%. By
combining regressor predictions from all spatial locagiahtwo scales, we achieve a vastly better
error rate of 31.5%. Adding a third and fourth scale furtimepioves performance to 30.0% error.

Using a different top layer for each class in the regresstwark for each class (Per-Class Regres-
sor (PCR) in Fig[B) surprisingly did not outperform usindyoa single network shared among all
classes (44.1% vs. 31.3%). This may be because there atigalyldew examples per class an-
notated with bounding boxes in the training set, while thievoek has 1000 times more top-layer
parameters, resulting in insufficient training. It is pb#sithis approach may be improved by shar-
ing parameters only among similar classes (e.g. trainiegnatwork for all classes of dogs, another
for vehicles, etc.).

5 Detection

Detection training is similar to classification trainingtl a spatial manner. Multiple location of
an image may be trained simultaneously. Since the modelnigodational, all weights are shared
among all locations. The main difference with the localmattask, is the necessity to predict a
background class when no object is present. Traditionadlgative examples are initially taken at
random for training. Then the most offending negative erare added to the training set in boot-
strapping passes. Independent bootstrapping passes teaidimg complicated and risk potential
mismatches between the negative examples collection aimdrtg times. Additionally, the size of
bootstrapping passes needs to be tuned to make sure trdimdsgrot overfit on a small set. To cir-
cumvent all these problems, we perform negative trainintherfly, by selecting a few interesting
negative examples per image such as random ones or mostlioffeznes. This approach is more
computationally expensive, but renders the procedure mingbler. And since the feature extraction
is initially trained with the classification task, the deten fine-tuning is not as long anyway.

In Fig.[11, we report the results of the ILSVRC 2013 compatitivhere our detection system ranked
3rd with 19.4% mean average precision (mAP). We later astadd a new detection state of the art
with 24.3% mAP. Note that there is a large gap between the taptBods and other teams (the 4th
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Figure 10:ILSVRC12 and ILSVRC13 competitions results (test set)Our entry is the winner of
the ILSVRC13 localization competition with 29.9% error{ts). Note that training and testing data
is the same for both years. The OverFeat entry uses 4 scalessingle-class regression approach.
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Figure 11:ILSVRC13 test set Detection results.During the competition, UvA ranked first with
22.6% mAP. In post competition work, we establish a new sibtiee art with 24.3% mAP. Systems
marked with * were pre-trained with the ILSVRC12 classificatdata.

method yields 11.5% mAP). Additionally, our approach issiderably different from the top 2 other
systems which use an initial segmentation step to reducdidae windows from approximately
200,000 to 2,000. This technique speeds up inference arstasuially reduces the number of
potential false positives.[ [29] 1] suggest that detectiocueacy drops when using dense sliding
window as opposed to selective search which discards uplidgect locations hence reducing
false positives. Combined with our method, we may obsemdlai improvements as seen here
between traditional dense methods and segmentation bastas. It should also be noted that
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we did not fine tune on the detection validation set as NEC andl tlid. The validation and test
set distributions differ significantly enough from the iiaig set that this alone improves results by
approximately 1 point. The improvement between the two Beat results in Fid. 11 are due to
longer training times and the use of context, i.e. each saiake uses lower resolution scales as
input.

6 Discussion

We have presented a multi-scale, sliding window approaahdhn be used for classification, lo-
calization and detection. We applied it to the ILSVRC 2018adats, and it currently rank&'4n
classification, 1 in localization and ¥ in detection. A second important contribution of our paper
is explaining how ConvNets can be effectively used for die@nd localization tasks. These were
never addressed in[[15] and thus we are the first to explairthisvean be done in the context of Im-
ageNet 2012. The scheme we propose involves substantiafications to networks designed for
classification, but clearly demonstrate that ConvNets apable of these more challenging tasks.
Our localization approach won the 2013 ILSVRC competitiod aignificantly outperformed all
2012 and 2013 approaches. The detection model was amongptipetformers during the compe-
tition, and ranks first in post-competition results. We hpk@posed an integrated pipeline that can
perform different tasks while sharing a common featureaetion base, entirely learned directly
from the pixels.

Our approach might still be improved in several ways. (i) Femalization, we are not currently
back-propping through the whole network; doing so is likelymprove performance. (i) We are
using/ loss, rather than directly optimizing the intersectioreunion (IOU) criterion on which
performance is measured. Swapping the loss to this shoybd$sible since 10U is still differen-
tiable, provided there is some overlap. (iii) Alternategraeterizations of the bounding box may
help to decorrelate the outputs, which will aid networkrinag.
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Appendix: Additional Model Details

Output
Layer Lo b2 T Ll s |6 Tl 7%
Stage conv+max | conv+ max conv conv conv conv + max full full full
# channels 96 256 512 512 1024 1024 4096 | 4096 1000
Filter size X7 X7 3x3 3x3 3x3 3x3 - - -
Conv. stride 2x2 1x1 1x1 1x1 1x1 1x1
Pooling size 3x3 2x2 - - - 3x3
Pooling stride 3x3 2x2 - - - 3x3
Zero-Padding size - - IxIx1x1 | IxIxIx1 | 1x1x1x1 Ix1x1x1 - - -
Spatial input size 221x221 36x36 15x15 15x15 15x15 15x15 5x5 1x1 1x1

Table 3: Architecture specifics for accurate model. It differs from thefastmodel mainly in the
stride of the first convolution, the number of stages and thmber of feature maps.

model # parameters (in millions)| # connections (in millions)
Krizhevsky 60 -
fast 145 2810
accurate 144 5369

Table 4:Number of parameters and connectiongor different models.

Input Layer 5 Layer 5 Classifier Classifier
Scale size pre-pool post-pool map (pre-reshape)) map size
1 245x245| 17x17 (5x5)x(3x3) (Ax1)x(Bx3nC’ 3x3xC'
2 281x317| 20x23 (6x7)x(3x3) (2x3)x(3x3nC’ 6x9xC'
3 317x389 | 23x29 (7x9)x(3x3) (BX5)X(3x3)C Ix15xC
4 389x461 | 29x35 (9x11)x(3x3) (BX7Y)X(3x3C 15x21C
5 425x497 | 32x35 | (10x11)x(3x3) | (6X7)X(3X3)C 18x24C
6 461x569 | 35x44 | (11x14)x(3x3)| (7x10)x(3x3nC 21x30xC

Table 5: Spatial dimensions of our multi-scale approach 6 different sizes of input images are
used, resulting in layer 5 unpooled feature maps of diffespatial resolution (although not indi-
cated in the table, all have 256 feature channels). The (@s8ijts from our dense pooling operation
with (A;, A,) = {0,1,2}. See text and Fid.]3 for details for how these are convertedantput

maps.
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