这是indexloc提供的服务,不要输入任何密码

The homotopy fixed points of Real spin bordism

Hassan H. Abdallah Department of Mathematics, Wayne State University, Detroit, MI, USA hassan@wayne.edu and Yigal Kamel Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, USA ykamel2@illinois.edu
Abstract.

We show that the 2-local splitting of spinc bordism by Anderson–Brown–Peterson and Stong refines to a C2C_{2}-equivariant map in the category of spectra with C2C_{2}-action from Real spin bordism to a sum of (higher) connective covers of ku\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}} and suspensions of mod 2 Eilenberg–Mac Lane spectra. We use this to deduce a corresponding 2-local splitting of the homotopy fixed points of Real spin bordism. We also discuss prospects that arise in the genuine setting.

1. Introduction

In their seminal paper [ABPspin67], Anderson–Brown–Peterson showed that spin manifolds are determined up to spin bordism by KO\operatorname{\mathrm{KO}}-characteristic numbers and Stiefel–Whitney numbers by providing a 2-local splitting of the spin bordism spectrum, MSpin\operatorname{\mathrm{MSpin}}, in terms of (higher) connective covers of ko\operatorname{\mathrm{ko}} and suspensions of H/2\mathrm{H}\mathbb{Z}/2 (5). Stong [Stong68] adapted these constructions to yield a similar splitting of the spinc bordism spectrum, MSpinc\operatorname{\mathrm{MSpin}}^{c}, in terms of covers of ku\operatorname{\mathrm{ku}} and H/2\mathrm{H}\mathbb{Z}/2 (6). The main result of this paper refines this splitting of spinc bordism to a C2C_{2}-equivariant splitting of the Real spin bordism spectrum, MSpinc\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}}, of Halladay and the second author [HK24], in the category of spectra with C2C_{2}-action.

Theorem 1.1.

There is a C2C_{2}-equivariant map of spectra with C2C_{2}-action,

(1) Fc:(MSpinc)e(IfI)×(zfz)I𝒫ku4|I|ezZΣ|z|H/2,F^{c}_{\operatorname{\mathbb{R}}}:(\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})^{e}\xrightarrow{\big(\bigvee_{I}f^{I}_{\operatorname{\mathbb{R}}}\big)\times\big(\bigvee_{z}f^{z}_{\operatorname{\mathbb{R}}}\big)}\bigvee_{I\in\mathcal{P}}\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle 4|I|\rangle^{e}\vee\bigvee_{z\in Z}\Sigma^{|z|}\mathrm{H}\mathbb{Z}/2,

whose underlying spectrum map is the 2-local splitting of MSpinc\operatorname{\mathrm{MSpin}}^{c} of Anderson–Brown–Peterson [ABPspin67] and Stong [Stong68].

There are three key ingredients that go into defining the K\mathrm{K}-theory components of the classical splittings of Anderson–Brown–Peterson (6):

  1. (1)

    the spin and spinc orientations, φ:MSpinKO\varphi:\operatorname{\mathrm{MSpin}}\to\operatorname{\mathrm{KO}} and φc:MSpincKU\varphi^{c}:\operatorname{\mathrm{MSpin}}^{c}\to\operatorname{\mathrm{KU}}, of Atiyah–Bott–Shapiro [ABS];

  2. (2)

    the construction of the KO\operatorname{\mathrm{KO}}-valued characteristic classes, πrIKO0(BSO)\pi^{I}_{r}\in\operatorname{\mathrm{KO}}^{0}(\operatorname{\mathrm{BSO}}), in Anderson–Brown–Peterson’s prior work on SU\mathrm{SU}-bordism [ABPsu66];

  3. (3)

    the determination of the filtration level of the characteristic classes πrI\pi^{I}_{r} in KO0\operatorname{\mathrm{KO}}^{0} and their complexifications in KU0\operatorname{\mathrm{KU}}^{0} in order to lift to appropriate higher connective covers of ko\operatorname{\mathrm{ko}} and ku\operatorname{\mathrm{ku}}, respectively.

The remaining H/2\mathrm{H}\mathbb{Z}/2 components of the splittings are obtained from a detailed analysis of the mod 2 cohomology of MSpin\operatorname{\mathrm{MSpin}} and MSpinc\operatorname{\mathrm{MSpin}}^{c}, respectively. For a more detailed review of the construction, see Section 3.

The bulk of the proof of Theorem 1.1 can be found in Section 4. Section 4.1 consists of showing that each of the steps listed above can be carried out with Reality in the Borel equivariant setting. Incorporating Reality in step (1) is the content of the Real spin orientation of [HK24]. Adapting step (2) uses the observation that the KU\operatorname{\mathrm{KU}}-characteristic classes responsible for the splitting of MSpinc\operatorname{\mathrm{MSpin}}^{c} are defined as complexifications of KO\operatorname{\mathrm{KO}}-characteristic classes. This step also requires a better understanding of the Real structure on BSpinc\operatorname{\mathrm{BSpin}}^{c}, which we address in Section 2. Adapting step (3) involves a simple, but subtle, computation to show that the characteristic classes πI\pi^{I} lift to the appropriate connective covers of kueSpBC2\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}^{e}\in\mathrm{Sp}^{\mathrm{B}C_{2}}, despite the fact that they do not lift to the corresponding genuine connective covers of kuSpC2\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\in\mathrm{Sp}^{C_{2}} (see Remark 4.4). Section 4.2 is devoted to showing that each of the H/2\mathrm{H}\mathbb{Z}/2 components of the classical splitting descend to the mod 2 Borel cohomology of MSpinc\mathrm{MSpin}^{c}_{\operatorname{\mathbb{R}}}.

In Section 5, we apply Theorem 1.1 to obtain a corresponding 2-local splitting of the homotopy fixed points of Real spin bordism.

Theorem 1.2 (Corollary 5.4).

There is a 2-local equivalence,

(MSpinc)hC2I𝒫ku4|I|hC2zZ(Σ|z|H/2)hC2.(\mathrm{MSpin}^{c}_{\operatorname{\mathbb{R}}})^{hC_{2}}\to\bigvee_{I\in\mathcal{P}}\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle^{hC_{2}}\vee\bigvee_{z\in Z}(\Sigma^{|z|}\mathrm{H}\mathbb{Z}/2)^{hC_{2}}.

This relies on the facts that a map of spectra with C2C_{2}-action that induces an equivalence on underlying spectra is automatically an equivalence of spectra with C2C_{2}-action, and that under mild hypotheses, 2-localization commutes with homotopy fixed points. Theorem 1.2 then allows for a computation of the homotopy groups of (MSpinc)hC2(\mathrm{MSpin}^{c}_{\operatorname{\mathbb{R}}})^{hC_{2}}.

Theorem 1.3 (Corollary 5.7).

The homotopy groups of the C2C_{2}-homotopy fixed points of Real spin bordism are given by

π(MSpinc)hC2I𝒫(πko4|I|m1/2{δIm})zZH+|z|(BC2;/22),\pi_{*}(\mathrm{MSpin}^{c}_{\operatorname{\mathbb{R}}})^{hC_{2}}\cong\bigoplus_{I\in\mathcal{P}}(\pi_{*}\operatorname{\mathrm{ko}}\langle 4|I|\rangle\oplus\bigoplus_{m\geq 1}\mathbb{Z}/2\{\delta^{m}_{I}\})\oplus\bigoplus_{z\in Z}\mathop{\mathrm{H}}\nolimits^{-*+|z|}(\mathrm{B}C_{2};\operatorname{\mathbb{Z}/2}2),

where /22{δIm}\operatorname{\mathbb{Z}/2}2\{\delta^{m}_{I}\} denotes a factor of /22\operatorname{\mathbb{Z}/2}2 generated by an element δIm\delta^{m}_{I} with degree |δIm|=4|I|4m|\delta^{m}_{I}|=4|I|-4m when |I||I| is even, and |δIm|=4|I|24m|\delta^{m}_{I}|=4|I|-2-4m when |I||I| is odd.

In Section 6, we discuss an obstruction to refining the construction of Anderson–Brown–Peterson to the genuine setting. We introduce new C2C_{2}-spectra, ku4n,2\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n,2}\rangle, that circumvent this obstruction and potentially play a role in a genuine splitting of Real spin bordism.

1.1. Acknowledgments

We would like to thank Bob Bruner, Kiran Luecke, Fredrick Mooers, Andrew Salch, Brian Shin, Vesna Stojanoska, Vivasvat Vatatmaja, and Alex Waugh for very helpful conversations. We give special thanks to Zach Halladay for an enriching collaboration on Real spin bordism and for countless helpful conversations on equivariant stable homotopy theory in general; his impact is present throughout the paper.

2. Preliminaries

In this section, we briefly recall some facts that we need about equivariant homotopy theory and Real spin bordism.

2.1. Elements of C2C_{2}-equivariant homotopy theory

Throughout this paper, we will primarily work in the “Borel” C2C_{2}-equivariant setting; that is, functors on BC2\mathrm{B}C_{2}.

Let 𝒞\mathcal{C} be an \infty-category. The \infty-category of 𝒞\mathcal{C}-objects with C2C_{2}-action is the functor category 𝒞BC2:=Fun(BC2,𝒞).\mathcal{C}^{\mathrm{B}C_{2}}:=\operatorname{Fun}(\mathrm{B}C_{2},\mathcal{C}). The underlying object functor U:𝒞BC2𝒞U:\operatorname{\mathcal{C}}^{\mathrm{B}C_{2}}\to\operatorname{\mathcal{C}} is the evaluation at the single object of BC2\mathrm{B}C_{2}. Let AA and BB be objects in 𝒞BC2\operatorname{\mathcal{C}}^{\mathrm{B}C_{2}}. We say that a map f:U(A)U(B)𝒞f:U(A)\to U(B)\in\operatorname{\mathcal{C}} refines to a C2C_{2}-equivariant map α:AB𝒞BC2\alpha:A\to B\in\operatorname{\mathcal{C}}^{\mathrm{B}C_{2}} if U(α)=fU(\alpha)=f.

Proposition 2.1.

A morphism f:XYf:X\to Y in 𝒞BC2\mathcal{C}^{\mathrm{B}C_{2}} is an equivalence if and only if the induced map, U(f):U(X)U(Y)U(f):U(X)\to U(Y), on underlying objects is an equivalence in 𝒞\mathcal{C}.

Proof.

In any functor \infty-category, Fun(𝒞,𝒟)\operatorname{Fun}(\mathcal{C},\mathcal{D}), a morphism is invertible if and only if all of its components are invertible as morphism in 𝒟\mathcal{D} (see Corollary 3.5.12 of [Cisinski_19]). ∎

Thus, if an equivalence in 𝒞\mathcal{C} refines to a C2C_{2}-equivariant map, then it refines to an equivalence in 𝒞BC2\mathcal{C}^{\mathrm{B}C_{2}}. The homotopy fixed points of an object with C2C_{2}-action, X𝒞BC2X\in\operatorname{\mathcal{C}}^{\mathrm{B}C_{2}}, is the limit,

XhC2:=limBC2X𝒞.X^{hC_{2}}:=\lim_{\mathrm{B}C_{2}}X\in\operatorname{\mathcal{C}}.

The homotopy fixed point functor is right adjoint to the constant diagram functor ι:𝒞𝒞BC2\iota:\operatorname{\mathcal{C}}\to\operatorname{\mathcal{C}}^{\mathrm{B}C_{2}},

(2) Map𝒞BC2(ιX,Y)Map𝒞(X,YhC2).\operatorname{\mathrm{Map}}_{\operatorname{\mathcal{C}}^{\mathrm{B}C_{2}}}(\iota X,Y)\simeq\operatorname{\mathrm{Map}}_{\operatorname{\mathcal{C}}}(X,Y^{hC_{2}}).

Similarly, the homotopy orbits, ()hC2:𝒞BC2𝒞(\>\>)_{hC_{2}}:\mathcal{C}^{\mathrm{B}C_{2}}\to\mathcal{C} is left adjoint to ι\iota,

Map𝒞(XhC2,Y)Map𝒞BC2(X,ιY),\operatorname{\mathrm{Map}}_{\operatorname{\mathcal{C}}}(X_{hC_{2}},Y)\simeq\operatorname{\mathrm{Map}}_{\operatorname{\mathcal{C}}^{\mathrm{B}C_{2}}}(X,\iota Y),

and is given by the colimit over BC2\mathrm{B}C_{2}. We will often denote ιX\iota X by XX. In particular, we are most interested in the cases when 𝒞=𝒮\mathcal{C}=\mathcal{S}, the \infty-category of spaces, and 𝒞=Sp\mathcal{C}=\mathrm{Sp}, the \infty-category of spectra. In the case of spectra, we will also have occasion to consider the \infty-category, SpC2\mathrm{Sp}^{C_{2}}, of genuine C2C_{2}-spectra, which (for concreteness) we take to be the \infty-categorical localization of the model category of orthogonal C2C_{2}-spectra indexed by a complete C2C_{2}-universe (e.g. [HHRbook]). In this setting, there is a (genuine) C2C_{2}-fixed points functor ()C2:SpC2Sp(\>\>)^{C_{2}}:\mathrm{Sp}^{C_{2}}\to\mathrm{Sp} which also has a left adjoint infl:SpSpC2\mathrm{infl}:\mathrm{Sp}\to\mathrm{Sp}^{C_{2}},

MapSpC2(inflX,Y)MapSp(X,YC2),\operatorname{\mathrm{Map}}_{\mathrm{Sp}^{C_{2}}}(\mathrm{infl}X,Y)\simeq\operatorname{\mathrm{Map}}_{\mathrm{Sp}}(X,Y^{C_{2}}),

such that (inflX)eιX(\mathrm{infl}X)^{e}\simeq\iota X, where ()e:SpC2SpBC2(\>\>)^{e}:\mathrm{Sp}^{C_{2}}\to\mathrm{Sp}^{\mathrm{B}C_{2}} is the underlying spectrum with C2C_{2}-action functor. There is a corresponding induced map from fixed points to homotopy fixed points,

XC2(Xe)hC2=:XhC2,X^{C_{2}}\to(X^{e})^{hC_{2}}=:X^{hC_{2}},

so that given a C2C_{2}-spectrum, YY, a map of spectra XYC2X\to Y^{C_{2}} induces an equivariant map, XYeX\to Y^{e}, in SpBC2\mathrm{Sp}^{\mathrm{B}C_{2}}.

There is another type of fixed points functor ()gC2:SpC2Sp(\>\>)^{gC_{2}}:\mathrm{Sp}^{C_{2}}\to\mathrm{Sp}, called the geometric fixed points, that we will use. The main feature of this functor that we need is its role in the Tate diagram,

XhC2{X_{hC_{2}}}XC2{X^{C_{2}}}XgC2{X^{gC_{2}}}XhC2{X_{hC_{2}}}XhC2{X^{hC_{2}}}XtC2,{X^{tC_{2}},}=\scriptstyle{=\>}{\ulcorner}

where the rows are cofiber sequences and the square on the right is cartesian.

2.2. Real bundle theory

Given a C2C_{2}-action on a group GG, there is an associated equivariant bundle theory, as developed in [LashofMay86_EquivBundle] and [GuillouMayMerling17_equivBundleCat]. The central objects of study there are called principal (G,GC2)(G,G\rtimes C_{2})-bundles, which we call Real principal GG-bundles instead. The goal of this section is to identify a convenient model for the underlying space with C2C_{2}-action of the classifying space for Real GG-bundles (Proposition 2.9), which will be applied in Section 2.3 to G=Spinc(n)G=\operatorname{\mathrm{Spin}}^{c}(n) with its complex conjugation action.

Definition 2.2.

A Real principal GG-bundle is a (topological) principal GG-bundle, EBE\to B, together with C2C_{2}-actions on EE and BB, such that the GG-action, G×EEG\times E\to E, on EE and the bundle map, EBE\to B, are both C2C_{2}-equivariant.

Remark 2.3.

Equivalently, a Real principal GG-bundle is a principal GG-bundle together with an extension of the GG-action on the total space to GC2G\rtimes C_{2}. Then the C2C_{2}-action on the base is defined as the induced action on E/GBE/G\cong B.

Definition 2.4.

A Real principal GG-bundle, p:EBp:E\to B, is universal, if pulling back pp induces a natural bijection,

[X,B]C2{Real principal G-bundles on X}/isomorphism.[X,B]_{C_{2}}\cong\{\text{Real principal $G$-bundles on }X\}/\text{isomorphism}.
Proposition 2.5 ([May_EquivariantBook]).

There exists a universal Real principal GG-bundle,

E(G;C2)B(G;C2).\operatorname{\mathrm{E}}(G;C_{2})\to\operatorname{\mathrm{B}}(G;C_{2}).
Definition 2.6.

Let GG be a compact Lie group.

  • Let G\mathcal{E}G denote the topological category with object space GG and with a unique (iso)morphism between every pair of objects, where the morphism space is topologized as the product G×GG\times G. For example,

    C2=ec.\mathcal{E}C_{2}=\hbox to88.3pt{\vbox to36.08pt{\pgfpicture\makeatletter\hbox{\hskip 44.14867pt\lower-17.69385pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{\the\pgflinewidth}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-25.10297pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\quad\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.32813pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${e}$} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope{}}}&\quad\hfil&\hfil\hskip 30.46928pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.16377pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${c}$} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}&\quad\hfil\cr}}}\pgfsys@invoke{ }\pgfsys@endscope}}}{{{{}}}{{}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}}{ {}{}{}}{{{{}}{{}}{{}}{{}}}{{{{}}{ {}{}}{}{}{{}{}}}} }{{{{}}{{}}{{}}{{}}{{}}}{{{{}}{ {}{}}{}{}{{}{}}}} }{{}{}}{{}} {}{}{}{{{}}{{}}{{}}} {{{}}{{}}{{}}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{\the\pgflinewidth}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.63564pt}{4.7849pt}\pgfsys@curveto{-3.89464pt}{9.76248pt}{4.2686pt}{9.72545pt}{11.6299pt}{4.8975pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.8362}{-0.54843}{0.54843}{0.8362}{11.79712pt}{4.78784pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope{ {}{}{}}{} {{}{{}{}}{}}{{}{{}{}}{}}{{}{}}{{}} {{}{{}{}}{}}{{{}}{{}}}{{}}{{}{{}{}}{}}{{{}}{{}}}{ {}{}{}}{}{{}}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{{{{{{}}{ {}{}}{}{}{{}{}}}}}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{\the\pgflinewidth}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-25.30296pt}{5.13202pt}\pgfsys@curveto{-43.94868pt}{18.18832pt}{-43.94868pt}{-17.49387pt}{-25.63058pt}{-4.66698pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.81914}{0.5736}{-0.5736}{0.81914}{-25.46678pt}{-4.55226pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}}{ {}{}{}}{{{{}}{{}}{{}}{{}}}{{{{}}{ {}{}}{}{}{{}{}}}} }{{{{}}{{}}{{}}{{}}{{}}}{{{{}}{ {}{}}{}{}{{}{}}}} }{{}{}}{{}} {}{}{}{{{}}{{}}{{}}} {{{}}{{}}{{}}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{\the\pgflinewidth}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{11.96434pt}{-3.9837pt}\pgfsys@curveto{4.2686pt}{-9.03099pt}{-3.89464pt}{-9.06802pt}{-11.29922pt}{-4.30675pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.84113}{0.54085}{-0.54085}{-0.84113}{-11.46744pt}{-4.19861pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope{ {}{}{}}{} {{}{{}{}}{}}{{}{{}{}}{}}{{}{}}{{}} {{}{{}{}}{}}{{{}}{{}}}{{}}{{}{{}{}}{}}{{{}}{{}}}{ {}{}{}}{}{{}}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{{{{{{}}{ {}{}}{}{}{{}{}}}}}{}{}{}{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{\the\pgflinewidth}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{25.30296pt}{-4.32115pt}\pgfsys@curveto{43.94868pt}{-17.37878pt}{43.94868pt}{18.07324pt}{25.63057pt}{5.24503pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.81912}{-0.57362}{0.57362}{-0.81912}{25.46677pt}{5.13033pt}\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{ }\pgfsys@endscope \pgfsys@invoke{ }\pgfsys@endscope{{ {}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}.
  • Let G\mathcal{B}G denote the topological category with one object and with morphism space equal to GG.

There is a continuous functor GG\mathcal{E}G\to\mathcal{B}G given on morphisms by the map G×GGG\times G\to G defined by (g,h)gh1(g,h)\mapsto gh^{-1}.

Proposition 2.7.

The map |G||G||\mathcal{E}G|\to|\mathcal{B}G| is a universal principal GG-bundle.

Proof.

It is immediately clear that |G||\mathcal{E}G| is contractible with free GG-action, and that on categories, G/GG\mathcal{E}G/G\cong\mathcal{B}G. While geometric realization fails to commute with taking quotients in general, in this particular situation, there is a canonical identification |G|/G|G|BG|\mathcal{E}G|/G\cong|\mathcal{B}G|\simeq\operatorname{\mathrm{B}}\!G, as discussed in [GuillouMayMerling17_equivBundleCat] and [nlabCatBundles]. ∎

When GG has a C2C_{2}-action, then there is an induced C2C_{2}-action on G\mathcal{B}G by acting on the morphisms in the same way that C2C_{2} acts on GG, and a C2C_{2}-action on G\mathcal{E}G by acting on objects as C2C_{2} acts on GG (which determines the action on morphisms). One nice feature of this C2C_{2}-action on |G|BG|\mathcal{B}G|\simeq\operatorname{\mathrm{B}}\!G is that its underlying object of 𝒮BC2\mathcal{S}^{\mathrm{B}C_{2}} is evidently given by the composite

BC2𝐺GroupsB𝒮.\mathrm{B}C_{2}\xrightarrow{G}\mathrm{Groups}\xrightarrow{\operatorname{\mathrm{B}}}\mathcal{S}.
Proposition 2.8.

The map |G||G||\mathcal{E}G|\to|\mathcal{B}G| is a Real principal GG-bundle.

Proof.

This follows from the fact that C2C_{2} acts on GG by group homomorphisms. ∎

By the definition of B(G;C2)\operatorname{\mathrm{B}}(G;C_{2}), the Real GG-bundle |G||G||\mathcal{E}G|\to|\mathcal{B}G| is classified by a C2C_{2}-equivariant map

fG:|G|B(G;C2).f_{G}:|\mathcal{B}G|\to\operatorname{\mathrm{B}}(G;C_{2}).
Proposition 2.9.

The map fG:|G|B(G;C2)f_{G}:|\mathcal{B}G|\to\operatorname{\mathrm{B}}(G;C_{2}) is an equivalence in 𝒮BC2\mathcal{S}^{\mathrm{B}C_{2}}.

Proof.

Nonequivariantly, |G||G||\mathcal{E}G|\to|\mathcal{B}G| is a universal GG-bundle, so fGf_{G} is an equivalence on underlying spaces. Since fGf_{G} is GG-equivariant, by Proposition 2.1, fGf_{G} is an equivalence in 𝒮BC2\mathcal{S}^{\mathrm{B}C_{2}}. ∎

Thus, the underlying C2C_{2}-action on the classifying space, B(G;C2)\operatorname{\mathrm{B}}(G;C_{2}), can be described by applying the functor B\operatorname{\mathrm{B}} to the C2C_{2}-action on GG.

2.3. Real spin bordism

In this section, we briefly recall the Real spin bordism spectrum of [HK24], and we reformulate some of its properties in a way that is more convenient for our purposes in this paper. First, we recall the main result of [HK24].

Theorem 2.10 (Halladay–Kamel [HK24]).

There is a genuine C2C_{2}-ring spectrum MSpinc\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}}, called Real spin bordism, and a ring map φc:MSpincKU\varphi^{c}_{\operatorname{\mathbb{R}}}:\mathrm{MSpin}^{c}_{\operatorname{\mathbb{R}}}\to\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}, whose underlying map is the spinc orientation, φc:MSpincKU\varphi^{c}:\operatorname{\mathrm{MSpin}}^{c}\to\operatorname{\mathrm{KU}}. Furthermore, there exists a natural ring map MSpin(MSpinc)C2\operatorname{\mathrm{MSpin}}\to(\mathrm{MSpin}^{c}_{\operatorname{\mathbb{R}}})^{C_{2}}.

In this paper, we are primarily interested in the underlying spectrum with C2C_{2}-action, (MSpinc)eSpBC2(\mathrm{MSpin}^{c}_{\operatorname{\mathbb{R}}})^{e}\in\mathrm{Sp}^{\mathrm{B}C_{2}} of Real spin bordism. We now review the relevant actions in this context. Let Spinc(n)\operatorname{\mathrm{Spin}}^{c}_{\operatorname{\mathbb{R}}}(n) denote the group with C2C_{2}-action defined by

Spinc(n)=Spin(n)×{±1}U(1),\displaystyle\operatorname{\mathrm{Spin}}^{c}_{\operatorname{\mathbb{R}}}(n)=\operatorname{\mathrm{Spin}}(n)\underset{\{\pm 1\}}{\times}\operatorname{\mathrm{U}}_{\operatorname{\mathbb{R}}}(1),

where Spin(n)\operatorname{\mathrm{Spin}}(n) is given the trivial C2C_{2}-action, and U(1)\operatorname{\mathrm{U}}_{\operatorname{\mathbb{R}}}(1) is the group U(1)\operatorname{\mathrm{U}}(1) equipped with the C2C_{2}-action given by complex conjugation. In particular, we have equivariant short exact sequences,

(3) 1U(1)Spinc(n)SO(n)1,1\to\operatorname{\mathrm{U}}_{\operatorname{\mathbb{R}}}(1)\to\operatorname{\mathrm{Spin}}^{c}_{\operatorname{\mathbb{R}}}(n)\to\operatorname{\mathrm{SO}}(n)\to 1,
(4) 1Spin(n)Spinc(n)U(1)1,1\to\operatorname{\mathrm{Spin}}(n)\to\operatorname{\mathrm{Spin}}^{c}_{\operatorname{\mathbb{R}}}(n)\to\operatorname{\mathrm{U}}_{\operatorname{\mathbb{R}}}(1)\to 1,

where SO(n)\operatorname{\mathrm{SO}}(n) is given the trivial action. The construction of the Real spin bordism spectrum in [HK24] uses a particular topological model for the total space of the universal Spinc(n)\operatorname{\mathrm{Spin}}^{c}(n)-bundle, EJESpinc(n)\operatorname{\mathrm{E}}_{\mathrm{J}}\simeq\operatorname{\mathrm{ESpin}}^{c}(n) (adapted from [Joachim] and denoted Uneven\displaystyle\mathrm{U}^{\mathrm{even}}_{\operatorname{\mathbb{R}}^{n}} in [HK24]), equipped with a C2C_{2}-action that satisfies the following properties.

  1. (1)

    The Spinc(n)\operatorname{\mathrm{Spin}}^{c}(n)-action induces a C2C_{2}-equivariant map Spinc(n)×EJEJ\operatorname{\mathrm{Spin}}^{c}_{\operatorname{\mathbb{R}}}(n)\times\operatorname{\mathrm{E}}_{\mathrm{J}}\to\operatorname{\mathrm{E}}_{\mathrm{J}}.

  2. (2)

    The C2C_{2}-fixed point space of EJ\operatorname{\mathrm{E}}_{\mathrm{J}} is contractible, EJC2\operatorname{\mathrm{E}}_{\mathrm{J}}^{C_{2}}\simeq*.

Property (1) is then used to define a C2C_{2}-space BJBSpinc(n)\operatorname{\mathrm{B}}_{\mathrm{J}}\simeq\operatorname{\mathrm{BSpin}}^{c}(n) as the quotient BJ=EJ/Spinc(n)\operatorname{\mathrm{B}}_{\mathrm{J}}=\operatorname{\mathrm{E}}_{\mathrm{J}}/\operatorname{\mathrm{Spin}}^{c}(n), which then implies that the quotient map EJBJ\operatorname{\mathrm{E}}_{\mathrm{J}}\to\operatorname{\mathrm{B}}_{\mathrm{J}} is a Real Spinc(n)\operatorname{\mathrm{Spin}}^{c}_{\operatorname{\mathbb{R}}}(n)-bundle, in the sense of Definition 2.2. However, an explicit description of the C2C_{2}-action on BJ\operatorname{\mathrm{B}}_{\mathrm{J}} is not given in [HK24]. In this paper, we are interested in this C2C_{2}-action, but we are not interested in the specific model given in [HK24]. We present here a different way to construct the relevant C2C_{2}-action on BSpinc(n)\operatorname{\mathrm{BSpin}}^{c}(n) that is clearer for our purposes. For this, we use the ideas of Section 2.2.

Let ESpinc(n)BSpinc(n)\operatorname{\mathrm{ESpin}}^{c}_{\operatorname{\mathbb{R}}}(n)\to\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}(n) denote the universal Real principal Spinc(n)\operatorname{\mathrm{Spin}}^{c}_{\operatorname{\mathbb{R}}}(n)-bundle. Since EJBJ\operatorname{\mathrm{E}}_{\mathrm{J}}\to\operatorname{\mathrm{B}}_{\mathrm{J}} is a Real Spinc(n)\operatorname{\mathrm{Spin}}^{c}_{\operatorname{\mathbb{R}}}(n)-bundle, it is determined by a C2C_{2}-equivariant map,

fJ:BJBSpinc(n).f_{\mathrm{J}}:\operatorname{\mathrm{B}}_{\mathrm{J}}\to\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}(n).
Proposition 2.11.

The map fJ:BJBSpinc(n)f_{\mathrm{J}}:\operatorname{\mathrm{B}}_{\mathrm{J}}\to\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}(n) is an equivalence in 𝒮BC2\mathcal{S}^{\mathrm{B}C_{2}}.

Proof.

Forgetting the C2C_{2}-actions, EJBJ\operatorname{\mathrm{E}}_{\mathrm{J}}\to\operatorname{\mathrm{B}}_{\mathrm{J}} is a universal Spinc(n)\operatorname{\mathrm{Spin}}^{c}(n)-bundle which is classified by the map fJf_{\mathrm{J}}. Thus, fJf_{\mathrm{J}} must be an equivalence of underlying spaces. By Proposition 2.1, it is an equivalence in 𝒮BC2\mathcal{S}^{\mathrm{B}C_{2}}. ∎

Putting together Propositions 2.9 and 2.11, we see that in 𝒮BC2\mathcal{S}^{\mathrm{B}C_{2}}, we have equivalences

BJBSpinc(n)|Spinc(n)|.\operatorname{\mathrm{B}}_{\mathrm{J}}\simeq\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}(n)\simeq|\mathcal{B}\operatorname{\mathrm{Spin}}^{c}(n)|.

Throughout the paper, we will use the notation BSpinc(n)𝒮BC2\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}(n)\in\mathcal{S}^{\mathrm{B}C_{2}} for this object (and BSpinc𝒮BC2\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}\in\mathcal{S}^{\mathrm{B}C_{2}} for the colimit over nn), and freely use the fact that it can be obtained either from the constructions of [HK24] or as the composite

BC2Spinc(n)GroupsB𝒮.\mathrm{B}C_{2}\xrightarrow{\operatorname{\mathrm{Spin}}^{c}_{\operatorname{\mathbb{R}}}(n)}\mathrm{Groups}\xrightarrow{\operatorname{\mathrm{B}}}\mathcal{S}.

3. Review of the Anderson–Brown–Peterson splittings

First, we briefly recall the construction of the spinc version of the Anderson–Brown–Peterson map [ABPspin67] (see [Stong68] or [BuchananMckean_KSpMSpinh] for details).

Let πri:BSOKO\pi^{i}_{r}:\operatorname{\mathrm{BSO}}\to\operatorname{\mathrm{KO}} denote the ii-th KO\operatorname{\mathrm{KO}}-Pontrjagin class, as defined in [ABPsu66], and let πiKU0(BSO)\pi^{i}\in\operatorname{\mathrm{KU}}^{0}(\operatorname{\mathrm{BSO}}) denote its complexification,

πi:BSOπriKOKU,\pi^{i}:\operatorname{\mathrm{BSO}}\xrightarrow{\pi^{i}_{r}}\operatorname{\mathrm{KO}}\xrightarrow{\otimes\operatorname{\mathbb{C}}}\operatorname{\mathrm{KU}},

(where \otimes\operatorname{\mathbb{C}} denotes the inclusion of fixed points), as well as it’s pullback to BSpinc\operatorname{\mathrm{BSpin}}^{c}, πiKU0(BSpinc)\pi^{i}\in\operatorname{\mathrm{KU}}^{0}(\operatorname{\mathrm{BSpin}}^{c}). Let 𝒫={(i1,,ik)|k0,il1)}\mathcal{P}=\{(i_{1},...,i_{k})\operatorname{\>\big|\>}k\geq 0,i_{l}\in\operatorname{\mathbb{Z}}_{\geq 1})\} be the set of integer partitions, including the empty partition ()(\>\>) of 0. Given a partition I=(i1,,ik)I=(i_{1},...,i_{k}), let |I|=l=1kil|I|=\sum_{l=1}^{k}i_{l} be the underlying integer that II partitions. Given I=(i1,,ik)𝒫I=(i_{1},\dots,i_{k})\in\mathop{\mathcal{P}}\nolimits, let

πrI=πri1πrik:BSOKO,\displaystyle\pi^{I}_{r}=\pi_{r}^{i_{1}}\dots\pi_{r}^{i_{k}}:\operatorname{\mathrm{BSO}}\to\operatorname{\mathrm{KO}},
and πI=πi1πik:BSOKU.\displaystyle\pi^{I}=\pi^{i_{1}}\dots\pi^{i_{k}}:\operatorname{\mathrm{BSO}}\to\operatorname{\mathrm{KU}}.
Theorem 3.1 (Anderson–Brown–Peterson [ABPspin67] and Stong [Stong68]).

Let I=(i1,,ik)𝒫I=(i_{1},...,i_{k})\in\mathcal{P}, and let

nI={4|I|,|I| is even4|I|2,|I| is odd.n_{I}=\begin{cases}4|I|,&|I|\text{ is even}\\ 4|I|-2,&|I|\text{ is odd}.\end{cases}

Then there exist lifts,

konI{\operatorname{\mathrm{ko}}\langle n_{I}\rangle}ku4|I|{\operatorname{\mathrm{ku}}\langle 4|I|\rangle}andBSO{\operatorname{\mathrm{BSO}}}KO,{\operatorname{\mathrm{KO}},}BSO{\operatorname{\mathrm{BSO}}}KU.{\operatorname{\mathrm{KU}}.}πrI\scriptstyle{\pi^{I}_{r}}π~rI\scriptstyle{\widetilde{\pi}^{I}_{r}}πI\scriptstyle{\pi^{I}}π~I\scriptstyle{\widetilde{\pi}^{I}}

Recall that for any n,m0n,m\in\operatorname{\mathbb{Z}}_{\geq 0}, the multiplication on KU\operatorname{\mathrm{KU}} lifts to a map

μ:kunkumkun+m,\mu:\operatorname{\mathrm{ku}}\langle n\rangle\wedge\operatorname{\mathrm{ku}}\langle m\rangle\to\operatorname{\mathrm{ku}}\langle n+m\rangle,

and let φ:MSpinko\varphi:\operatorname{\mathrm{MSpin}}\to\operatorname{\mathrm{ko}} and φc:MSpincku\varphi^{c}:\operatorname{\mathrm{MSpin}}^{c}\to\operatorname{\mathrm{ku}} denote the Atiyah–Bott–Shapiro orientations [ABS].

Definition 3.2 ([ABPspin67], [Stong68]).

Define frI:MSpinkonIf^{I}_{r}:\operatorname{\mathrm{MSpin}}\to\operatorname{\mathrm{ko}}\langle n_{I}\rangle and fI:MSpincku4|I|f^{I}:\operatorname{\mathrm{MSpin}}^{c}\to\operatorname{\mathrm{ku}}\langle 4|I|\rangle to be the composites,

frI\displaystyle f^{I}_{r} :MSpinΔMSpinBSpinφπ~rIkokonI𝜇konI,\displaystyle:\operatorname{\mathrm{MSpin}}\xrightarrow{\Delta}\operatorname{\mathrm{MSpin}}\wedge\operatorname{\mathrm{BSpin}}\xrightarrow{\varphi\wedge\widetilde{\pi}^{I}_{r}}\operatorname{\mathrm{ko}}\wedge\operatorname{\mathrm{ko}}\langle n_{I}\rangle\xrightarrow{\mu}\operatorname{\mathrm{ko}}\langle n_{I}\rangle,
fI\displaystyle f^{I} :MSpincΔMSpincBSpincφcπ~Ikuku4|I|𝜇ku4|I|,\displaystyle:\operatorname{\mathrm{MSpin}}^{c}\xrightarrow{\Delta}\operatorname{\mathrm{MSpin}}^{c}\wedge\operatorname{\mathrm{BSpin}}^{c}\xrightarrow{\varphi^{c}\wedge\widetilde{\pi}^{I}}\operatorname{\mathrm{ku}}\wedge\operatorname{\mathrm{ku}}\langle 4|I|\rangle\xrightarrow{\mu}\operatorname{\mathrm{ku}}\langle 4|I|\rangle,

where Δ\Delta is the Thom diagonal.

Lastly, let 𝒫1={(i1,,ik)𝒫|il2)}\mathcal{P}_{1}=\{(i_{1},...,i_{k})\in\mathcal{P}\operatorname{\>\big|\>}i_{l}\geq 2)\} be the set of partitions that do not contain 1 as a summand.

Theorem 3.3 (Anderson–Brown–Peterson [ABPspin67] and Stong [Stong68]).

There exist generators of free 𝒜\mathcal{A}-module summands ZrH(MSpin;/22)Z_{r}\subset\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{MSpin}};\operatorname{\mathbb{Z}/2}2) and ZH(MSpinc;/22)Z\subset\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{MSpin}}^{c};\operatorname{\mathbb{Z}/2}2), such that the maps

(5) F:MSpin(IfrI)(zfrz)I𝒫1konIzZrΣ|z|H/2,F:\operatorname{\mathrm{MSpin}}\xrightarrow{(\bigvee_{I}f^{I}_{r})\vee(\bigvee_{z}f^{z}_{r})}\bigvee_{I\in\mathop{\mathcal{P}}\nolimits_{1}}\operatorname{\mathrm{ko}}\langle n_{I}\rangle\vee\bigvee_{z\in Z_{r}}\Sigma^{|z|}\mathrm{H}\mathbb{Z}/2,

and

(6) Fc:MSpinc(IfI)(zfz)I𝒫ku4|I|zZΣ|z|H/2,F^{c}:\operatorname{\mathrm{MSpin}}^{c}\xrightarrow{(\bigvee_{I}f^{I})\vee(\bigvee_{z}f^{z})}\bigvee_{I\in\mathop{\mathcal{P}}\nolimits}\operatorname{\mathrm{ku}}\langle 4|I|\rangle\vee\bigvee_{z\in Z}\Sigma^{|z|}\mathrm{H}\mathbb{Z}/2,

are 2-local equivalences.

4. The Anderson–Brown–Peterson map is C2C_{2}-equivariant

In this section, we refine the constructions of the previous section to incorporate C2C_{2}-equivariance and prove Theorem 1.1. Let (MSpinc)eSpBC2(\mathrm{MSpin}^{c}_{\operatorname{\mathbb{R}}})^{e}\in\mathrm{Sp}^{\mathrm{B}C_{2}} denote the underlying spectrum with C2C_{2}-action of the Real spin bordism spectrum, MSpinc\mathrm{MSpin}^{c}_{\operatorname{\mathbb{R}}}, constructed in [HK24]. Similarly, let BSpinc𝒮BC2\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}\in\mathcal{S}^{\mathrm{B}C_{2}} be as in Section 2.3.

4.1. Equivariance of the K\mathrm{K}-theory components

Proposition 4.1.

The map BSpincBSO\operatorname{\mathrm{BSpin}}^{c}\to\operatorname{\mathrm{BSO}} refines to a C2C_{2}-equivariant map

BSpincBSO,\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}\to\operatorname{\mathrm{BSO}},

for the trivial C2C_{2}-action on BSO\operatorname{\mathrm{BSO}}.

Proof.

Recall the equivariant short exact sequence (3),

1U(1)Spinc(n)SO(n)1.1\to\operatorname{\mathrm{U}}_{\operatorname{\mathbb{R}}}(1)\to\operatorname{\mathrm{Spin}}^{c}_{\operatorname{\mathbb{R}}}(n)\to\operatorname{\mathrm{SO}}(n)\to 1.

Applying the functor B\operatorname{\mathrm{B}} to the above sequence, gives a map BSpinc(n)BSO(n)\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}(n)\to\operatorname{\mathrm{BSO}}(n) in 𝒮BC2\mathcal{S}^{\mathrm{B}C_{2}} for the trivial action on BSO(n)\operatorname{\mathrm{BSO}}(n). ∎

Proposition 4.2.

The map πI:BSpincKU\pi^{I}:\operatorname{\mathrm{BSpin}}^{c}\to\operatorname{\mathrm{KU}} refines to a C2C_{2}-equivariant map

πI:BSpincKUe.\pi^{I}_{\operatorname{\mathbb{R}}}:\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}\to\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}^{e}.
Proof.

First note that πI:BSOKU\pi^{I}:\operatorname{\mathrm{BSO}}\to\operatorname{\mathrm{KU}} lifts to a C2C_{2}-equivariant map BSOKUe\operatorname{\mathrm{BSO}}\to\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}^{e} with respect to the trivial C2C_{2}-action on BSO\operatorname{\mathrm{BSO}}, using the adjunction in (2) and the fact that πI\pi^{I} factors through KOKUC2KUhC2\operatorname{\mathrm{KO}}\simeq\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}^{C_{2}}\simeq\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}^{hC_{2}}. Composing with the map of Proposition 4.1 yields the desired map. ∎

Let ku\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}} denote the equivariant connective cover of KU\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}. More generally, let kun\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{n}\rangle denote the nnth equivariant connective cover of KU\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}, as in Section 3.4 of [BrunerGreenlees10_connRealK], with

kunC2kon.\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{n}\rangle^{C_{2}}\simeq\operatorname{\mathrm{ko}}\langle n\rangle.

The underlying spectrum with C2C_{2}-action, kuneSpBC2\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{n}\rangle^{e}\in\mathrm{Sp}^{\mathrm{B}C_{2}}, can be described via postcomposition of KUe\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}^{e} with the nnth connective cover functor, τn:SpSpn\tau_{n}:\mathrm{Sp}\to\mathrm{Sp}_{\geq n},

kune:BC2KUeSpτnSpnSp.\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{n}\rangle^{e}:\mathrm{B}C_{2}\xrightarrow{\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}^{e}}\mathrm{Sp}\xrightarrow{\tau_{n}}\mathrm{Sp}_{\geq n}\hookrightarrow\mathrm{Sp}.
Proposition 4.3.

The map π~I:BSpincku4|I|\widetilde{\pi}^{I}:\operatorname{\mathrm{BSpin}}^{c}\to\operatorname{\mathrm{ku}}\langle 4|I|\rangle refines to a C2C_{2}-equivariant map

π~I:BSpincku4|I|e.\widetilde{\pi}^{I}_{\operatorname{\mathbb{R}}}:\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}\to\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle^{e}.
Proof.

By Theorem 3.1, when |I||I| is even, the map πrI:BSOKO\pi^{I}_{r}:\operatorname{\mathrm{BSO}}\to\operatorname{\mathrm{KO}} lifts to π~rI:BSOko4|I|\smash{\widetilde{\pi}}^{I}_{r}:\operatorname{\mathrm{BSO}}\to\operatorname{\mathrm{ko}}\langle 4|I|\rangle, so π~RI\widetilde{\pi}^{I}_{R} is adjoint to a map of genuine C2C_{2}-spectra, π~I:BSOku4|I|\widetilde{\pi}^{I}_{\operatorname{\mathbb{R}}}:\operatorname{\mathrm{BSO}}\to\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle. When |I||I| is odd, πrI\pi^{I}_{r} lifts to π~rI:BSOko4|I2\widetilde{\pi}^{I}_{r}:\operatorname{\mathrm{BSO}}\to\operatorname{\mathrm{ko}}\langle 4|I|-2\rangle, which gives an equivariant map, π~I:BSOku4|I2\widetilde{\pi}^{I}_{\operatorname{\mathbb{R}}}:\operatorname{\mathrm{BSO}}\to\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|-2}\rangle. While this map does not genuinely lift to ku4|I|\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle (see Remark 4.4), we now show that it does lift to ku4|I|e\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle^{e} in the category of spectra with C2C_{2}-action. The underlying spectrum with C2C_{2}-action, ku4|I|eSpBC2\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle^{e}\in\mathrm{Sp}^{\mathrm{B}C_{2}}, is the homotopy fiber of the map

ku4|I|2eΣ4|I|2Hσ,\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|-2}\rangle^{e}\to\Sigma^{4|I|-2}\operatorname{\mathrm{H}\mathbb{Z}}_{\sigma},

where HσSpBC2\operatorname{\mathrm{H}\mathbb{Z}}_{\sigma}\in\mathrm{Sp}^{\mathrm{B}C_{2}} denotes H\operatorname{\mathrm{H}\mathbb{Z}} with the sign action. Using the homotopy fixed points spectral sequence for Σ4|I|2Hσ\Sigma^{4|I|-2}\operatorname{\mathrm{H}\mathbb{Z}}_{\sigma}, we find that

πn((Σ4|I|2Hσ)hC2)={/22,n odd and n4|I|30,n even or n>4|I|3.\pi_{n}((\Sigma^{4|I|-2}\operatorname{\mathrm{H}\mathbb{Z}}_{\sigma})^{hC_{2}})=\begin{cases}\operatorname{\mathbb{Z}/2}2,&n\text{ odd and }n\leq 4|I|-3\\ 0,&n\text{ even or }n>4|I|-3.\end{cases}

Thus, since ko4|I2Sp4|I|2\operatorname{\mathrm{ko}}\langle 4|I|-2\rangle\in\mathrm{Sp}_{\geq 4|I|-2} and (Σ4|I|2Hσ)hC2Sp4|I|3(\Sigma^{4|I|-2}\operatorname{\mathrm{H}\mathbb{Z}}_{\sigma})^{hC_{2}}\in\mathrm{Sp}_{\leq 4|I|-3}, we see that

MapSpBC2(ko4|I2,Σ4|I|2Hσ)\displaystyle\operatorname{\mathrm{Map}}_{\mathrm{Sp}^{\mathrm{B}C_{2}}}(\operatorname{\mathrm{ko}}\langle 4|I|-2\rangle,\Sigma^{4|I|-2}\operatorname{\mathrm{H}\mathbb{Z}}_{\sigma})\>\simeq MapSp(ko4|I2,(Σ4|I|2Hσ)hC2)\displaystyle\operatorname{\mathrm{Map}}_{\mathrm{Sp}}(\operatorname{\mathrm{ko}}\langle 4|I|-2\rangle,(\Sigma^{4|I|-2}\operatorname{\mathrm{H}\mathbb{Z}}_{\sigma})^{hC_{2}})
\displaystyle\>\simeq .\displaystyle*.

So the map ko4|I|2ku4|I|2e\operatorname{\mathrm{ko}}\langle 4|I|-2\rangle\to\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle 4|I|-2\rangle^{e} equivariantly factors through the fiber,

(7) ku4|I|e{\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle^{e}}ko4|I2{\operatorname{\mathrm{ko}}\langle 4|I|-2\rangle}ku4|I|2e{\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|-2}\rangle^{e}}Σ4|I|2Hσ{\Sigma^{4|I|-2}\operatorname{\mathrm{H}\mathbb{Z}}_{\sigma}}c\scriptstyle{\exists\>c}

Thus, the composite

BSpincBSOπ~rIko4|I|2𝑐ku4|I|e\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}\to\operatorname{\mathrm{BSO}}\xrightarrow{\widetilde{\pi}^{I}_{r}}\operatorname{\mathrm{ko}}\langle 4|I|-2\rangle\xrightarrow{c}\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle^{e}

is the desired lift. ∎

Remark 4.4.

Despite the fact that πI:BSOKU\pi^{I}:\operatorname{\mathrm{BSO}}\to\operatorname{\mathrm{KU}} factors through KO\operatorname{\mathrm{KO}} and C2C_{2}-equivariantly lifts to ku4|I|e\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle^{e} in SpBC2\mathrm{Sp}^{\mathrm{B}C_{2}}, πI\pi^{I} does not lift to ko4|I|\operatorname{\mathrm{ko}}\langle 4|I|\rangle when |I||I| is odd. If it did, then the pullback of πrI\pi^{I}_{r} to BSpin\operatorname{\mathrm{BSpin}} would also lift to ko4|I|\operatorname{\mathrm{ko}}\langle 4|I|\rangle, but the filtration level of πrIKO0(BSpin)\pi^{I}_{r}\in\operatorname{\mathrm{KO}}^{0}(\operatorname{\mathrm{BSpin}}) is precisely 4|I|24|I|-2 (see Theorem 2.1 of [ABPspin67] and page 314 of [Stong68]). This is not a contradiction, since the homotopy fixed points of ku4|I|\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle is not equivalent to ko4|I|\operatorname{\mathrm{ko}}\langle 4|I|\rangle (see Proposition 5.5).

Proposition 4.5.

The multiplication map μ:kunkumkun+m\mu:\operatorname{\mathrm{ku}}\langle{n}\rangle\wedge\operatorname{\mathrm{ku}}\langle{m}\rangle\to\operatorname{\mathrm{ku}}\langle{n+m}\rangle refines to a C2C_{2}-equivariant map

μ:kunekumekun+me.\mu_{\operatorname{\mathbb{R}}}:\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{n}\rangle^{e}\wedge\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{m}\rangle^{e}\to\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{n+m}\rangle^{e}.
Proof.

Consider the following diagram of \infty-categories which decomposes μ\mu after pulling back along BC2*\to\mathrm{B}C_{2}.

{*}BC2{\mathrm{B}C_{2}}SpSp{\mathrm{Sp}\otimes\mathrm{Sp}}Sp{\mathrm{Sp}}SpnSpm{\mathrm{Sp}_{\geq n}\otimes\mathrm{Sp}_{\geq m}}Spn+m,{\phantom{-}\mathrm{Sp}_{\geq n+m},}KUeKUe\scriptstyle{\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}^{e}\otimes\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}^{e}}kunekume\scriptstyle{\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{n}\rangle^{e}\otimes\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{m}\rangle^{e}}KUe\scriptstyle{\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}^{e}}={=}\scriptstyle{\wedge}τnτm\scriptstyle{\tau_{n}\otimes\tau_{m}}μKUe\scriptstyle{\phantom{a}\mu_{\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}^{e}}}τn+m\scriptstyle{\tau_{n+m}}\scriptstyle{\wedge}α\scriptstyle{\alpha}

where μKUe:KUeKUeKUe\mu_{\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}^{e}}:\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}^{e}\wedge\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}^{e}\to\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}^{e} is the multiplication on KUe\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}^{e}. The map α:XnYm(XY)n+m\alpha:X\langle n\rangle\wedge Y\langle m\rangle\to(X\wedge Y)\langle n+m\rangle is natural as follows. Let ϵn:ιτnidSp\epsilon_{n}:\iota\tau_{n}\Rightarrow\operatorname{\mathrm{id}}_{\mathrm{Sp}} be the (natural) counit of the adjunction. Then ϵnϵm:XnYmXY\epsilon_{n}\wedge\epsilon_{m}:X\langle n\rangle\wedge Y\langle m\rangle\to X\wedge Y is natural, so

α:XnYm(XnYm)n+mτn+m(ϵnϵm)(XY)n+m\alpha:X\langle n\rangle\wedge Y\langle m\rangle\simeq(X\langle n\rangle\wedge Y\langle m\rangle)\langle n+m\rangle\xrightarrow{\tau_{n+m}(\epsilon_{n}\wedge\epsilon_{m})}(X\wedge Y)\langle n+m\rangle

is natural as well. Thus, we can obtain μ\mu_{\operatorname{\mathbb{R}}} as the composite of the natural transformations α\alpha and μKUe\mu_{\operatorname{\mathrm{KU}}_{\operatorname{\mathbb{R}}}^{e}}. ∎

Proposition 4.6.

The Thom diagonal Δ:MSpincMSpincBSpinc\Delta:\operatorname{\mathrm{MSpin}}^{c}\to\operatorname{\mathrm{MSpin}}^{c}\wedge\operatorname{\mathrm{BSpin}}^{c} refines to a C2C_{2}-equivariant map

Δ:(MSpinc)e(MSpinc)eBSpinc.\Delta_{\operatorname{\mathbb{R}}}:(\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})^{e}\to(\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})^{e}\wedge\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}.
Proof.

Note that Δ\Delta is induced by the vector bundle maps

ESpinc(n)×Spinc(n)n{\operatorname{\mathrm{ESpin}}^{c}(n)\times_{\operatorname{\mathrm{Spin}}^{c}(n)}\operatorname{\mathbb{R}}^{n}}(ESpinc(n)×Spinc(n)n)×0¯{{(\operatorname{\mathrm{ESpin}}^{c}(n)\times_{\operatorname{\mathrm{Spin}}^{c}(n)}\operatorname{\mathbb{R}}^{n})\times\underline{0}}}BSpinc(n){\operatorname{\mathrm{BSpin}}^{c}(n)}BSpinc(n)×BSpinc(n),{\operatorname{\mathrm{BSpin}}^{c}(n)\times\operatorname{\mathrm{BSpin}}^{c}(n),}

which are trivially C2C_{2}-equivariant maps

ESpinc(n)×Spinc(n)n{\operatorname{\mathrm{ESpin}}^{c}_{\operatorname{\mathbb{R}}}(n)\times_{\operatorname{\mathrm{Spin}}^{c}(n)}\operatorname{\mathbb{R}}^{n}}(ESpinc(n)×Spinc(n)n)×0¯{{(\operatorname{\mathrm{ESpin}}^{c}_{\operatorname{\mathbb{R}}}(n)\times_{\operatorname{\mathrm{Spin}}^{c}(n)}\operatorname{\mathbb{R}}^{n})\times\underline{0}}}BSpinc(n){\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}(n)}BSpinc(n)×BSpinc(n),{\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}(n)\times\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}(n),}

at the point-set level by the definition of the C2C_{2}-actions in [HK24]. ∎

Lastly, note that by Theorem 2.10, the spinc orientation of KU\operatorname{\mathrm{KU}} refines to a C2C_{2}-equivariant map of ring spectra with C2C_{2}-action, (φc)e:(MSpinc)e(ku)e(\varphi^{c}_{\operatorname{\mathbb{R}}})^{e}:(\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})^{e}\to(\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}})^{e}.

Definition 4.7.

Let I𝒫I\in\mathcal{P}. Define fI:(MSpinc)eku4|I|ef^{I}_{\operatorname{\mathbb{R}}}:(\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})^{e}\to\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle^{e} to be the composite,

fI:(MSpinc)eΔ(MSpinc)eBSpinc(φc)eπ~Ikueku4|I|eμku4|I|e.f^{I}_{\operatorname{\mathbb{R}}}:(\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})^{e}\xrightarrow{\Delta_{\operatorname{\mathbb{R}}}}(\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})^{e}\wedge\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}\xrightarrow{(\varphi^{c}_{\operatorname{\mathbb{R}}})^{e}\wedge\widetilde{\pi}^{I}_{\operatorname{\mathbb{R}}}}\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}^{e}\wedge\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle 4|I|\rangle^{e}\xrightarrow{\mu_{\operatorname{\mathbb{R}}}}\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle 4|I|\rangle^{e}.
Proposition 4.8.

The underlying map of fIf^{I}_{\operatorname{\mathbb{R}}} of Definition 4.7 is the map fI:MSpincku4|I|f^{I}:\operatorname{\mathrm{MSpin}}^{c}\to\operatorname{\mathrm{ku}}\langle{4|I|}\rangle of Definition 3.2.

Proof.

This follows directly from the constructions above of each of the maps that compose to define fIf^{I}_{\operatorname{\mathbb{R}}}. ∎

4.2. Equivariance of the H/2\mathrm{H}\mathbb{Z}/2 components

Next, we need to show that for each zZH(MSpinc;/22)z\in Z\subset\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{MSpin}}^{c};\operatorname{\mathbb{Z}/2}2), the component,

(fz:MSpincΣ|z|H/2)π|z|mapSp(MSpinc,H/2),(f^{z}:\operatorname{\mathrm{MSpin}}^{c}\to\Sigma^{|z|}\mathrm{H}\mathbb{Z}/2)\in\pi_{-|z|}\operatorname{\mathrm{map}}_{\mathrm{Sp}}(\operatorname{\mathrm{MSpin}}^{c},\mathrm{H}\mathbb{Z}/2),

of the Anderson–Brown–Peterson map (6) refines to a C2C_{2}-equivariant map,

(fz:(MSpinc)eΣ|z|H/2)π|z|mapSpBC2((MSpinc)e,H/2).(f^{z}_{\operatorname{\mathbb{R}}}:(\mathrm{MSpin}^{c}_{\operatorname{\mathbb{R}}})^{e}\to\Sigma^{|z|}\mathrm{H}\mathbb{Z}/2)\in\pi_{-|z|}\operatorname{\mathrm{map}}_{\mathrm{Sp}^{\mathrm{B}C_{2}}}((\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})^{e},\mathrm{H}\mathbb{Z}/2).

Since homotopy orbits is left adjoint to the constant diagram functor SpSpBC2\mathrm{Sp}\to\mathrm{Sp}^{\mathrm{B}C_{2}}, we can identify the mapping spectrum in SpBC2\mathrm{Sp}^{\mathrm{B}C_{2}} as

mapSpBC2((MSpinc)e,H/2)\displaystyle\operatorname{\mathrm{map}}_{\mathrm{Sp}^{\mathrm{B}C_{2}}}((\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})^{e},\mathrm{H}\mathbb{Z}/2) mapSp((MSpinc)hC2,H/2).\displaystyle\simeq\operatorname{\mathrm{map}}_{\mathrm{Sp}}((\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})_{hC_{2}},\mathrm{H}\mathbb{Z}/2).

In other words, we need to show that each zZH(MSpinc;/22)z\in Z\subset\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{MSpin}}^{c};\operatorname{\mathbb{Z}/2}2) descends to an element zH((MSpinc)hC2;/22)z_{\operatorname{\mathbb{R}}}\in\mathop{\mathrm{H}}\nolimits^{*}((\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})_{hC_{2}};\operatorname{\mathbb{Z}/2}2). By Proposition 2.3 of [glasman15_hodgeTHH], the equivariant mapping spaces in SpBC2\mathrm{Sp}^{\mathrm{B}C_{2}} can be identified as the homotopy fixed points of the mapping space of the underlying spectra under the conjugation action,

MapSpBC2(X,Y)MapSp(X,Y)hC2.\operatorname{\mathrm{Map}}_{\mathrm{Sp}^{\mathrm{B}C_{2}}}(X,Y)\simeq\operatorname{\mathrm{Map}}_{\mathrm{Sp}}(X,Y)^{hC_{2}}.

Thus, the corresponding map of mapping spectra,

mapSpBC2(X,Y)iX,YmapSp(X,Y)hC2,\operatorname{\mathrm{map}}_{\mathrm{Sp}^{\mathrm{B}C_{2}}}(X,Y)\xrightarrow{i_{X,Y}}\operatorname{\mathrm{map}}_{\mathrm{Sp}}(X,Y)^{hC_{2}},

induces equivalences,

ΩnmapSpBC2(X,Y)ΩnmapSp(X,Y)hC2,\Omega^{\infty-n}\operatorname{\mathrm{map}}_{\mathrm{Sp}^{\mathrm{B}C_{2}}}(X,Y)\simeq\Omega^{\infty-n}\operatorname{\mathrm{map}}_{\mathrm{Sp}}(X,Y)^{hC_{2}},

which implies that iX,Yi_{X,Y} is an equivalence. Applying this to our situation, we have

mapSp((MSpinc)e,H/2)hC2\displaystyle\operatorname{\mathrm{map}}_{\mathrm{Sp}}((\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})^{e},\mathrm{H}\mathbb{Z}/2)^{hC_{2}} mapSpBC2((MSpinc)e,H/2)\displaystyle\simeq\operatorname{\mathrm{map}}_{\mathrm{Sp}^{\mathrm{B}C_{2}}}((\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})^{e},\mathrm{H}\mathbb{Z}/2)
mapSp((MSpinc)hC2,H/2).\displaystyle\simeq\operatorname{\mathrm{map}}_{\mathrm{Sp}}((\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})_{hC_{2}},\mathrm{H}\mathbb{Z}/2).

Thus, the homotopy fixed point spectral sequence computing

πmapSp((MSpinc)e,H/2)hC2H((MSpinc)hC2;/22)\pi_{*}\operatorname{\mathrm{map}}_{\mathrm{Sp}}((\mathrm{MSpin}^{c}_{\operatorname{\mathbb{R}}})^{e},\mathrm{H}\mathbb{Z}/2)^{hC_{2}}\cong\mathop{\mathrm{H}}\nolimits^{-*}((\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})_{hC_{2}};\operatorname{\mathbb{Z}/2}2)

can be written as,

(8) H(C2;H(MSpinc;/22))H((MSpinc)hC2;/22).\mathop{\mathrm{H}}\nolimits^{*}(C_{2};\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{MSpin}}^{c};\operatorname{\mathbb{Z}/2}2))\implies\mathop{\mathrm{H}}\nolimits^{*}((\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})_{hC_{2}};\operatorname{\mathbb{Z}/2}2).

To obtain the equivariant refinements, fzf^{z}_{\operatorname{\mathbb{R}}}, we will show that each zZz\in Z survives this spectral sequence (Proposition 4.12). Lemmas 4.9 and 4.10 are used to give a convenient presentation of the E2E_{2} page and Proposition 4.11 helps determine differentials.

Lemma 4.9.

The map fZ=zfzf^{Z}=\bigvee_{z}f^{z} induces a C2C_{2}-equivariant map on homotopy groups, fZ:πMSpincπ(zZΣ|z|H/2)f^{Z}_{*}:\pi_{*}\operatorname{\mathrm{MSpin}}^{c}\to\pi_{*}(\bigvee_{z\in Z}\Sigma^{|z|}\mathrm{H}\mathbb{Z}/2).

Proof.

We need to show that for each [M]πMSpinc[M]\in\pi_{*}\operatorname{\mathrm{MSpin}}^{c}, we have fZ([M])=fZ([M]¯)f^{Z}_{*}([M])=f^{Z}_{*}(\overline{[M]}) in π(zZΣ|z|H/2)\pi_{*}(\bigvee_{z\in Z}\Sigma^{|z|}\mathrm{H}\mathbb{Z}/2). We will proceed using the fact that a spinc bordism class is determined by its rational characteristic numbers and its Stiefel-Whitney numbers ([Stong68], page 337). From the exact sequences (3) and (4), we can deduce that the impact of the C2C_{2}-action on the characteristic classes of MM are as follows:

c1([M]¯)\displaystyle c_{1}(\overline{[M]}) =c1([M])\displaystyle=-c_{1}([M])
pi([M]¯)\displaystyle p_{i}(\overline{[M]}) =pi([M])\displaystyle=p_{i}([M])
wi([M]¯)\displaystyle w_{i}(\overline{[M]}) =wi([M]).\displaystyle=w_{i}([M]).

Using the splitting (6), we can write [M]=[MKU]+[MZ][M]=[M_{\operatorname{\mathrm{KU}}}]+[M_{Z}], where fZ(MKU)=0f^{Z}(M_{\operatorname{\mathrm{KU}}})=0, and MZM_{Z} has trivial rational characteristic numbers. Thus, it is sufficient to consider the case where [M]=[MZ][M]=[M_{Z}], so that all rational characteristic numbers of MM vanish. In this case, by the identities above, χ([M]¯)=χ([M])\chi(\overline{[M]})=\chi([M]), for all Stiefel-Whitney and rational characteristic numbers χ\chi. Therefore, [M]¯=[M]\overline{[M]}=[M].

Lemma 4.10.

The C2C_{2}-action on H(MSpinc;/22)\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{MSpin}}^{c};\operatorname{\mathbb{Z}/2}2) induced by the C2C_{2}-action on the underlying spectrum of MSpinc\mathrm{MSpin}^{c}_{\operatorname{\mathbb{R}}} is trivial.

Proof.

Let xH(MSpinc;/22)x\in\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{MSpin}}^{c};\operatorname{\mathbb{Z}/2}2) be an 𝒜\mathcal{A}-module indecomposable, where 𝒜\mathcal{A} is the mod 2 Steenrod algebra. By Anderson–Brown–Peterson [ABPspin67], xx either generates an 𝒜\mathcal{A} summand or an 𝒜//(1)\mathcal{A}/\!/\mathcal{E}(1) summand in H(MSpinc;/22)\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{MSpin}}^{c};\operatorname{\mathbb{Z}/2}2), where (1)\mathcal{E}(1) is the subalgebra of 𝒜\mathcal{A} generated by Q0=Sq1Q_{0}=\mathrm{Sq}^{1} and Q1=Sq2Sq1+Sq1Sq2Q_{1}=\mathrm{Sq}^{2}\mathrm{Sq}^{1}+\mathrm{Sq}^{1}\mathrm{Sq}^{2}. Suppose xx generates an 𝒜\mathcal{A} summand, then there is a 2-torsion element wπ(MSpinc)w\in\pi_{*}(\operatorname{\mathrm{MSpin}}^{c}) such that wxw\mapsto x^{*} under the Hurewicz homomorphism π(MSpinc)H(MSpinc;/2)\pi_{*}(\operatorname{\mathrm{MSpin}}^{c})\rightarrow\mathop{\mathrm{H}}\nolimits_{*}(\operatorname{\mathrm{MSpin}}^{c};\mathbb{Z}/2). By Lemma 4.9, the action of C2C_{2} on ww is trivial, and thus must also be trivial on xx^{*} and (x)=x(x^{*})^{*}=x. Now suppose xx generates an 𝒜//(1)\mathcal{A}/\!/\mathcal{E}(1) summand. Then there is an element vπn(MSpinc)v\in\pi_{n}(\operatorname{\mathrm{MSpin}}^{c}) such that Fc(v)F^{c}(v) generates πn(kun)\pi_{n}(\operatorname{\mathrm{ku}}\langle n\rangle) and vxv\mapsto x^{*} under the Hurewicz homomorphism. The C2C_{2}-action sends vv to ±v\pm v (depending on the parity of n4\frac{n}{4}), hence the action on xx^{*} and (x)=x(x^{*})^{*}=x is trivial, since the sign action is trivial modulo 2. Thus, the C2C_{2}-action on all 𝒜\mathcal{A}-module indecomposables of H(MSpin;/22)\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{MSpin}};\operatorname{\mathbb{Z}/2}2) is trivial. By naturality of the Steenrod squares, it is in fact trivial on all elements of H(MSpinc;/22)\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{MSpin}}^{c};\operatorname{\mathbb{Z}/2}2). ∎

Proposition 4.11.

The mod 2 Borel cohomology of ku\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}} is given by

H((ku)hC2;/22)H(BC2;/2)H(ku;/2).\mathop{\mathrm{H}}\nolimits^{*}((\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}})_{hC_{2}};\operatorname{\mathbb{Z}/2}2)\cong\mathop{\mathrm{H}}\nolimits^{*}(\mathrm{B}C_{2};\mathbb{Z}/2)\otimes\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{ku}};\mathbb{Z}/2).
Proof.

Consider the homotopy fixed point spectral sequence:

E2s,t=Hs(C2;Ht(ku;/2)Hs+t((ku)hC2;/2)).\displaystyle E_{2}^{s,t}=\mathop{\mathrm{H}}\nolimits^{s}(C_{2};\mathop{\mathrm{H}}\nolimits^{t}(\operatorname{\mathrm{ku}};\mathbb{Z}/2)\implies\mathop{\mathrm{H}}\nolimits^{s+t}((\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}})_{hC_{2}};\mathbb{Z}/2)).

The C2C_{2}-action on H(ku;/2)\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{ku}};\mathbb{Z}/2) is trivial (see Lemma 4.10), so the E2E_{2} page is isomorphic to H(BC2;/2)H(ku;/2)\mathop{\mathrm{H}}\nolimits^{*}(\mathrm{B}C_{2};\mathbb{Z}/2)\otimes\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{ku}};\mathbb{Z}/2). To show that this spectral sequence collapses at E2E_{2}, we use the cofiber sequence:

(ku)hC2kuC2kugC2\displaystyle(\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}})_{hC_{2}}\rightarrow\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}^{C_{2}}\rightarrow\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}^{gC_{2}}

where kuC2ko\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}^{C_{2}}\cong\operatorname{\mathrm{ko}} and kugC2k0Σ4kH/2\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}^{gC_{2}}\cong\bigvee_{k\geq 0}\Sigma^{4k}\mathop{\mathrm{H}}\nolimits\mathbb{Z}/2 (see Corollary 3.6.2 of [BrunerGreenlees10_connRealK]). The cofiber sequence induces a long exact sequence in cohomology:

Hn1((ku)hC2;/2)𝑓Hn(k0Σ4kH/2;/2)𝑔Hn(ko;/2)\displaystyle\dots\rightarrow\mathop{\mathrm{H}}\nolimits^{n-1}((\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}})_{hC_{2}};\mathbb{Z}/2)\xrightarrow{f}\mathop{\mathrm{H}}\nolimits^{n}(\bigvee_{k\geq 0}\Sigma^{4k}\mathop{\mathrm{H}}\nolimits\mathbb{Z}/2;\mathbb{Z}/2)\xrightarrow{g}\mathop{\mathrm{H}}\nolimits^{n}(\operatorname{\mathrm{ko}};\mathbb{Z}/2)\rightarrow\dots

where H(k0Σ4kH/2;/2)k0Σ4k𝒜\mathop{\mathrm{H}}\nolimits^{*}(\bigvee_{k\geq 0}\Sigma^{4k}\mathop{\mathrm{H}}\nolimits\mathbb{Z}/2;\mathbb{Z}/2)\cong\bigoplus_{k\geq 0}\Sigma^{4k}\mathcal{A} and H(ko;/2)𝒜//𝒜(1)\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{ko}};\mathbb{Z}/2)\cong\mathcal{A}/\!/\mathcal{A}(1). By exactness, dim(Hn1((ku)hC2;/22)\dim(\mathop{\mathrm{H}}\nolimits^{n-1}((\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}})_{hC_{2}};\operatorname{\mathbb{Z}/2}2) must be greater than or equal to

N=dimHn(k0Σ4kH/2;/2)dimHn(ko;/2).N=\dim\mathop{\mathrm{H}}\nolimits^{n}(\bigvee_{k\geq 0}\Sigma^{4k}\mathop{\mathrm{H}}\nolimits\mathbb{Z}/2;\mathbb{Z}/2)-\dim\mathop{\mathrm{H}}\nolimits^{n}(\operatorname{\mathrm{ko}};\mathbb{Z}/2).

We will now show that s+t=n1dimE2s,t=N\displaystyle\sum_{s+t=n-1}\dim E_{2}^{s,t}=N, which implies that there are no nonzero differentials. Let 𝒢=k0Σ4k𝒜\mathcal{G}=\bigoplus_{k\geq 0}\Sigma^{4k}\mathcal{A}. The Poincaré series for the corresponding cohomology rings and the E2E_{2} page are given by:

Pko(t)\displaystyle P_{\operatorname{\mathrm{ko}}}(t) =1(1t6)(1t4)k31(1t2k1)\displaystyle=\frac{1}{(1-t^{6})(1-t^{4})}\prod_{k\geq 3}\frac{1}{(1-t^{2^{k}-1})}
P𝒢(t)\displaystyle P_{\mathcal{G}}(t) =11t4k111t2k1\displaystyle=\frac{1}{1-t^{4}}\prod_{k\geq 1}\frac{1}{1-t^{2^{k}-1}}
PE2(t)\displaystyle P_{E_{2}}(t) =1(1t6)(1t2)(1t)k31(1t2k1)\displaystyle=\frac{1}{(1-t^{6})(1-t^{2})(1-t)}\prod_{k\geq 3}\frac{1}{(1-t^{2^{k}-1})}

Observe the following identity between P𝒢(t)P_{\mathcal{G}}(t), Pko(t)P_{\operatorname{\mathrm{ko}}}(t), and PE2(t)P_{E_{2}}(t):

P𝒢(t)Pko(t)\displaystyle P_{\mathcal{G}}(t)-P_{\operatorname{\mathrm{ko}}}(t) =11t4k111t2k11(1t6)(1t4)k31(1t2k1)\displaystyle=\frac{1}{1-t^{4}}\prod_{k\geq 1}\frac{1}{1-t^{2^{k}-1}}-\frac{1}{(1-t^{6})(1-t^{4})}\prod_{k\geq 3}\frac{1}{(1-t^{2^{k}-1})}
=(11t4(1(1t)(1t3)11t6))k311t2k1\displaystyle=\left(\frac{1}{1-t^{4}}\left(\frac{1}{(1-t)(1-t^{3})}-\frac{1}{1-t^{6}}\right)\right)\prod_{k\geq 3}\frac{1}{1-t^{2^{k}-1}}
=(11t4(t(1t)(t2+1)(t2+t+1)(1t)(1t3)(1t6)))k311t2k1\displaystyle=\left(\frac{1}{1-t^{4}}\left(\frac{t(1-t)(t^{2}+1)(t^{2}+t+1)}{(1-t)(1-t^{3})(1-t^{6})}\right)\right)\prod_{k\geq 3}\frac{1}{1-t^{2^{k}-1}}
=(t(t2+t+1)(1t2)(1t3)(1t6))k311t2k1\displaystyle=\left(\frac{t(t^{2}+t+1)}{(1-t^{2})(1-t^{3})(1-t^{6})}\right)\prod_{k\geq 3}\frac{1}{1-t^{2^{k}-1}}
=(t(t2+t+1)(1t2)(1t)(t2+t+1)(1t6))k311t2k1\displaystyle=\left(\frac{t(t^{2}+t+1)}{(1-t^{2})(1-t)(t^{2}+t+1)(1-t^{6})}\right)\prod_{k\geq 3}\frac{1}{1-t^{2^{k}-1}}
=(t(1t2)(1t)(1t6))k311t2k1=tPE2(t).\displaystyle=\left(\frac{t}{(1-t^{2})(1-t)(1-t^{6})}\right)\prod_{k\geq 3}\frac{1}{1-t^{2^{k}-1}}=tP_{E_{2}}(t).

The above identity states that the coefficient of the degree n1n-1 term of PE2(t)P_{E_{2}}(t) is equal to the coefficient of the degree nn term of P𝒢(t)Pko(t)P_{\mathcal{G}}(t)-P_{\operatorname{\mathrm{ko}}}(t). Thus, dimE2s,t=N\dim E_{2}^{s,t}=N and the spectral sequence collapses at the E2E_{2} page.

Proposition 4.12.

Every zZH(MSpinc;/22)z\in Z\subset\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{MSpin}}^{c};\operatorname{\mathbb{Z}/2}2) descends to an element zH((MSpinc)hC2;/22)z_{\operatorname{\mathbb{R}}}\in\mathop{\mathrm{H}}\nolimits^{*}((\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})_{hC_{2}};\operatorname{\mathbb{Z}/2}2). Thus, each component, fz:MSpincΣ|z|H/2f^{z}:\operatorname{\mathrm{MSpin}}^{c}\to\Sigma^{|z|}\mathrm{H}\mathbb{Z}/2, of (6) refines to a C2C_{2}-equivariant map fz:(MSpinc)ezZΣ|z|H/2f^{z}_{\operatorname{\mathbb{R}}}:(\mathrm{MSpin}^{c}_{\operatorname{\mathbb{R}}})^{e}\to\bigvee_{z\in Z}\Sigma^{|z|}\mathrm{H}\mathbb{Z}/2.

Proof.

Fix an element zZz\in Z. As discussed above, we show that zz survives the spectral sequence (8),

H(C2;H(MSpinc;/22))H((MSpinc)hC2;/22).\mathop{\mathrm{H}}\nolimits^{*}(C_{2};\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{MSpin}}^{c};\operatorname{\mathbb{Z}/2}2))\implies\mathop{\mathrm{H}}\nolimits^{*}((\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}})_{hC_{2}};\operatorname{\mathbb{Z}/2}2).

By Lemma 4.10, the E2E_{2} page simplifies to:

E2,H(BC2;/2)H(MSpinc;/2).\displaystyle E_{2}^{*,*}\cong\mathop{\mathrm{H}}\nolimits^{*}(\mathrm{B}C_{2};\mathbb{Z}/2)\otimes\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{MSpin}}^{c};\mathbb{Z}/2).

Since zz is an element of H(MSpinc;/22)\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{MSpin}}^{c};\operatorname{\mathbb{Z}/2}2) and this is a first quadrant spectral sequence, it cannot be the target of a differential. It remains to show that zz does not support a differential.

Let UU be the Thom class and wiw_{i} the iith Stiefel-Whitney class. Recall that zz is an 𝒜\mathcal{A}-module indecomposable. Since SqiU=wiU\mathrm{Sq}^{i}U=w_{i}U in H(MSpinc;/22)\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{MSpin}}^{c};\operatorname{\mathbb{Z}/2}2), it follows that zz must decompose into a product of Stiefel-Whitney classes. By the Leibniz rule, differentials on zz are determined by the differentials on each wiw_{i} factor of zz. In order to analyze these differentials, we consider the map of spectral sequences induced by the equivariant map, MSpincku\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}}\rightarrow\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}} of Theorem 2.10,

H(C2;H(ku;/22)){\mathop{\mathrm{H}}\nolimits^{*}(C_{2};\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{ku}};\operatorname{\mathbb{Z}/2}2))}H((ku)hC2;/22){\mathop{\mathrm{H}}\nolimits^{*}((\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}})_{hC_{2}};\operatorname{\mathbb{Z}/2}2)}H(C2;H(MSpinc;/2)){\mathop{\mathrm{H}}\nolimits^{*}(C_{2};\mathop{\mathrm{H}}\nolimits^{*}(\operatorname{\mathrm{MSpin}}^{c};\mathbb{Z}/2))}H((MSpinc)hC2;/2){\mathop{\mathrm{H}}\nolimits^{*}((\operatorname{\mathrm{MSpin}}^{c})_{hC_{2}};\mathbb{Z}/2)}

The map of E2E_{2} pages is an injection and its image includes every wiw_{i} term. By Lemma 4.11, the top spectral sequence collapses. By naturality of the differentials, this implies the differentials on each wiUw_{i}U in the bottom spectral sequence are zero. Hence, zz survives to the EE_{\infty} page. ∎

Thus, every component of the Anderson–Brown–Peterson map refines to a C2C_{2}-equivariant map in SpBC2\mathrm{Sp}^{\mathrm{B}C_{2}}, which completes the proof of Theorem 1.1.

5. The homotopy fixed points of Real spin bordism

In this section, we apply Theorem 1.1 to compute the homotopy fixed points of MSpinc\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}}. For this, we need a few technical lemmas involving compatibility of homotopy fixed points with 2-localization and sums.

Lemma 5.1.

Let XX be a spectrum with C2C_{2}-action whose homotopy groups are finitely generated in each degree, and let ()(2):SpSp(2)(\>\>)_{(2)}:\mathrm{Sp}\to\mathrm{Sp}_{(2)} denote 22-localization. Then

(XhC2)(2)(X(2))hC2.(X^{hC_{2}})_{(2)}\simeq(X_{(2)})^{hC_{2}}.
Proof.

Taking homotopy fixed points of the map XX(2)X\to X_{(2)} yields a map XhC2(X(2))hC2X^{hC_{2}}\to(X_{(2)})^{hC_{2}}. Since 22-localization is a left Bousfield localization, (X(2))hC2(X_{(2)})^{hC_{2}} is 22-local, so we get an induced map (XhC2)(2)(X(2))hC2(X^{hC_{2}})_{(2)}\to(X_{(2)})^{hC_{2}}. This induces a map of homotopy fixed point spectral sequences,

H(C2;πX)(2){\mathop{\mathrm{H}}\nolimits^{*}(C_{2};\pi_{*}X)_{(2)}}π(XhC2)(2){\pi_{*}(X^{hC_{2}})_{(2)}}H(C2;πX(2)){\mathop{\mathrm{H}}\nolimits^{*}(C_{2};\pi_{*}X_{(2)})}π((X(2))hC2),{\pi_{*}((X_{(2)})^{hC_{2}}),}

Since the filtrations are bounded below, both spectral sequences converge. The map induces an isomorphism on the E2E_{2}-page, since 22-localization commutes with both π\pi_{*} and H(C2;)\mathop{\mathrm{H}}\nolimits^{*}(C_{2};-). Thus, we get an isomorphism of EE_{\infty}-pages, and by Theorem 8.2 of Boardman [Boardman1999], an isomorphism on the abutment. So, the map (XhC2)(2)(X(2))hC2(X^{hC_{2}})_{(2)}\to(X_{(2)})^{hC_{2}} is an equivalence. ∎

Lemma 5.2.

Let X,YX,Y be spectra with C2C_{2}-action whose homotopy groups are finitely generated in each degree. If f:XYf:X\to Y is a map in SpBC2\mathrm{Sp}^{\mathrm{B}C_{2}} which is a 2-local equivalence on underlying spectra, then ff induces a 2-local equivalence on homotopy fixed points.

Proof.

First, note that postcomposing X,Y:BC2SpX,Y:\mathrm{B}C_{2}\to\mathrm{Sp} with the 2-localization functor, ()(2):SpSp(\>\>)_{(2)}:\mathrm{Sp}\to\mathrm{Sp}, yields X(2),Y(2)SpBC2X_{(2)},Y_{(2)}\in\mathrm{Sp}^{\mathrm{B}C_{2}}. Similarly, applying ()(2)(\>\>)_{(2)} to ff yields a C2C_{2}-equivariant map f(2):X(2)Y(2)f_{(2)}:X_{(2)}\to Y_{(2)} in SpBC2\mathrm{Sp}^{\mathrm{B}C_{2}}. Since by assumption, f(2)f_{(2)} is an equivalence on underlying spectra, it induces an equivalence (f(2))hC2:(X(2))hC2(Y(2))hC2(f_{(2)})^{hC_{2}}:(X_{(2)})^{hC_{2}}\xrightarrow{\sim}(Y_{(2)})^{hC_{2}}. By Lemma 5.1, this gives the desired equivalence, f(2)hC2:(XhC2)(2)(YhC2)(2)f^{hC_{2}}_{(2)}:(X^{hC_{2}})_{(2)}\xrightarrow{\sim}(Y^{hC_{2}})_{(2)}. ∎

Lemma 5.3.

Let EkE_{k} be a connective spectrum for k0k\in\operatorname{\mathbb{Z}}_{\geq 0}, and let {nk}\{n_{k}\} be a sequence of integers with limknk=\lim_{k\to\infty}n_{k}=\infty. Then

k0ΣnkEkk0ΣnkEk.\bigvee_{k\in\operatorname{\mathbb{Z}}_{\geq 0}}\Sigma^{n_{k}}E_{k}\simeq\prod_{k\in\operatorname{\mathbb{Z}}_{\geq 0}}\Sigma^{n_{k}}E_{k}.
Proof.

The canonical map f:k0ΣnkEkk0ΣnkEkf:\bigvee_{k\in\operatorname{\mathbb{Z}}_{\geq 0}}\Sigma^{n_{k}}E_{k}\rightarrow\prod_{k\in\operatorname{\mathbb{Z}}_{\geq 0}}\Sigma^{n_{k}}E_{k} induces a map of homotopy groups

πn(k0ΣnkEk)\displaystyle\pi_{n}(\bigvee_{k\in\operatorname{\mathbb{Z}}_{\geq 0}}\Sigma^{n_{k}}E_{k}) k0πnΣnkEk\displaystyle\cong\bigoplus_{k\in\operatorname{\mathbb{Z}}_{\geq 0}}\pi_{n}\Sigma^{n_{k}}E_{k}
k0πnnkEkk0πn(ΣnkEk)k0πnnkEk\displaystyle\cong\bigoplus_{k\in\operatorname{\mathbb{Z}}_{\geq 0}}\pi_{n-n_{k}}E_{k}\longrightarrow\prod_{k\in\operatorname{\mathbb{Z}}_{\geq 0}}\pi_{n}(\Sigma^{n_{k}}E_{k})\cong\prod_{k\in\operatorname{\mathbb{Z}}_{\geq 0}}\pi_{n-n_{k}}E_{k}

Since EkE_{k} is connective, πnnkEk\pi_{n-n_{k}}E_{k} is nonzero for only finitely many nkn_{k} for each fixed nn. Thus, ff induces an isomorphism on all homotopy groups, giving the desired result. ∎

Corollary 5.4 (Theorem 1.2).

The Anderson–Brown–Peterson map (1) induces a 2-local equivalence,

(MSpinc)hC2I𝒫ku4|I|hC2zZΣ|z|H/2hC2.(\mathrm{MSpin}^{c}_{\operatorname{\mathbb{R}}})^{hC_{2}}\to\bigvee_{I\in\mathcal{P}}\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle^{hC_{2}}\vee\bigvee_{z\in Z}\Sigma^{|z|}\mathrm{H}\mathbb{Z}/2^{hC_{2}}.
Proof.

By Lemma 5.2, the map in (1) induces a 2-local equivalence on homotopy fixed points. Since taking homotopy fixed points commutes with taking products, Lemma 5.3 allows us to express the homotopy fixed points of the right hand side in terms of the homotopy fixed points of each of the summands. ∎

Next, we apply Corollary 5.4 to identify the homotopy groups of (MSpinc)hC2(\mathrm{MSpin}^{c}_{\operatorname{\mathbb{R}}})^{hC_{2}}. First, we compute the homotopy groups of each of the summands.

Proposition 5.5.

If 2n=8k+r2n=8k+r, for r=0,2, or 4r=0,2,\text{ or }4, then,

πku2nhC2πko2nm1/2{δm}\pi_{*}\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle 2n\rangle^{hC_{2}}\cong\pi_{*}\operatorname{\mathrm{ko}}\langle 2n\rangle\bigoplus_{m\geq 1}\mathbb{Z}/2\{\delta^{m}\}

where |δm|=8k+r24m|\delta^{m}|=8k+\frac{r}{2}-4m.

Proof.

Following Example 3.2.2 in [BrunerGreenlees10_connRealK], consider the homotopy fixed point spectral sequence

E2s,t=Hs(C2,πtku)πs+tkuhC2\displaystyle E^{s,t}_{2}=\mathop{\mathrm{H}}\nolimits^{-s}(C_{2},\pi_{t}\operatorname{\mathrm{ku}})\Rightarrow\pi_{s+t}\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}^{hC_{2}}

Denote the generator of C2C_{2} as τ\tau, then the action of τ\tau on πku[ν]\pi_{*}\operatorname{\mathrm{ku}}\cong\mathbb{Z}[\nu], where |ν|=2|\nu|=2, is τ(ν)=ν\tau(\nu)=-\nu. It follows that the E2E_{2} page has a presentation

E2s,t=[y,z]/(2y,2z)[ν2]\displaystyle E_{2}^{s,t}=\mathbb{Z}[y,z]/(2y,2z)\otimes\mathbb{Z}[\nu^{2}]

where yE22,0y\in E_{2}^{-2,0}, ν2E20,4\nu^{2}\in E_{2}^{0,4}, and zE21,2z\in E_{2}^{-1,2}. It is shown in [BrunerGreenlees10_connRealK] that the spectral sequence collapses at E4E_{4} and E0,=[2ν2,ν4]E_{\infty}^{0,*}=\mathbb{Z}[2\nu^{2},\nu^{4}], E1,=z/2[ν4]E_{\infty}^{-1,*}=z\mathbb{Z}/2[\nu^{4}], E2,=yν2/2[ν4]E_{\infty}^{-2,*}=y\nu^{2}\mathbb{Z}/2[\nu^{4}], and y2iE4i,0=y^{2i}\in E_{\infty}^{4i,0}= for i>0i>0. Denote δ\delta as the element in homotopy detected by y2y^{2}, then this proves the result for 2n=02n=0.

The E2E_{2} page for higher connective covers is obtained from the E2E_{2} page above by setting all entries below the t=2nt=2n line equal to zero. The result follows from keeping track of the bidegree of generators on the t=2nt=2n line that are no longer the target of a differential and therefore survive to EE_{\infty}. ∎

Proposition 5.6.
π((H/2)hC2)\displaystyle\pi_{*}((\mathop{\mathrm{H}}\nolimits\mathbb{Z}/2)^{hC_{2}}) /2[w]\displaystyle\cong\mathbb{Z}/2[w]
H(BC2;/22),\displaystyle\cong\mathop{\mathrm{H}}\nolimits^{-*}(\mathrm{B}C_{2};\operatorname{\mathbb{Z}/2}2),

where |w|=1|w|=-1.

Proof.

Consider the homotopy fixed point spectral sequence,

E2s,t=Hs(C2;πtH/2)πts(H/2)hC2.\displaystyle E_{2}^{s,t}=\mathop{\mathrm{H}}\nolimits^{s}(C_{2};\pi_{t}\mathop{\mathrm{H}}\nolimits\mathbb{Z}/2)\implies\pi_{t-s}(\mathop{\mathrm{H}}\nolimits\mathbb{Z}/2)^{hC_{2}}.

Since πtH/2/2\pi_{t}\mathop{\mathrm{H}}\nolimits\mathbb{Z}/2\cong\mathbb{Z}/2 for t=0t=0 and is trivial otherwise, the E2E_{2}-page is isomorphic to /2[w]\mathbb{Z}/2[w] where ww is in bidegree (1,0)(1,0). There is no room for differentials and the spectral sequence collapses. Alternatively, since the C2C_{2}-action on H/2\mathrm{H}\mathbb{Z}/2 is trivial,

π((H/2)hC2)\displaystyle\pi_{*}((\mathop{\mathrm{H}}\nolimits\mathbb{Z}/2)^{hC_{2}}) π(mapSpBC2(EC2,H/2))\displaystyle\cong\pi_{*}(\operatorname{\mathrm{map}}_{\mathrm{Sp}^{\mathrm{B}C_{2}}}(\operatorname{\mathrm{E}}\!C_{2},\mathrm{H}\mathbb{Z}/2))
π(mapSp(BC2,H/2))\displaystyle\cong\pi_{*}(\operatorname{\mathrm{map}}_{\mathrm{Sp}}(\mathrm{B}C_{2},\mathrm{H}\mathbb{Z}/2))
H(BC2;/22).\displaystyle\cong\mathop{\mathrm{H}}\nolimits^{-*}(\mathrm{B}C_{2};\operatorname{\mathbb{Z}/2}2).

Let /22{a}\operatorname{\mathbb{Z}/2}2\{a\} denote a copy of /22\operatorname{\mathbb{Z}/2}2 generated by an element aa .

Corollary 5.7 (Theorem 1.3).

There exists an isomorphism of abelian groups,

π((MSpinc)hC2)\displaystyle\pi_{*}((\mathrm{MSpin}^{c}_{\operatorname{\mathbb{R}}})^{hC_{2}}) π(Iku4|I|hC2zZΣ|z|H/2hC2)\displaystyle\cong\pi_{*}\big(\bigvee_{I}\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle^{hC_{2}}\vee\bigvee_{z\in Z}\Sigma^{|z|}\mathrm{H}\mathbb{Z}/2^{hC_{2}}\big)
I𝒫(πko4|I|m1/2{δIm})zZ,n1/22{wzn},\displaystyle\cong\bigoplus_{I\in\mathcal{P}}(\pi_{*}\operatorname{\mathrm{ko}}\langle 4|I|\rangle\oplus\bigoplus_{m\geq 1}\mathbb{Z}/2\{\delta^{m}_{I}\})\oplus\bigoplus_{z\in Z,n\geq 1}\operatorname{\mathbb{Z}/2}2\{w^{n}_{z}\},

where |δIm|=4|I|4m|\delta^{m}_{I}|=4|I|-4m when |I||I| is even, |δIm|=4|I|24m|\delta^{m}_{I}|=4|I|-2-4m when |I||I| is odd, and |wzn|=|z|n|w^{n}_{z}|=|z|-n.

Proof.

First note that since π(MSpinc)\pi_{*}(\operatorname{\mathrm{MSpin}}^{c}) has no odd torsion, the homotopy fixed point spectral sequence implies that π((MSpinc)hC2)\pi_{*}((\mathrm{MSpin}^{c}_{\operatorname{\mathbb{R}}})^{hC_{2}}) also has no odd torsion. Then since the homotopy groups of both sides are finitely generated in each degree, the existence of the 2-local equivalence in Corollary 5.4 implies the existence of the desired isomorphism. ∎

6. Towards a genuine splitting of Real spin bordism

The observation in Remark 4.4 suggests that the Anderson–Brown–Peterson splitting does not refine to a genuine splitting in the naive expected way. The following proposition makes this more concrete.

Proposition 6.1.

When |I||I| is odd, the C2C_{2}-equivariant map π~I:BSpincku4|I|e\widetilde{\pi}^{I}_{\operatorname{\mathbb{R}}}:\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}\to\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle^{e} does not refine to a genuine C2C_{2}-map Bku4|I|\operatorname{\mathrm{B}}_{\operatorname{\mathbb{R}}}\to\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle, where B\operatorname{\mathrm{B}}_{\operatorname{\mathbb{R}}} is the base space of any Real Spinc\operatorname{\mathrm{Spin}}^{c}-bundle whose underlying Spinc\operatorname{\mathrm{Spin}}^{c}-bundle is universal.

Proof.

Since Spin(n)Spinc(n)C2\operatorname{\mathrm{Spin}}(n)\to\operatorname{\mathrm{Spin}}^{c}(n)^{C_{2}}, the C2C_{2}-fixed points of any such C2C_{2}-space B\operatorname{\mathrm{B}}_{\operatorname{\mathbb{R}}} receives a natural map from BSpin\operatorname{\mathrm{BSpin}} factoring the usual map BSpinBSpinc\operatorname{\mathrm{BSpin}}\to\operatorname{\mathrm{BSpin}}^{c}. If such a map Bku4|I|\operatorname{\mathrm{B}}_{\operatorname{\mathbb{R}}}\to\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle existed, taking C2C_{2}-fixed points would yield a commutative diagram,

BSpin{\operatorname{\mathrm{BSpin}}}ko4|I|{\operatorname{\mathrm{ko}}\langle 4|I|\rangle}KO{\operatorname{\mathrm{KO}}}BC2{\operatorname{\mathrm{B}}_{\operatorname{\mathbb{R}}}^{C_{2}}}ku4|I|C2{\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle^{C_{2}}}BSpinc{\operatorname{\mathrm{BSpin}}^{c}}ku4|I|{\operatorname{\mathrm{ku}}\langle 4|I|\rangle}KU.{\operatorname{\mathrm{KU}}.}πrI\scriptstyle{\pi^{I}_{r}}\scriptstyle{\simeq}π~I\scriptstyle{\widetilde{\pi}^{I}}πI\scriptstyle{\pi^{I}}

But there does not exist a map BSpinko4|I|\operatorname{\mathrm{BSpin}}\to\operatorname{\mathrm{ko}}\langle 4|I|\rangle lifting πrI\pi^{I}_{r} (see [Stong68]). ∎

By Proposition 4.4, the particular construction by Anderson–Brown–Peterson of the map fI:MSpincku4|I|f^{I}:\operatorname{\mathrm{MSpin}}^{c}\to\operatorname{\mathrm{ku}}\langle{4|I|}\rangle does not refine to a map MSpincku4|I|\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}}\to\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle of genuine C2C_{2}-spectra, which leads us to believe that the corresponding naive guess for a genuine splitting of Real spin bordism does not hold.

Conjecture 6.2.

There does not exist a map of genuine C2C_{2}-spectra,

MSpinc(I𝒫ku4|I|)Z,\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}}\to\big(\bigvee_{I\in\mathcal{P}}\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle\big)\vee Z,

whose induced map on underlying spectra is the Anderson–Brown–Peterson map (6).

Instead, we propose a different candidate for a genuine refinement of the equivariant splitting of Section 4.

Proposition 6.3.

For odd nn, there exists a genuine C2C_{2}-spectrum, ku4n,2\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n,2}\rangle, such that

ku4n,2eku4neandku4n,2C2ko4n2,\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n,2}\rangle^{e}\simeq\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n}\rangle^{e}\;\;\;\text{and}\;\;\;\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n,2}\rangle^{C_{2}}\simeq\operatorname{\mathrm{ko}}\langle 4n-2\rangle,

whose restriction map res:ko4n2ku4n\mathrm{res}:\operatorname{\mathrm{ko}}\langle 4n-2\rangle\to\operatorname{\mathrm{ku}}\langle{4n}\rangle is the lift cc in (7).

Proof.

First, recall the Tate diagram for ku4n\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n}\rangle,

ku4nhC2{\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n}\rangle_{hC_{2}}}ku4nC2ko4n{\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n}\rangle^{C_{2}}\simeq\operatorname{\mathrm{ko}}\langle 4n\rangle}ku4ngC2{\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n}\rangle^{gC_{2}}}ku4nhC2{\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n}\rangle_{hC_{2}}}ku4nhC2{\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n}\rangle^{hC_{2}}}ku4ntC2,{\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n}\rangle^{tC_{2}},}=\scriptstyle{=\>}{\ulcorner}

where the top and bottom rows are cofiber sequences. Motivated by this, define a geometric fixed point spectrum for ku4n,2\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n,2}\rangle by

ku4n,2gC2:=cofib(ku4nhC2ko4nko4n2).\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n,2}\rangle^{gC_{2}}:=\text{cofib}(\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n}\rangle_{hC_{2}}\to\operatorname{\mathrm{ko}}\langle 4n\rangle\to\operatorname{\mathrm{ko}}\langle 4n-2\rangle).

Then notice that by (7), we have a commutative diagram,

ku4nhC2{\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n}\rangle_{hC_{2}}}  ko4n{\operatorname{\mathrm{ko}}\langle 4n\rangle}ko4n2{\operatorname{\mathrm{ko}}\langle 4n-2\rangle}  ku4n,2gC2{\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n,2}\rangle^{gC_{2}}}ku4nhC2{\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n}\rangle_{hC_{2}}}ku4nhC2{\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n}\rangle^{hC_{2}}}Pku4ntC2,{P\simeq\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n}\rangle^{tC_{2}},}=\scriptstyle{=\>}c\scriptstyle{c}{\ulcorner}

where P:=ku4nhC2ko4n2ku4n,2gC2P:=\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n}\rangle^{hC_{2}}\coprod_{\operatorname{\mathrm{ko}}\langle 4n-2\rangle}\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n,2}\rangle^{gC_{2}}. By Theorem 3.21 (Example 3.29) of [Glasman17], the triple,

(ku4ne,ku4n,2gC2,ku4n,2gC2ku4ntC2),(\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n}\rangle^{e},\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n,2}\rangle^{gC_{2}},\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n,2}\rangle^{gC_{2}}\to\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n}\rangle^{tC_{2}}),

determines a genuine C2C_{2}-spectrum, ku4n,2\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n,2}\rangle, which has the desired property by construction. ∎

Proposition 6.4.

The map π~I:BSOku4|I|e\widetilde{\pi}^{I}_{\operatorname{\mathbb{R}}}:\operatorname{\mathrm{BSO}}\to\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|}\rangle^{e} in (the proof of) Proposition 4.3 refines to a map BSOku4|I|,2\operatorname{\mathrm{BSO}}\to\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|,2}\rangle of genuine C2C_{2}-spectra.

Proof.

This follows directly from the existence of the classical lift

π~I:BSOko4|I2\widetilde{\pi}^{I}:\operatorname{\mathrm{BSO}}\to\operatorname{\mathrm{ko}}\langle 4|I|-2\rangle

of Anderson–Brown–Peterson[ABPspin67] and Proposition 6.3. ∎

Pulling back the genuine equivariant lift of Proposition 6.4 to a genuine refinement of BSpinc\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}} would involve a more careful analysis of the Real Spinc(n)\operatorname{\mathrm{Spin}}^{c}(n)-bundles of Section 2. In particular, the equivariant map BSpincBSO\operatorname{\mathrm{BSpin}}^{c}_{\operatorname{\mathbb{R}}}\to\operatorname{\mathrm{BSO}} does refine to a genuine equivariant map |Spinc|BSO|\mathcal{B}\operatorname{\mathrm{Spin}}^{c}|\to\operatorname{\mathrm{BSO}}, and hence gives an equivariant map |Spinc|ku4|I|,2|\mathcal{B}\operatorname{\mathrm{Spin}}^{c}|\to\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4|I|,2}\rangle in SpC2\mathrm{Sp}^{C_{2}}. However, it is not immediately clear if the map BJBSO\operatorname{\mathrm{B}}_{\mathrm{J}}\to\operatorname{\mathrm{BSO}} is an equivariant map of genuine C2C_{2}-spaces, which would be necessary in order to refine the rest of the construction in Section 4 to the genuine setting.

Question 6.5.

Does there exist a genuine splitting of MSpinc\operatorname{\mathrm{MSpin}}^{c}_{\operatorname{\mathbb{R}}} whose summands consist of ku4n\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n}\rangle, ku4n,2\operatorname{\mathrm{ku}}_{\operatorname{\mathbb{R}}}\langle{4n,2}\rangle, and suspensions of mod 2 Eilenberg–Mac Lane spectra?