这是indexloc提供的服务,不要输入任何密码
11footnotetext: Jinjiang Li is the corresponding author.
    Keywords: Diophantine inequality; Circle method; Exponential sum; Prime variable
    MR(2020) Subject Classification: 11D75, 11P05, 11L07, 11L20

On a system of two Diophantine inequalities with five prime variables

Min Zhang  &  Jinjiang Li  &  Linji Long  &  Yuhan Yang School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, People’s Republic of China min.zhang.math@gmail.com (Corresponding author) Department of Mathematics, China University of Mining and Technology, Beijing 100083, People’s Republic of China jinjiang.li.math@gmail.com Department of Mathematics, China University of Mining and Technology, Beijing 100083, People’s Republic of China linji.long.math@gmail.com School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, People’s Republic of China yuhan.yang.math@foxmail.com
Abstract.

Suppose that c,d,α,βc,d,\alpha,\beta are real numbers satisfying the inequalities 1<d<c<39/371<d<c<39/37 and 1<α<β<51d/c1<\alpha<\beta<5^{1-d/c}. In this paper, it is proved that, for sufficiently large real numbers N1N_{1} and N2N_{2} subject to αN2/N1d/cβ\alpha\leqslant N_{2}/N_{1}^{d/c}\leqslant\beta, the following Diophantine inequalities system

{|p1c+p2c+p3c+p4c+p5cN1|<ε1(N1)|p1d+p2d+p3d+p4d+p5dN2|<ε2(N2)\begin{cases}\big|p_{1}^{c}+p_{2}^{c}+p_{3}^{c}+p_{4}^{c}+p_{5}^{c}-N_{1}\big|<\varepsilon_{1}(N_{1})\\ \big|p_{1}^{d}+p_{2}^{d}+p_{3}^{d}+p_{4}^{d}+p_{5}^{d}-N_{2}\big|<\varepsilon_{2}(N_{2})\end{cases}

is solvable in prime variables p1,p2,p3,p4,p5p_{1},p_{2},p_{3},p_{4},p_{5}, where

{ε1(N1)=N1(1/c)(39/37c)(logN1)201,ε2(N2)=N2(1/d)(39/37d)(logN2)201.\begin{cases}\varepsilon_{1}(N_{1})=N_{1}^{-(1/c)(39/37-c)}(\log N_{1})^{201},\\ \varepsilon_{2}(N_{2})=N_{2}^{-(1/d)(39/37-d)}(\log N_{2})^{201}.\end{cases}

This result constitutes an improvement upon a series of previous results of Zhai [14] and Tolev [12].

1. Introduction and main result

The famous Waring–Goldbach problem in additive number theory states that every large integers NN satisfying appropriate congruent conditions should be represented as the sum of ss kk–th powers of prime numbers, i.e.,

N=p1k+p2k++psk.N=p_{1}^{k}+p_{2}^{k}+\dots+p_{s}^{k}. (1.1)

In this topic, many mathematicians have derived many splendid results. For instance, in 1937, Vinogradov [13] proved that such a representation of the type (1.1) exists for every sufficiently large odd integer with k=1,s=3k=1,s=3. Moreover, in 1938, Hua [6] showed that (1.1) is solvable for every sufficiently large integer NN satisfying N5(mod24)N\equiv 5\pmod{24} with k=2,s=5k=2,s=5.

In 1952, Piatetski–Shapiro [10] studied the following analog of the Waring–Goldbach problem. Suppose that c>1c>1 is not an integer and ε\varepsilon is a small positive number. Denote by H(c)H(c) the smallest natural number rr such that, for every sufficiently large real number NN, the Diophantine inequality

|p1c+p2c++pscN|<ε\big|p_{1}^{c}+p_{2}^{c}+\cdots+p_{s}^{c}-N\big|<\varepsilon (1.2)

is solvable in primes p1,p2,,psp_{1},p_{2},\dots,p_{s}. Then it was proved in [10] that

lim supc+H(c)clogc4.\limsup_{c\to+\infty}\frac{H(c)}{c\log c}\leqslant 4.

Also, in [10], Piatetski–Shapiro considered the case s=5s=5 in (1.2) and proved that H(c)5H(c)\leqslant 5 for 1<c<3/21<c<3/2. Later, the upper bound 3/23/2 for H(c)5H(c)\leqslant 5 was improved successively to

141428923,1+52,8140,2.041,378181\frac{14142}{8923},\quad\frac{1+\sqrt{5}}{2},\quad\frac{81}{40},\quad 2.041,\quad\frac{378}{181}

by Zhai and Cao [15], Garaev [3], Zhai and Cao [16], Baker and Weingartner [1], Baker [2], respectively.

In 1995, Tolev [12] considered the system of two inequalities with s=5s=5 as follows

{|p1c+p2c+p3c+p4c+p5cN1|<ε1(N1),|p1d+p2d+p3d+p4d+p5dN2|<ε2(N2),\begin{cases}\big|p_{1}^{c}+p_{2}^{c}+p_{3}^{c}+p_{4}^{c}+p_{5}^{c}-N_{1}\big|<\varepsilon_{1}(N_{1}),\\ \big|p_{1}^{d}+p_{2}^{d}+p_{3}^{d}+p_{4}^{d}+p_{5}^{d}-N_{2}\big|<\varepsilon_{2}(N_{2}),\end{cases} (1.3)

where cc and dd are different numbers greater than one but close to one and ε1(N1),ε2(N2)\varepsilon_{1}(N_{1}),\varepsilon_{2}(N_{2}) tend to zero as N1N_{1} and N2N_{2} tend to infinity. Of course, one has to impose a condition on the orders of N1N_{1} and N2N_{2} because of the inequality

(x1c++x5c)d/cx1d++x5d51d/c(x1c++x5c)d/c(x_{1}^{c}+\dots+x_{5}^{c})^{d/c}\leqslant x_{1}^{d}+\dots+x_{5}^{d}\leqslant 5^{1-d/c}(x_{1}^{c}+\dots+x_{5}^{c})^{d/c}

which holds for every positive x1,,x5x_{1},\dots,x_{5} provided 1<d<c1<d<c. Tolev [12] proved that if c,d,α,βc,d,\alpha,\beta are real numbers satisfying

1<d<c<35/34,1<α<β<51d/c,1<d<c<35/34,\qquad 1<\alpha<\beta<5^{1-d/c},

then there exist numbers N1(0)N_{1}^{(0)} and N2(0)N_{2}^{(0)}, which depend on c,d,α,βc,d,\alpha,\beta, such that for all real numbers N1,N2N_{1},N_{2} subject to N1>N1(0),N2>N2(0)N_{1}>N_{1}^{(0)},N_{2}>N_{2}^{(0)} and

αN2/N1d/cβ,\alpha\leqslant N_{2}/N_{1}^{d/c}\leqslant\beta,

the system (1.3) has prime solutions p1,,p5p_{1},\dots,p_{5} for

{ε1(N1)=N1(1/c)(35/34c)(logN1)12,ε2(N2)=N2(1/d)(35/34d)(logN2)12.\begin{cases}\varepsilon_{1}(N_{1})=N_{1}^{-(1/c)(35/34-c)}(\log N_{1})^{12},\\ \varepsilon_{2}(N_{2})=N_{2}^{-(1/d)(35/34-d)}(\log N_{2})^{12}.\end{cases}

Later, in 2000, Zhai [14] enhanced the result of Tolev [12], who established the solvability of the system (1.3) in prime variables p1,,p5p_{1},\dots,p_{5} with

1<d<c<25/24,1<α<β<51d/c,1<d<c<25/24,\qquad 1<\alpha<\beta<5^{1-d/c},

and

{ε1(N1)=N1(1/c)(25/24c)(logN1)335,ε2(N2)=N2(1/d)(25/24d)(logN2)335.\begin{cases}\varepsilon_{1}(N_{1})=N_{1}^{-(1/c)(25/24-c)}(\log N_{1})^{335},\\ \varepsilon_{2}(N_{2})=N_{2}^{-(1/d)(25/24-d)}(\log N_{2})^{335}.\end{cases}

In this paper, we shall continue improving the result of Zhai [14] and establish the following theorem.

Theorem 1.1.

Suppose that c,d,α,βc,d,\alpha,\beta are real numbers satisfying the inequalities

1<d<c<39/37,1<α<β<51d/c.1<d<c<39/37,\qquad 1<\alpha<\beta<5^{1-d/c}. (1.4)

Then there exist numbers N1(0)N_{1}^{(0)} and N2(0)N_{2}^{(0)}, which depend on c,d,α,βc,d,\alpha,\beta, such that for all real numbers N1,N2N_{1},N_{2} subject to N1>N1(0),N2>N2(0)N_{1}>N_{1}^{(0)},N_{2}>N_{2}^{(0)} and

αN2/N1d/cβ,\alpha\leqslant N_{2}/N_{1}^{d/c}\leqslant\beta, (1.5)

the system

{|p1c+p2c+p3c+p4c+p5cN1|<ε1(N1)|p1d+p2d+p3d+p4d+p5dN2|<ε2(N2)\begin{cases}\big|p_{1}^{c}+p_{2}^{c}+p_{3}^{c}+p_{4}^{c}+p_{5}^{c}-N_{1}\big|<\varepsilon_{1}(N_{1})\\ \big|p_{1}^{d}+p_{2}^{d}+p_{3}^{d}+p_{4}^{d}+p_{5}^{d}-N_{2}\big|<\varepsilon_{2}(N_{2})\end{cases}

with

{ε1(N1)=N1(1/c)(39/37c)(logN1)201ε2(N2)=N2(1/d)(39/37d)(logN2)201\begin{cases}\varepsilon_{1}(N_{1})=N_{1}^{-(1/c)(39/37-c)}(\log N_{1})^{201}\\ \varepsilon_{2}(N_{2})=N_{2}^{-(1/d)(39/37-d)}(\log N_{2})^{201}\end{cases}

is solvable in prime variables p1,p2,p3,p4,p5p_{1},p_{2},p_{3},p_{4},p_{5}.

Remark 1.

In order to compare our result with the previous results of Zhai [14] and Tolev [12], we list the numerical results as follows:

3534=1.0294117;2524=1.041666;3937=1.054054.\frac{35}{34}=1.0294117\dots;\qquad\frac{25}{24}=1.041666\dots;\qquad\frac{39}{37}=1.054054\dots.
Notation.

Let c,d,α,βc,d,\alpha,\beta be numbers satisfying (1.4). The letter pp, with or without subscript, always denotes a prime number. As usual, we use μ(n)\mu(n) and Λ(n)\Lambda(n) to denote Möbius’ function and von Mangoldt’s function, respectively. Throughout this paper, the constants in OO–terms and \ll–symbols are absolute or at most depend on c,d,α,βc,d,\alpha,\beta. f(x)g(x)f(x)\ll g(x) means that f(x)=O(g(x))f(x)=O(g(x)); f(x)g(x)f(x)\asymp g(x) means that f(x)g(x)f(x)f(x)\ll g(x)\ll f(x). N1N_{1} and N2N_{2} are sufficiently large real numbers subject to (1.5). Set

X=N11/c,ε1=X(39/37c)(logX)201,ε2=X(39/37d)(logX)201,\displaystyle\,\,X=N_{1}^{1/c},\qquad\varepsilon_{1}=X^{-(39/37-c)}(\log X)^{201},\qquad\varepsilon_{2}=X^{-(39/37-d)}(\log X)^{201},
K1=ε11logX,K2=ε21logX,τ1=X3/4cη,τ2=X3/4dη,\displaystyle\,\,K_{1}=\varepsilon_{1}^{-1}\log X,\qquad K_{2}=\varepsilon_{2}^{-1}\log X,\qquad\tau_{1}=X^{3/4-c-\eta},\qquad\tau_{2}=X^{3/4-d-\eta},

where η\eta is a positive number which is sufficiently small in terms of cc and dd. e(t)=exp(2πit)e(t)=\exp(2\pi it), ϕ(t)=eπt2,ϕδ(t)=δϕ(δt)\phi(t)=e^{-\pi t^{2}},\phi_{\delta}(t)=\delta\cdot\phi(\delta t). 𝟙[1,1](t)\mathds{1}_{[-1,1]}(t) is the characteristic function of the interval [1,1][-1,1]. Denote by λ\lambda a sufficiently small positive number, depending on c,d,α,βc,d,\alpha,\beta, whose value will be determined more precisely by Lemma 1 of Tolev [12]. Define

=λX<p1,,p5X(i=15logpi)𝟙[1,1](p1c++p5cN1ε1logX)𝟙[1,1](p1d++p5dN2ε2logX),\mathscr{B}=\sum_{\lambda X<p_{1},\dots,p_{5}\leqslant X}\Bigg(\prod_{i=1}^{5}\log p_{i}\Bigg)\mathds{1}_{[-1,1]}\bigg(\frac{p_{1}^{c}+\dots+p_{5}^{c}-N_{1}}{\varepsilon_{1}\log X}\bigg)\mathds{1}_{[-1,1]}\bigg(\frac{p_{1}^{d}+\dots+p_{5}^{d}-N_{2}}{\varepsilon_{2}\log X}\bigg),
S(x,y)=λX<pX(logp)e(pcx+pdy),𝒯α(x)=λX<nXe(nαx),S(x,y)=\sum_{\lambda X<p\leqslant X}(\log p)e(p^{c}x+p^{d}y),\qquad\mathcal{T}_{\alpha}(x)=\sum_{\lambda X<n\leqslant X}e(n^{\alpha}x), (1.6)
𝒟=++S5(x,y)e(N1xN2y)ϕε1(x)ϕε2(y)dxdy.\mathscr{D}=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}S^{5}(x,y)e(-N_{1}x-N_{2}y)\phi_{\varepsilon_{1}}(x)\phi_{\varepsilon_{2}}(y)\mathrm{d}x\mathrm{d}y.

2. Proof of Theorem 1.1

The Theorem follows if one shows that \mathscr{B} tends to infinity as XX tends to infinity. We first give a lemma as follows.

Lemma 2.1.

The function ϕ(t)=eπt2\phi(t)=e^{-\pi t^{2}} has the following properties

(i) ϕ(x)=+ϕ(t)e(xt)dt;\displaystyle\,\,\,\,\phi(x)=\int_{-\infty}^{+\infty}\phi(t)e(-xt)\mathrm{d}t;
(ii)     1[1,1](t/ϱ)ϕ(t)eπϱ2,for any ϱ>0;\displaystyle\,\,\,\,\mathds{1}_{[-1,1]}(t/\varrho)\geqslant\phi(t)-e^{-\pi\varrho^{2}},\quad\textrm{for any $\varrho>0$};
(iii) ϕ(t)eπ,for |t|1.\displaystyle\,\,\,\,\phi(t)\geqslant e^{-\pi},\quad\textrm{for $|t|\leqslant 1$}.
Proof.

See Lemma 2 of Tolev [12]. ∎

Trivially, by Lemma 2.1, we get

\displaystyle\mathscr{B}\geqslant λX<p1,,p5X(i=15logpi)(ϕ(p1c++p5cN1ε1)eπ(logX)2)\displaystyle\,\,\sum_{\lambda X<p_{1},\dots,p_{5}\leqslant X}\Bigg(\prod_{i=1}^{5}\log p_{i}\Bigg)\Bigg(\phi\bigg(\frac{p_{1}^{c}+\dots+p_{5}^{c}-N_{1}}{\varepsilon_{1}}\bigg)-e^{-\pi(\log X)^{2}}\Bigg)
×(ϕ(p1d++p5dN2ε2)eπ(logX)2)\displaystyle\,\,\qquad\qquad\quad\times\Bigg(\phi\bigg(\frac{p_{1}^{d}+\dots+p_{5}^{d}-N_{2}}{\varepsilon_{2}}\bigg)-e^{-\pi(\log X)^{2}}\Bigg)
=\displaystyle= λX<p1,,p5X(i=15logpi)ϕ(p1c++p5cN1ε1)\displaystyle\,\,\sum_{\lambda X<p_{1},\dots,p_{5}\leqslant X}\Bigg(\prod_{i=1}^{5}\log p_{i}\Bigg)\phi\bigg(\frac{p_{1}^{c}+\dots+p_{5}^{c}-N_{1}}{\varepsilon_{1}}\bigg)
×ϕ(p1d++p5dN2ε2)+O(X5eπ(logX)2)\displaystyle\,\,\qquad\qquad\quad\times\phi\bigg(\frac{p_{1}^{d}+\dots+p_{5}^{d}-N_{2}}{\varepsilon_{2}}\bigg)+O\big(X^{5}e^{-\pi(\log X)^{2}}\big)
=\displaystyle= λX<p1,,p5X(i=15logpi)+ϕ(t1)e((p1c++p5cN1)t1ε1)dt1\displaystyle\,\,\sum_{\lambda X<p_{1},\dots,p_{5}\leqslant X}\Bigg(\prod_{i=1}^{5}\log p_{i}\Bigg)\int_{-\infty}^{+\infty}\phi(t_{1})e\bigg(\frac{(p_{1}^{c}+\dots+p_{5}^{c}-N_{1})t_{1}}{\varepsilon_{1}}\bigg)\mathrm{d}t_{1}
×+ϕ(t2)e((p1d++p5dN2)t2ε2)dt2+O(1)\displaystyle\,\,\qquad\qquad\quad\times\int_{-\infty}^{+\infty}\phi(t_{2})e\bigg(\frac{(p_{1}^{d}+\dots+p_{5}^{d}-N_{2})t_{2}}{\varepsilon_{2}}\bigg)\mathrm{d}t_{2}+O(1)
=\displaystyle= λX<p1,,p5X(i=15logpi)+e((p1c++p5cN1)x)ε1ϕ(ε1x)dx\displaystyle\,\,\sum_{\lambda X<p_{1},\dots,p_{5}\leqslant X}\Bigg(\prod_{i=1}^{5}\log p_{i}\Bigg)\int_{-\infty}^{+\infty}e\big((p_{1}^{c}+\dots+p_{5}^{c}-N_{1})x\big)\varepsilon_{1}\phi(\varepsilon_{1}x)\mathrm{d}x
×+e((p1d++p5dN2)y)ε2ϕ(ε2y)dy+O(1)\displaystyle\,\,\qquad\qquad\quad\times\int_{-\infty}^{+\infty}e\big((p_{1}^{d}+\dots+p_{5}^{d}-N_{2})y\big)\varepsilon_{2}\phi(\varepsilon_{2}y)\mathrm{d}y+O(1)
=\displaystyle= ++(λX<pX(logp)e(pcx+pdy))5e(N1xN2y)ϕε1(x)ϕε2(y)dxdy+O(1)\displaystyle\,\,\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}\Bigg(\sum_{\lambda X<p\leqslant X}(\log p)e(p^{c}x+p^{d}y)\Bigg)^{5}e(-N_{1}x-N_{2}y)\phi_{\varepsilon_{1}}(x)\phi_{\varepsilon_{2}}(y)\mathrm{d}x\mathrm{d}y+O(1)
=\displaystyle= 𝒟+O(1).\displaystyle\,\,\mathscr{D}+O(1). (2.1)

Now, we divide the plane into three regions: Ω1\Omega_{1}—a neighbourhood of the origin, Ω2\Omega_{2}—an intermediate region, and Ω3\Omega_{3}—a trivial region, as follows:

Ω1=\displaystyle\Omega_{1}= {(x,y):max(|x|τ11,|y|τ21)<1},\displaystyle\,\,\Big\{(x,y):\,\max\big(|x|\tau_{1}^{-1},|y|\tau_{2}^{-1}\big)<1\Big\},
Ω2=\displaystyle\Omega_{2}= {(x,y):max(|x|τ11,|y|τ21)1,max(|x|K11,|y|K21)1},\displaystyle\,\,\Big\{(x,y):\,\max\big(|x|\tau_{1}^{-1},|y|\tau_{2}^{-1}\big)\geqslant 1,\,\,\max\big(|x|K_{1}^{-1},|y|K_{2}^{-1}\big)\leqslant 1\Big\},
Ω3=\displaystyle\Omega_{3}= {(x,y):max(|x|K11,|y|K21)>1}.\displaystyle\,\,\Big\{(x,y):\,\max\big(|x|K_{1}^{-1},|y|K_{2}^{-1}\big)>1\Big\}.

Correspondingly, we represent the integral 𝒟\mathscr{D} as

𝒟=𝒟1+𝒟2+𝒟3,\mathscr{D}=\mathscr{D}_{1}+\mathscr{D}_{2}+\mathscr{D}_{3}, (2.2)

where 𝒟i\mathscr{D}_{i} denotes the contribution to the integral 𝒟\mathscr{D} in (2.2) arising from the set Ωi\Omega_{i}. The result of (2) implies that it suffices to prove that 𝒟\mathscr{D} tends to infinity as XX tends to infinity. The last statement is a consequence of (2.2) and of the following three inequalities

𝒟1ε1ε2X5cd,\mathscr{D}_{1}\gg\varepsilon_{1}\varepsilon_{2}X^{5-c-d}, (2.3)
𝒟2ε1ε2X5cd(logX)1,\mathscr{D}_{2}\ll\varepsilon_{1}\varepsilon_{2}X^{5-c-d}(\log X)^{-1},
𝒟31.\mathscr{D}_{3}\ll 1.

As is shown in Section 4 of Tolev [12], one can easily follow the process of the arguments to see that (2.3) holds. For the upper bound estimate of 𝒟3\mathscr{D}_{3}, it follows from the definition of Ω3\Omega_{3} that

𝒟3\displaystyle\mathscr{D}_{3}\ll +ϕε1(x)dx|y|K2|S(x,y)|5ϕε2(y)dy+|y|<K2ϕε2(y)dy|x|K1|S(x,y)|5ϕε1(x)dx\displaystyle\,\,\int_{-\infty}^{+\infty}\phi_{\varepsilon_{1}}(x)\mathrm{d}x\int_{|y|\geqslant K_{2}}|S(x,y)|^{5}\phi_{\varepsilon_{2}}(y)\mathrm{d}y+\int_{|y|<K_{2}}\phi_{\varepsilon_{2}}(y)\mathrm{d}y\int_{|x|\geqslant K_{1}}|S(x,y)|^{5}\phi_{\varepsilon_{1}}(x)\mathrm{d}x
\displaystyle\ll X5(|y|K2ε2eπε22y2dy+|x|K1ε1eπε12x2dx)\displaystyle\,\,X^{5}\Bigg(\int_{|y|\geqslant K_{2}}\varepsilon_{2}e^{-\pi\varepsilon_{2}^{2}y^{2}}\mathrm{d}y+\int_{|x|\geqslant K_{1}}\varepsilon_{1}e^{-\pi\varepsilon_{1}^{2}x^{2}}\mathrm{d}x\Bigg)
\displaystyle\ll X5(logX)eπ(logX)2(logX)X5πlogX1,\displaystyle\,\,X^{5}(\log X)e^{-\pi(\log X)^{2}}\ll(\log X)X^{5-\pi\log X}\ll 1,

where we use the trivial estimate

+ϕε1(x)dx=+ε1ϕ(ε1x)dx=+ϕ(t)dt=+eπt2dt1,\int_{-\infty}^{+\infty}\phi_{\varepsilon_{1}}(x)\mathrm{d}x=\int_{-\infty}^{+\infty}\varepsilon_{1}\phi(\varepsilon_{1}x)\mathrm{d}x=\int_{-\infty}^{+\infty}\phi(t)\mathrm{d}t=\int_{-\infty}^{+\infty}e^{-\pi t^{2}}\mathrm{d}t\ll 1,

and

|y|<K2ϕε2(y)dy+ϕε2(y)dy1.\int_{|y|<K_{2}}\phi_{\varepsilon_{2}}(y)\mathrm{d}y\ll\int_{-\infty}^{+\infty}\phi_{\varepsilon_{2}}(y)\mathrm{d}y\ll 1.

In the rest of this section, we focus on the upper bound estimate of 𝒟2\mathscr{D}_{2}.

Lemma 2.2.

For S(x,y)S(x,y) defined as in (1.6), there holds

(i) τ1τ1|S(x,y)|2dxX2c(logX)3,uniformly for all yR;\displaystyle\,\,\int_{-\tau_{1}}^{\tau_{1}}|S(x,y)|^{2}\mathrm{d}x\ll X^{2-c}(\log X)^{3},\quad\textrm{uniformly for all $y\in\mathbb{R}$};
(ii) τ2τ2|S(x,y)|2dyX2d(logX)3,uniformly for all xR;\displaystyle\,\,\int_{-\tau_{2}}^{\tau_{2}}|S(x,y)|^{2}\mathrm{d}y\ll X^{2-d}(\log X)^{3},\quad\textrm{uniformly for all $x\in\mathbb{R}$};
(iii) nn+1|S(x,y)|2dxX(logX)3,uniformly for all yR and nN;\displaystyle\,\,\int_{n}^{n+1}|S(x,y)|^{2}\mathrm{d}x\ll X(\log X)^{3},\quad\textrm{uniformly for all $y\in\mathbb{R}$ and $n\in\mathbb{N}$};
(iv) nn+1|S(x,y)|2dyX(logX)3,uniformly for all xR and nN.\displaystyle\,\,\int_{n}^{n+1}|S(x,y)|^{2}\mathrm{d}y\ll X(\log X)^{3},\quad\textrm{uniformly for all $x\in\mathbb{R}$ and $n\in\mathbb{N}$}.
Proof.

We follow the process of the arguments of Lemma 7 of Tolev [11]. We only give the details of the proof of (i). The estimates (ii), (iii) and (iv) can be established likewise. We have

τ1τ1|S(x,y)|2dx=\displaystyle\int_{-\tau_{1}}^{\tau_{1}}|S(x,y)|^{2}\mathrm{d}x= λX<p1,p2X(logp1)(logp2)e((p1dp2d)y)τ1τ1e((p1cp2c)x)dx\displaystyle\,\,\sum_{\lambda X<p_{1},p_{2}\leqslant X}(\log p_{1})(\log p_{2})e\big((p_{1}^{d}-p_{2}^{d})y\big)\int_{-\tau_{1}}^{\tau_{1}}e\big((p_{1}^{c}-p_{2}^{c})x\big)\mathrm{d}x
\displaystyle\ll λX<p1,p2X(logp1)(logp2)|τ1τ1e((p1cp2c)x)dx|\displaystyle\,\,\sum_{\lambda X<p_{1},p_{2}\leqslant X}(\log p_{1})(\log p_{2})\bigg|\int_{-\tau_{1}}^{\tau_{1}}e\big((p_{1}^{c}-p_{2}^{c})x\big)\mathrm{d}x\bigg|
\displaystyle\ll λX<p1,p2X(logp1)(logp2)min(τ1,1|p1cp2c|)\displaystyle\,\,\sum_{\lambda X<p_{1},p_{2}\leqslant X}(\log p_{1})(\log p_{2})\min\bigg(\tau_{1},\frac{1}{|p_{1}^{c}-p_{2}^{c}|}\bigg)
\displaystyle\ll 𝒰τ1(logX)2+𝒱(logX)2,\displaystyle\,\,\mathcal{U}\tau_{1}(\log X)^{2}+\mathcal{V}(\log X)^{2}, (2.4)

where

𝒰=λX<n1,n2X|n1cn2c|1/τ11,𝒱=λX<n1,n2X|n1cn2c|>1/τ11|n1cn2c|.\mathcal{U}=\sum_{\begin{subarray}{c}\lambda X<n_{1},n_{2}\leqslant X\\ |n_{1}^{c}-n_{2}^{c}|\leqslant 1/\tau_{1}\end{subarray}}1,\qquad\qquad\mathcal{V}=\sum_{\begin{subarray}{c}\lambda X<n_{1},n_{2}\leqslant X\\ |n_{1}^{c}-n_{2}^{c}|>1/\tau_{1}\end{subarray}}\frac{1}{|n_{1}^{c}-n_{2}^{c}|}.

Obviously, one has

𝒰λX<n1XλX<n2X(n1c1/τ1)1/cn2(n1c+1/τ1)1/c1λX<n1X(1+(n1c+1/τ1)1/c(n1c1/τ1)1/c),\mathcal{U}\ll\mathop{\sum_{\lambda X<n_{1}\leqslant X}\sum_{\lambda X<n_{2}\leqslant X}}_{(n_{1}^{c}-1/\tau_{1})^{1/c}\leqslant n_{2}\leqslant(n_{1}^{c}+1/\tau_{1})^{1/c}}1\ll\sum_{\lambda X<n_{1}\leqslant X}\big(1+(n_{1}^{c}+1/\tau_{1})^{1/c}-(n_{1}^{c}-1/\tau_{1})^{1/c}\big),

and by the mean–value theorem

𝒰X+1τ1X2c.\mathcal{U}\ll X+\frac{1}{\tau_{1}}X^{2-c}. (2.5)

Trivially, by a splitting argument, there holds 𝒱𝒱\mathcal{V}\ll\sum_{\ell}\mathcal{V}_{\ell}, where

𝒱=λX<n1,n2X<|n1cn2c|21|n1cn2c|,\mathcal{V}_{\ell}=\sum_{\begin{subarray}{c}\lambda X<n_{1},n_{2}\leqslant X\\ \ell<|n_{1}^{c}-n_{2}^{c}|\leqslant 2\ell\end{subarray}}\frac{1}{|n_{1}^{c}-n_{2}^{c}|}, (2.6)

and \ell takes the values 2k/τ1,k=0,1,2,2^{k}/\tau_{1},\,k=0,1,2,\dots, with Xc\ell\ll X^{c}. Therefore, we get

𝒱1λX<n1XλX<n2X(n1c+)1/cn2(n1c+2)1/c1.\mathcal{V}_{\ell}\ll\frac{1}{\ell}\mathop{\sum_{\lambda X<n_{1}\leqslant X}\sum_{\lambda X<n_{2}\leqslant X}}_{(n_{1}^{c}+\ell)^{1/c}\leqslant n_{2}\leqslant(n_{1}^{c}+2\ell)^{1/c}}1.

For 1/τ1\ell\geqslant 1/\tau_{1} and λX<n1X\lambda X<n_{1}\leqslant X, it is easy to see that

(n1c+2)1/c(n1c+)1/c>1.(n_{1}^{c}+2\ell)^{1/c}-(n_{1}^{c}+\ell)^{1/c}>1.

Hence

𝒱1λX<n1X((n1c+2)1/c(n1c+)1/c)X2c\mathcal{V}_{\ell}\ll\frac{1}{\ell}\sum_{\lambda X<n_{1}\leqslant X}\big((n_{1}^{c}+2\ell)^{1/c}-(n_{1}^{c}+\ell)^{1/c}\big)\ll X^{2-c} (2.7)

by the mean–value theorem. According to (2)–(2.7), the conclusion follows. ∎

Lemma 2.3.

For S(x,y)S(x,y) defined as in (1.6), there holds

(i) |x|K1|S(x,y)|2ϕε1(x)dxX(logX)4;\displaystyle\,\,\int_{|x|\leqslant K_{1}}|S(x,y)|^{2}\phi_{\varepsilon_{1}}(x)\mathrm{d}x\ll X(\log X)^{4};
(ii) |y|K2|S(x,y)|2ϕε2(y)dyX(logX)4.\displaystyle\,\,\int_{|y|\leqslant K_{2}}|S(x,y)|^{2}\phi_{\varepsilon_{2}}(y)\mathrm{d}y\ll X(\log X)^{4}.
Proof.

For (i), it follows from (i) and (iii) of Lemma 2.2 and the trivial estimate ϕε1(x)ε1\phi_{\varepsilon_{1}}(x)\ll\varepsilon_{1} that

|x|K1|S(x,y)|2ϕε1(x)dx=\displaystyle\int_{|x|\leqslant K_{1}}|S(x,y)|^{2}\phi_{\varepsilon_{1}}(x)\mathrm{d}x= |x|τ1|S(x,y)|2ϕε1(x)dx+τ1<|x|K1|S(x,y)|2ϕε1(x)dx\displaystyle\,\,\int_{|x|\leqslant\tau_{1}}|S(x,y)|^{2}\phi_{\varepsilon_{1}}(x)\mathrm{d}x+\int_{\tau_{1}<|x|\leqslant K_{1}}|S(x,y)|^{2}\phi_{\varepsilon_{1}}(x)\mathrm{d}x
\displaystyle\ll ε1X2c(logX)3+ε10nK1nn+1|S(x,y)|2dx\displaystyle\,\,\varepsilon_{1}X^{2-c}(\log X)^{3}+\varepsilon_{1}\sum_{0\leqslant n\leqslant K_{1}}\int_{n}^{n+1}|S(x,y)|^{2}\mathrm{d}x
\displaystyle\ll ε1X2c(logX)3+ε1K1X(logX)3X(logX)4.\displaystyle\,\,\varepsilon_{1}X^{2-c}(\log X)^{3}+\varepsilon_{1}K_{1}X(\log X)^{3}\ll X(\log X)^{4}.

Similarly, for (ii), it follows from (ii) and (iv) of lemma 2.2 and the trivial estimate ϕε2(x)ε2\phi_{\varepsilon_{2}}(x)\ll\varepsilon_{2} that

|y|K2|S(x,y)|2ϕε2(y)dy=\displaystyle\int_{|y|\leqslant K_{2}}|S(x,y)|^{2}\phi_{\varepsilon_{2}}(y)\mathrm{d}y= |y|τ2|S(x,y)|2ϕε2(y)dy+τ2<|y|K2|S(x,y)|2ϕε2(y)dy\displaystyle\,\,\int_{|y|\leqslant\tau_{2}}|S(x,y)|^{2}\phi_{\varepsilon_{2}}(y)\mathrm{d}y+\int_{\tau_{2}<|y|\leqslant K_{2}}|S(x,y)|^{2}\phi_{\varepsilon_{2}}(y)\mathrm{d}y
\displaystyle\ll ε2X2d(logX)3+ε20nK2nn+1|S(x,y)|2dy\displaystyle\,\,\varepsilon_{2}X^{2-d}(\log X)^{3}+\varepsilon_{2}\sum_{0\leqslant n\leqslant K_{2}}\int_{n}^{n+1}|S(x,y)|^{2}\mathrm{d}y
\displaystyle\ll ε2X2d(logX)3+ε2K2X(logX)3X(logX)4.\displaystyle\,\,\varepsilon_{2}X^{2-d}(\log X)^{3}+\varepsilon_{2}K_{2}X(\log X)^{3}\ll X(\log X)^{4}.

This completes the proof of lemma 2.3. ∎

Lemma 2.4.

Suppose that f(x):[a,b]Rf(x):[a,b]\to\mathbb{R} has continuous derivatives of arbitrary order on [a,b][a,b], where 1a<b2a1\leqslant a<b\leqslant 2a. Suppose further that

|f(j)(x)|λ1a1j,j1,x[a,b].\big|f^{(j)}(x)\big|\asymp\lambda_{1}a^{1-j},\quad j\geqslant 1,\quad x\in[a,b].

Then, for any exponential pair (κ,λ)(\kappa,\lambda), we have

a<nbe(f(n))λ1κaλ+λ11.\sum_{a<n\leqslant b}e(f(n))\ll\lambda_{1}^{\kappa}a^{\lambda}+\lambda_{1}^{-1}.
Proof.

See (3.3.4) of Graham and Kolesnik [4]. ∎

Lemma 2.5.

For S(x,y)S(x,y) defined as in (1.6), there holds

++|S(x,y)|4ϕε1(x)ϕε2(y)dxdyX2(logX)6.\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}\big|S(x,y)\big|^{4}\phi_{\varepsilon_{1}}(x)\phi_{\varepsilon_{2}}(y)\mathrm{d}x\mathrm{d}y\ll X^{2}(\log X)^{6}.
Proof.

See Lemma 14 of Tolev [12]. ∎

Lemma 2.6.

For 1<d<c<39/371<d<c<39/37 and (x,y)Ω2(x,y)\in\Omega_{2}, we have

S(x,y)X34/37(logX)205.S(x,y)\ll X^{34/37}(\log X)^{205}.
Proof.

The proof of this lemma will be given in Section 4. ∎

Now, we use the iterative argument to give the upper bound estimate of 𝒟2\mathscr{D}_{2}. By the definition of Ω2\Omega_{2}, there holds

𝒟2=\displaystyle\mathscr{D}_{2}= |x|K1τ2|y|K2S5(x,y)e(N1xN2y)ϕε1(x)ϕε2(y)dxdy\displaystyle\,\,\mathop{\int\!\!\!\!\int}_{\begin{subarray}{c}|x|\leqslant K_{1}\\ \tau_{2}\leqslant|y|\leqslant K_{2}\end{subarray}}S^{5}(x,y)e(-N_{1}x-N_{2}y)\phi_{\varepsilon_{1}}(x)\phi_{\varepsilon_{2}}(y)\mathrm{d}x\mathrm{d}y
+|y|τ2τ1|x|K1S5(x,y)e(N1xN2y)ϕε1(x)ϕε2(y)dxdy\displaystyle\,\,+\mathop{\int\!\!\!\!\int}_{\begin{subarray}{c}|y|\leqslant\tau_{2}\\ \tau_{1}\leqslant|x|\leqslant K_{1}\end{subarray}}S^{5}(x,y)e(-N_{1}x-N_{2}y)\phi_{\varepsilon_{1}}(x)\phi_{\varepsilon_{2}}(y)\mathrm{d}x\mathrm{d}y
\displaystyle\ll |x|K1τ2|y|K2|S(x,y)|5ϕε1(x)ϕε2(y)dxdy+|y|K2τ1|x|K1|S(x,y)|5ϕε1(x)ϕε2(y)dxdy\displaystyle\,\,\mathop{\int\!\!\!\!\int}_{\begin{subarray}{c}|x|\leqslant K_{1}\\ \tau_{2}\leqslant|y|\leqslant K_{2}\end{subarray}}\big|S(x,y)\big|^{5}\phi_{\varepsilon_{1}}(x)\phi_{\varepsilon_{2}}(y)\mathrm{d}x\mathrm{d}y+\mathop{\int\!\!\!\!\int}_{\begin{subarray}{c}|y|\leqslant K_{2}\\ \tau_{1}\leqslant|x|\leqslant K_{1}\end{subarray}}\big|S(x,y)\big|^{5}\phi_{\varepsilon_{1}}(x)\phi_{\varepsilon_{2}}(y)\mathrm{d}x\mathrm{d}y
=:\displaystyle=: 𝒟2(1)+𝒟2(2).\displaystyle\,\,\mathscr{D}_{2}^{(1)}+\mathscr{D}_{2}^{(2)}. (2.8)

According to the definition of 𝒟2(1)\mathscr{D}_{2}^{(1)}, we obtain

𝒟2(1)=|x|K1ϕε1(x)dxτ2|y|K2|S(x,y)|5ϕε2(y)dy.\mathscr{D}_{2}^{(1)}=\int_{|x|\leqslant K_{1}}\phi_{\varepsilon_{1}}(x)\mathrm{d}x\int_{\tau_{2}\leqslant|y|\leqslant K_{2}}\big|S(x,y)\big|^{5}\phi_{\varepsilon_{2}}(y)\mathrm{d}y. (2.9)

For the innermost integral on the right–hand side of (2.9), it follows from the definition of S(x,y)S(x,y) that

|τ2|y|K2|S(x,y)|5ϕε2(y)dy|\displaystyle\,\,\bigg|\int_{\tau_{2}\leqslant|y|\leqslant K_{2}}\big|S(x,y)\big|^{5}\phi_{\varepsilon_{2}}(y)\mathrm{d}y\bigg|
=\displaystyle= |τ2|y|K2S(x,y)S(x,y)¯|S(x,y)|3ϕε2(y)dy|\displaystyle\,\,\bigg|\int_{\tau_{2}\leqslant|y|\leqslant K_{2}}S(x,y)\overline{S(x,y)}\big|S(x,y)\big|^{3}\phi_{\varepsilon_{2}}(y)\mathrm{d}y\bigg|
=\displaystyle= |λX<pX(logp)e(pcx)τ2|y|K2S(x,y)¯|S(x,y)|3e(pdy)ϕε2(y)dy|\displaystyle\,\,\bigg|\sum_{\lambda X<p\leqslant X}(\log p)e(p^{c}x)\int_{\tau_{2}\leqslant|y|\leqslant K_{2}}\overline{S(x,y)}\big|S(x,y)\big|^{3}e(p^{d}y)\phi_{\varepsilon_{2}}(y)\mathrm{d}y\bigg|
\displaystyle\leqslant (logX)λX<pX|τ2|y|K2S(x,y)¯|S(x,y)|3e(pdy)ϕε2(y)dy|\displaystyle\,\,(\log X)\sum_{\lambda X<p\leqslant X}\bigg|\int_{\tau_{2}\leqslant|y|\leqslant K_{2}}\overline{S(x,y)}\big|S(x,y)\big|^{3}e(p^{d}y)\phi_{\varepsilon_{2}}(y)\mathrm{d}y\bigg|
\displaystyle\leqslant (logX)λX<nX|τ2|y|K2S(x,y)¯|S(x,y)|3e(ndy)ϕε2(y)dy|,\displaystyle\,\,(\log X)\sum_{\lambda X<n\leqslant X}\bigg|\int_{\tau_{2}\leqslant|y|\leqslant K_{2}}\overline{S(x,y)}\big|S(x,y)\big|^{3}e(n^{d}y)\phi_{\varepsilon_{2}}(y)\mathrm{d}y\bigg|,

which combined with Cauchy’s inequality yields that

|τ2|y|K2|S(x,y)|5ϕε2(y)dy|2\displaystyle\,\,\bigg|\int_{\tau_{2}\leqslant|y|\leqslant K_{2}}\big|S(x,y)\big|^{5}\phi_{\varepsilon_{2}}(y)\mathrm{d}y\bigg|^{2}
\displaystyle\ll X(logX)2λX<nX|τ2|y|K2S(x,y)¯|S(x,y)|3e(ndy)ϕε2(y)dy|2\displaystyle\,\,X(\log X)^{2}\sum_{\lambda X<n\leqslant X}\bigg|\int_{\tau_{2}\leqslant|y|\leqslant K_{2}}\overline{S(x,y)}\big|S(x,y)\big|^{3}e(n^{d}y)\phi_{\varepsilon_{2}}(y)\mathrm{d}y\bigg|^{2}
=\displaystyle= X(logX)2λX<nXτ2|y1|K2S(x,y1)|S(x,y1)|3e(ndy1)ϕε2(y1)dy1\displaystyle\,\,X(\log X)^{2}\sum_{\lambda X<n\leqslant X}\int_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}S(x,y_{1})\big|S(x,y_{1})\big|^{3}e(-n^{d}y_{1})\phi_{\varepsilon_{2}}(y_{1})\mathrm{d}y_{1}
×τ2|y2|K2S(x,y2)¯|S(x,y2)|3e(ndy2)ϕε2(y2)dy2\displaystyle\,\,\qquad\qquad\qquad\qquad\times\int_{\tau_{2}\leqslant|y_{2}|\leqslant K_{2}}\overline{S(x,y_{2})}\big|S(x,y_{2})\big|^{3}e(n^{d}y_{2})\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}
=\displaystyle= X(logX)2τ2|y1|K2S(x,y1)|S(x,y1)|3ϕε2(y1)dy1\displaystyle\,\,X(\log X)^{2}\int_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}S(x,y_{1})\big|S(x,y_{1})\big|^{3}\phi_{\varepsilon_{2}}(y_{1})\mathrm{d}y_{1}
×τ2|y2|K2S(x,y2)¯|S(x,y2)|3(λX<nXe(nd(y2y1)))ϕε2(y2)dy2\displaystyle\,\,\times\int_{\tau_{2}\leqslant|y_{2}|\leqslant K_{2}}\overline{S(x,y_{2})}\big|S(x,y_{2})\big|^{3}\Bigg(\sum_{\lambda X<n\leqslant X}e\big(n^{d}(y_{2}-y_{1})\big)\Bigg)\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}
\displaystyle\ll X(logX)2τ2|y1|K2|S(x,y1)|4ϕε2(y1)dy1τ2|y2|K2|S(x,y2)|4|𝒯d(y2y1)|ϕε2(y2)dy2.\displaystyle\,\,X(\log X)^{2}\int_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\big|S(x,y_{1})\big|^{4}\phi_{\varepsilon_{2}}(y_{1})\mathrm{d}y_{1}\int_{\tau_{2}\leqslant|y_{2}|\leqslant K_{2}}\big|S(x,y_{2})\big|^{4}\big|\mathcal{T}_{d}(y_{2}-y_{1})\big|\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}. (2.10)

For the innermost integral in (2), we get

τ2|y2|K2|S(x,y2)|4|𝒯d(y2y1)|ϕε2(y2)dy2\displaystyle\,\,\int_{\tau_{2}\leqslant|y_{2}|\leqslant K_{2}}\big|S(x,y_{2})\big|^{4}\big|\mathcal{T}_{d}(y_{2}-y_{1})\big|\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}
\displaystyle\ll τ2|y2|K2|y2y1|Xd|S(x,y2)|4|𝒯d(y2y1)|ϕε2(y2)dy2\displaystyle\,\,\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ |y_{2}-y_{1}|\leqslant X^{-d}\end{subarray}}\big|S(x,y_{2})\big|^{4}\big|\mathcal{T}_{d}(y_{2}-y_{1})\big|\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}
+τ2|y2|K2Xd<|y2y1|2K2|S(x,y2)|4|𝒯d(y2y1)|ϕε2(y2)dy2.\displaystyle\,\,+\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ X^{-d}<|y_{2}-y_{1}|\leqslant 2K_{2}\end{subarray}}\big|S(x,y_{2})\big|^{4}\big|\mathcal{T}_{d}(y_{2}-y_{1})\big|\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}. (2.11)

It follows from the trivial estimate 𝒯d(y2y1)X\mathcal{T}_{d}(y_{2}-y_{1})\ll X that

τ2|y2|K2|y2y1|Xd|S(x,y2)|4|𝒯d(y2y1)|ϕε2(y2)dy2\displaystyle\,\,\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ |y_{2}-y_{1}|\leqslant X^{-d}\end{subarray}}\big|S(x,y_{2})\big|^{4}\big|\mathcal{T}_{d}(y_{2}-y_{1})\big|\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}
\displaystyle\ll Xτ2|y2|K2|y2y1|Xd|S(x,y2)|4ϕε2(y2)dy2.\displaystyle\,\,X\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ |y_{2}-y_{1}|\leqslant X^{-d}\end{subarray}}\big|S(x,y_{2})\big|^{4}\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}. (2.12)

According to Lemma 2.4, for Xd<|y2y1|2K2X^{-d}<|y_{2}-y_{1}|\leqslant 2K_{2}, we get

𝒯d(y2y1)|y2y1|κXκdκ++1|y2y1|Xd1,\mathcal{T}_{d}(y_{2}-y_{1})\ll|y_{2}-y_{1}|^{\kappa}X^{\kappa d-\kappa+\ell}+\frac{1}{|y_{2}-y_{1}|X^{d-1}}, (2.13)

where (κ,)(\kappa,\ell) denotes an arbitrary exponential pair. By taking (κ,)=BA2B(0,1)=(27,47)(\kappa,\ell)=BA^{2}B(0,1)=(\frac{2}{7},\frac{4}{7}) in (2.13), we deduce that

𝒯d(y2y1)|y2y1|2/7X2(d+1)/7+1|y2y1|Xd1,\mathcal{T}_{d}(y_{2}-y_{1})\ll|y_{2}-y_{1}|^{2/7}X^{2(d+1)/7}+\frac{1}{|y_{2}-y_{1}|X^{d-1}},

and thus

τ2|y2|K2Xd<|y2y1|2K2|S(x,y2)|4|𝒯d(y2y1)|ϕε2(y2)dy2\displaystyle\,\,\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ X^{-d}<|y_{2}-y_{1}|\leqslant 2K_{2}\end{subarray}}\big|S(x,y_{2})\big|^{4}\big|\mathcal{T}_{d}(y_{2}-y_{1})\big|\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}
\displaystyle\ll τ2|y2|K2Xd<|y2y1|2K2|S(x,y2)|4(|y2y1|2/7X2(d+1)/7+1|y2y1|Xd1)ϕε2(y2)dy2\displaystyle\,\,\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ X^{-d}<|y_{2}-y_{1}|\leqslant 2K_{2}\end{subarray}}\big|S(x,y_{2})\big|^{4}\bigg(|y_{2}-y_{1}|^{2/7}X^{2(d+1)/7}+\frac{1}{|y_{2}-y_{1}|X^{d-1}}\bigg)\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}
\displaystyle\ll X152259(logX)57τ2|y2|K2Xd<|y2y1|2K2|S(x,y2)|4ϕε2(y2)dy2\displaystyle\,\,X^{\frac{152}{259}}(\log X)^{-57}\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ X^{-d}<|y_{2}-y_{1}|\leqslant 2K_{2}\end{subarray}}\big|S(x,y_{2})\big|^{4}\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}
+X1dτ2|y2|K2Xd<|y2y1|2K2|S(x,y2)|4|y2y1|1ϕε2(y2)dy2.\displaystyle\,\,+X^{1-d}\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ X^{-d}<|y_{2}-y_{1}|\leqslant 2K_{2}\end{subarray}}\big|S(x,y_{2})\big|^{4}|y_{2}-y_{1}|^{-1}\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}. (2.14)

Therefore, it follows from (2), (2), (2) and (2) that

τ2|y|K2|S(x,y)|5ϕε2(y)dy\displaystyle\,\,\int_{\tau_{2}\leqslant|y|\leqslant K_{2}}\big|S(x,y)\big|^{5}\phi_{\varepsilon_{2}}(y)\mathrm{d}y
\displaystyle\ll X1/2(logX)(τ2|y1|K2|S(x,y1)|4ϕε2(y1)dy1(Xτ2|y2|K2|y2y1|Xd|S(x,y2)|4ϕε2(y2)dy2\displaystyle\,\,X^{1/2}(\log X)\Bigg(\int_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\big|S(x,y_{1})\big|^{4}\phi_{\varepsilon_{2}}(y_{1})\mathrm{d}y_{1}\Bigg(X\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ |y_{2}-y_{1}|\leqslant X^{-d}\end{subarray}}\big|S(x,y_{2})\big|^{4}\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}
+X152/259(logX)57τ2|y2|K2Xd<|y2y1|2K2|S(x,y2)|4ϕε2(y2)dy2\displaystyle\,\,+X^{152/259}(\log X)^{-57}\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ X^{-d}<|y_{2}-y_{1}|\leqslant 2K_{2}\end{subarray}}\big|S(x,y_{2})\big|^{4}\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}
+X1dτ2|y2|K2Xd<|y2y1|2K2|S(x,y2)|4|y2y1|1ϕε2(y2)dy2))1/2\displaystyle\,\,+X^{1-d}\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ X^{-d}<|y_{2}-y_{1}|\leqslant 2K_{2}\end{subarray}}\big|S(x,y_{2})\big|^{4}|y_{2}-y_{1}|^{-1}\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}\Bigg)\Bigg)^{1/2}
\displaystyle\ll X(logX)(supτ2|y1|K2τ2|y2|K2|y2y1|Xd|S(x,y2)|4ϕε2(y2)dy2)1/2(τ2|y1|K2|S(x,y1)|4ϕε2(y1)dy1)1/2\displaystyle\,X(\log X)\Bigg(\!\!\sup_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ |y_{2}-y_{1}|\leqslant X^{-d}\end{subarray}}\!\!\!\big|S(x,y_{2})\big|^{4}\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}\!\!\Bigg)^{1/2}\Bigg(\!\!\int_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\!\!\!\big|S(x,y_{1})\big|^{4}\phi_{\varepsilon_{2}}(y_{1})\mathrm{d}y_{1}\!\!\Bigg)^{1/2}
+X411/518(logX)27(supτ2|y1|K2τ2|y2|K2Xd<|y2y1|2K2|S(x,y2)|4ϕε2(y2)dy2)1/2\displaystyle\,\,+X^{411/518}(\log X)^{-27}\Bigg(\sup_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ X^{-d}<|y_{2}-y_{1}|\leqslant 2K_{2}\end{subarray}}\big|S(x,y_{2})\big|^{4}\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}\Bigg)^{1/2}
×(τ2|y1|K2|S(x,y1)|4ϕε2(y1)dy1)1/2\displaystyle\,\,\qquad\qquad\times\Bigg(\int_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\big|S(x,y_{1})\big|^{4}\phi_{\varepsilon_{2}}(y_{1})\mathrm{d}y_{1}\Bigg)^{1/2}
+X1d/2(logX)(supτ2|y1|K2τ2|y2|K2Xd<|y2y1|2K2|S(x,y2)|4|y2y1|1ϕε2(y2)dy2)1/2\displaystyle\,\,+X^{1-d/2}(\log X)\Bigg(\sup_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ X^{-d}<|y_{2}-y_{1}|\leqslant 2K_{2}\end{subarray}}\big|S(x,y_{2})\big|^{4}|y_{2}-y_{1}|^{-1}\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}\Bigg)^{1/2}
×(τ2|y1|K2|S(x,y1)|4ϕε2(y1)dy1)1/2,\displaystyle\,\,\qquad\qquad\times\Bigg(\int_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\big|S(x,y_{1})\big|^{4}\phi_{\varepsilon_{2}}(y_{1})\mathrm{d}y_{1}\Bigg)^{1/2},

which combined with (2.9) yields that

𝒟2(1)\displaystyle\mathscr{D}_{2}^{(1)}\ll X(logX)|x|K1(supτ2|y1|K2τ2|y2|K2|y2y1|Xd|S(x,y2)|4ϕε2(y2)dy2)1/2\displaystyle\,\,X(\log X)\int_{|x|\leqslant K_{1}}\Bigg(\sup_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ |y_{2}-y_{1}|\leqslant X^{-d}\end{subarray}}\big|S(x,y_{2})\big|^{4}\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}\Bigg)^{1/2}
×(τ2|y1|K2|S(x,y1)|4ϕε2(y1)dy1)1/2ϕε1(x)dx\displaystyle\,\,\qquad\qquad\times\Bigg(\int_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\big|S(x,y_{1})\big|^{4}\phi_{\varepsilon_{2}}(y_{1})\mathrm{d}y_{1}\Bigg)^{1/2}\phi_{\varepsilon_{1}}(x)\mathrm{d}x
+X411/518(logX)27|x|K1(supτ2|y1|K2τ2|y2|K2Xd<|y2y1|2K2|S(x,y2)|4ϕε2(y2)dy2)1/2\displaystyle\,\,+X^{411/518}(\log X)^{-27}\int_{|x|\leqslant K_{1}}\Bigg(\sup_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ X^{-d}<|y_{2}-y_{1}|\leqslant 2K_{2}\end{subarray}}\big|S(x,y_{2})\big|^{4}\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}\Bigg)^{1/2}
×(τ2|y1|K2|S(x,y1)|4ϕε2(y1)dy1)1/2ϕε1(x)dx\displaystyle\,\,\qquad\qquad\times\Bigg(\int_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\big|S(x,y_{1})\big|^{4}\phi_{\varepsilon_{2}}(y_{1})\mathrm{d}y_{1}\Bigg)^{1/2}\phi_{\varepsilon_{1}}(x)\mathrm{d}x
+X1d/2(logX)|x|K1(supτ2|y1|K2τ2|y2|K2Xd<|y2y1|2K2|S(x,y2)|4|y2y1|1ϕε2(y2)dy2)1/2\displaystyle\,\,+X^{1-d/2}(\log X)\int_{|x|\leqslant K_{1}}\Bigg(\sup_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ X^{-d}<|y_{2}-y_{1}|\leqslant 2K_{2}\end{subarray}}\!\!\!\big|S(x,y_{2})\big|^{4}|y_{2}-y_{1}|^{-1}\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}\Bigg)^{1/2}
×(τ2|y1|K2|S(x,y1)|4ϕε2(y1)dy1)1/2ϕε1(x)dx\displaystyle\,\,\qquad\qquad\times\Bigg(\int_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\big|S(x,y_{1})\big|^{4}\phi_{\varepsilon_{2}}(y_{1})\mathrm{d}y_{1}\Bigg)^{1/2}\phi_{\varepsilon_{1}}(x)\mathrm{d}x
=\displaystyle= X(logX)1+X411/518(logX)272+X1d/2(logX)3,\displaystyle\,\,X(\log X)\cdot\mathcal{I}_{1}+X^{411/518}(\log X)^{-27}\cdot\mathcal{I}_{2}+X^{1-d/2}(\log X)\cdot\mathcal{I}_{3}, (2.15)

say. It follows from Cauchy’s inequality, Lemma 2.3, Lemma 2.5 and Lemma 2.6 that

1\displaystyle\mathcal{I}_{1}\ll (|x|K1(supτ2|y1|K2τ2|y2|K2|y2y1|Xd|S(x,y2)|4ϕε2(y2)dy2)ϕε1(x)dx)1/2\displaystyle\,\,\Bigg(\int_{|x|\leqslant K_{1}}\Bigg(\sup_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ |y_{2}-y_{1}|\leqslant X^{-d}\end{subarray}}\big|S(x,y_{2})\big|^{4}\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}\Bigg)\phi_{\varepsilon_{1}}(x)\mathrm{d}x\Bigg)^{1/2}
×(|x|K1(τ2|y1|K2|S(x,y1)|4ϕε2(y1)dy1)ϕε1(x)dx)1/2\displaystyle\,\,\times\Bigg(\int_{|x|\leqslant K_{1}}\Bigg(\int_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\big|S(x,y_{1})\big|^{4}\phi_{\varepsilon_{2}}(y_{1})\mathrm{d}y_{1}\Bigg)\phi_{\varepsilon_{1}}(x)\mathrm{d}x\Bigg)^{1/2}
\displaystyle\ll sup(x,y2)Ω2|S(x,y2)|×(supτ2|y1|K2τ2|y2|K2|y2y1|Xdϕε2(y2)dy2|x|K1|S(x,y2)|2ϕε1(x)dx)1/2\displaystyle\,\,\sup_{(x,y_{2})\in\Omega_{2}}\big|S(x,y_{2})\big|\times\Bigg(\sup_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ |y_{2}-y_{1}|\leqslant X^{-d}\end{subarray}}\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}\int_{|x|\leqslant K_{1}}\big|S(x,y_{2})\big|^{2}\phi_{\varepsilon_{1}}(x)\mathrm{d}x\Bigg)^{1/2}
×(++|S(x,y)|4ϕε1(x)ϕε2(y)dxdy)1/2\displaystyle\,\,\times\Bigg(\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}\big|S(x,y)\big|^{4}\phi_{\varepsilon_{1}}(x)\phi_{\varepsilon_{2}}(y)\mathrm{d}x\mathrm{d}y\Bigg)^{1/2}
\displaystyle\ll X34/37(logX)205(ε2XdX(logX)4)1/2(X2(logX)6)1/2\displaystyle\,\,X^{34/37}(\log X)^{205}\cdot\big(\varepsilon_{2}X^{-d}\cdot X(\log X)^{4}\big)^{1/2}\cdot\big(X^{2}(\log X)^{6}\big)^{1/2}
\displaystyle\ll X70/37(logX)311.\displaystyle\,\,X^{70/37}(\log X)^{311}. (2.16)

By Cauchy’s inequality and Lemma 2.5, we get

2\displaystyle\mathcal{I}_{2}\ll (supτ2|y1|K2|x|K1τ2|y2|K2Xd<|y2y1|2K2|S(x,y2)|4ϕε1(x)ϕε2(y2)dxdy2)1/2\displaystyle\,\,\Bigg(\sup_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\int_{|x|\leqslant K_{1}}\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ X^{-d}<|y_{2}-y_{1}|\leqslant 2K_{2}\end{subarray}}\big|S(x,y_{2})\big|^{4}\phi_{\varepsilon_{1}}(x)\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}x\mathrm{d}y_{2}\Bigg)^{1/2}
×(|x|K1τ2|y1|K2|S(x,y1)|4ϕε1(x)ϕε2(y1)dxdy1)1/2\displaystyle\,\,\times\Bigg(\int_{|x|\leqslant K_{1}}\int_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\big|S(x,y_{1})\big|^{4}\phi_{\varepsilon_{1}}(x)\phi_{\varepsilon_{2}}(y_{1})\mathrm{d}x\mathrm{d}y_{1}\Bigg)^{1/2}
\displaystyle\ll X2(logX)6.\displaystyle\,\,X^{2}(\log X)^{6}. (2.17)

By Cauchy’s inequality, Lemma 2.3, Lemma 2.5 and Lemma 2.6 again, we deduce that

3\displaystyle\mathcal{I}_{3}\ll (|x|K1(supτ2|y1|K2τ2|y2|K2Xd<|y2y1|2K2|S(x,y2)|4|y2y1|1ϕε2(y2)dy2)ϕε1(x)dx)1/2\displaystyle\,\,\Bigg(\int_{|x|\leqslant K_{1}}\Bigg(\sup_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ X^{-d}<|y_{2}-y_{1}|\leqslant 2K_{2}\end{subarray}}\!\!\!\big|S(x,y_{2})\big|^{4}|y_{2}-y_{1}|^{-1}\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}\Bigg)\phi_{\varepsilon_{1}}(x)\mathrm{d}x\Bigg)^{1/2}
×(|x|K1(τ2|y1|K2|S(x,y1)|4ϕε2(y1)dy1)ϕε1(x)dx)1/2\displaystyle\,\,\,\,\times\Bigg(\int_{|x|\leqslant K_{1}}\Bigg(\int_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\big|S(x,y_{1})\big|^{4}\phi_{\varepsilon_{2}}(y_{1})\mathrm{d}y_{1}\Bigg)\phi_{\varepsilon_{1}}(x)\mathrm{d}x\Bigg)^{1/2}
\displaystyle\ll (supτ2|y1|K2τ2|y2|K2Xd<|y2y1|2K2|y2y1|1ϕε2(y2)dy2|x|K1|S(x,y2)|4ϕε1(x)dx)1/2\displaystyle\,\,\Bigg(\sup_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ X^{-d}<|y_{2}-y_{1}|\leqslant 2K_{2}\end{subarray}}|y_{2}-y_{1}|^{-1}\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}\int_{|x|\leqslant K_{1}}\big|S(x,y_{2})\big|^{4}\phi_{\varepsilon_{1}}(x)\mathrm{d}x\Bigg)^{1/2}
×(|x|K1τ2|y1|K2|S(x,y1)|4ϕε1(x)ϕε2(y1)dxdy1)1/2\displaystyle\,\,\,\,\times\Bigg(\int_{|x|\leqslant K_{1}}\int_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\big|S(x,y_{1})\big|^{4}\phi_{\varepsilon_{1}}(x)\phi_{\varepsilon_{2}}(y_{1})\mathrm{d}x\mathrm{d}y_{1}\Bigg)^{1/2}
\displaystyle\ll sup(x,y2)Ω2|S(x,y2)|×(supτ2|y1|K2τ2|y2|K2Xd<|y2y1|2K2|y2y1|1ϕε2(y2)dy2\displaystyle\,\,\sup_{(x,y_{2})\in\Omega_{2}}\big|S(x,y_{2})\big|\times\Bigg(\sup_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ X^{-d}<|y_{2}-y_{1}|\leqslant 2K_{2}\end{subarray}}|y_{2}-y_{1}|^{-1}\phi_{\varepsilon_{2}}(y_{2})\mathrm{d}y_{2}
×|x|K1|S(x,y2)|2ϕε1(x)dx)1/2(++|S(x,y1)|4ϕε1(x)ϕε2(y1)dxdy1)1/2\displaystyle\,\,\,\,\times\int_{|x|\leqslant K_{1}}\big|S(x,y_{2})\big|^{2}\phi_{\varepsilon_{1}}(x)\mathrm{d}x\Bigg)^{1/2}\Bigg(\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}\big|S(x,y_{1})\big|^{4}\phi_{\varepsilon_{1}}(x)\phi_{\varepsilon_{2}}(y_{1})\mathrm{d}x\mathrm{d}y_{1}\Bigg)^{1/2}
\displaystyle\ll X34/37(logX)205(ε2X(logX)4)1/2(X2(logX)6)1/2\displaystyle\,\,X^{34/37}(\log X)^{205}\cdot\big(\varepsilon_{2}X(\log X)^{4}\big)^{1/2}\cdot\big(X^{2}(\log X)^{6}\big)^{1/2}
×(supτ2|y1|K2τ2|y2|K2Xd<|y2y1|2K2|y2y1|1dy2)1/2\displaystyle\,\,\quad\times\Bigg(\sup_{\tau_{2}\leqslant|y_{1}|\leqslant K_{2}}\int_{\begin{subarray}{c}\tau_{2}\leqslant|y_{2}|\leqslant K_{2}\\ X^{-d}<|y_{2}-y_{1}|\leqslant 2K_{2}\end{subarray}}|y_{2}-y_{1}|^{-1}\mathrm{d}y_{2}\Bigg)^{1/2}
\displaystyle\ll X70/37+d/2(logX)309.\displaystyle\,\,X^{70/37+d/2}(\log X)^{309}. (2.18)

From (2), (2), (2) and (2), we derive that

𝒟2(1)\displaystyle\mathscr{D}_{2}^{(1)}\ll X(logX)X70/37(logX)311+X411/518(logX)27X2(logX)6\displaystyle\,\,X(\log X)\cdot X^{70/37}(\log X)^{311}+X^{411/518}(\log X)^{-27}\cdot X^{2}(\log X)^{6}
+X1d/2(logX)X70/37+d/2(logX)309\displaystyle\,\,+X^{1-d/2}(\log X)\cdot X^{70/37+d/2}(\log X)^{309}
\displaystyle\ll X107/37(logX)312.\displaystyle\,\,X^{107/37}(\log X)^{312}. (2.19)

Also, by the symmetric property of the region in 𝒟2(1)\mathscr{D}_{2}^{(1)} and 𝒟2(2)\mathscr{D}_{2}^{(2)}, one can follow the above process to deduce that

𝒟2(2)\displaystyle\mathscr{D}_{2}^{(2)}\ll X107/37(logX)312.\displaystyle\,\,X^{107/37}(\log X)^{312}. (2.20)

Combining (2), (2) and (2.20), we obtain

𝒟2𝒟2(1)+𝒟2(2)X107/37(logX)312ε1ε2X5cd(logX)90.\mathscr{D}_{2}\ll\mathscr{D}_{2}^{(1)}+\mathscr{D}_{2}^{(2)}\ll X^{107/37}(\log X)^{312}\ll\varepsilon_{1}\varepsilon_{2}X^{5-c-d}(\log X)^{-90}.

This completes the proof of Theorem 1.1.

3. Preliminary Lemmas

In this section, we shall demonstrate some lemmas, which are necessary for the proving process of Lemma 2.6, as follows.

Lemma 3.1.

Suppose that f(x)f(x) and φ(x)\varphi(x) are algebraic functions, which satisfy the following conditions constrained on the interval [a,b][a,b]:

|f′′(x)|R1,|f′′′(x)|(RU)1,U1,\displaystyle|f^{\prime\prime}(x)|\asymp R^{-1},\qquad|f^{\prime\prime\prime}(x)|\ll(RU)^{-1},\qquad U\geqslant 1,
|φ(x)|H,|φ(x)|HU11,U11.\displaystyle|\varphi(x)|\ll H,\qquad|\varphi^{\prime}(x)|\ll HU_{1}^{-1},\qquad U_{1}\geqslant 1.

Then we have

a<nbφ(x)e(f(n))=\displaystyle\sum_{a<n\leqslant b}\varphi(x)e\big(f(n)\big)= α<νβbνφ(nν)|f′′(nν)|e(f(nν)νnν+1/8)\displaystyle\,\,\sum_{\alpha<\nu\leqslant\beta}b_{\nu}\frac{\varphi(n_{\nu})}{\sqrt{|f^{\prime\prime}(n_{\nu})|}}e\big(f(n_{\nu})-\nu n_{\nu}+1/8\big)
+O(Hlog(βα+2)+H(ba+R)(U1+U11))\displaystyle\,\,+O\big(H\log(\beta-\alpha+2)+H(b-a+R)(U^{-1}+U_{1}^{-1})\big)
+O(Hmin(R,max(α1,β1))),\displaystyle\,\,+O\big(H\min\big(\sqrt{R},\max\big(\langle\alpha\rangle^{-1},\langle\beta\rangle^{-1}\big)\big)\big),

where [α,β][\alpha,\beta] is the image of [a,b][a,b] under the mapping y=f(x)y=f^{\prime}(x); nνn_{\nu} is the solution of the equation f(x)=νf^{\prime}(x)=\nu;

bν={1/2,if ν=αZ or ν=βZ,   1,if α<ν<β;b_{\nu}=\begin{cases}1/2,&\textrm{if $\nu=\alpha\in\mathbb{Z}$ or $\nu=\beta\in\mathbb{Z}$},\\ \,\,\,1,&\textrm{if $\alpha<\nu<\beta$};\end{cases}

and the function \langle\cdot\rangle is defined by

t={t,if tZ,βα,otherwise,\langle t\rangle=\begin{cases}\,\,\,\|t\|,&\textrm{if $t\not\in\mathbb{Z}$},\\ \beta-\alpha,&\textrm{otherwise},\end{cases}

where t=minmZ|tm|\|t\|=\min_{m\in\mathbb{Z}}|t-m|.

Proof.

See Theorem 1 of Chapter III of Karatsuba and Voronin [8]. ∎

Lemma 3.2.

Let L>k,Q>0L>k,\,Q>0, and zkz_{k} be any complex numbers. Then we have

|K<kLzk|2(1+LKQ)0|q|Q(1|q|Q)K<kLK<k+qLzk+qzk¯.\bigg|\sum_{K<k\leqslant L}z_{k}\bigg|^{2}\leqslant\bigg(1+\frac{L-K}{Q}\bigg)\sum_{0\leqslant|q|\leqslant Q}\bigg(1-\frac{|q|}{Q}\bigg)\sum_{\begin{subarray}{c}K<k\leqslant L\\ K<k+q\leqslant L\end{subarray}}z_{k+q}\overline{z_{k}}.
Proof.

See Lemma 8.17 of Iwaniec and Kowalski [7]. ∎

Lemma 3.3.

Suppose that f(x)Pf(x)\ll P and f(x)Δf^{\prime}(x)\gg\Delta for xNx\sim N. Then we have

nNmin(D,1f(n))(P+1)(D+Δ1)log(2+Δ1).\sum_{n\sim N}\min\bigg(D,\frac{1}{\|f(n)\|}\bigg)\ll(P+1)(D+\Delta^{-1})\log(2+\Delta^{-1}).
Proof.

See Lemma 2.8 of Krätzel [9]. ∎

Lemma 3.4.

Suppose that 5<A<B2A5<A<B\leqslant 2A and f′′(x)f^{\prime\prime}(x) is continuous on [A,B][A,B]. If 0<c1λ1|f(x)|c2λ11/20<c_{1}\lambda_{1}\leqslant|f^{\prime}(x)|\leqslant c_{2}\lambda_{1}\leqslant 1/2, then

A<nBe(f(n)))λ11.\sum_{A<n\leqslant B}e(f(n)))\ll\lambda_{1}^{-1}.

If 0<c3λ2|f′′(x)|c4λ20<c_{3}\lambda_{2}\leqslant|f^{\prime\prime}(x)|\leqslant c_{4}\lambda_{2}, then

A<nBe(f(n)))Aλ21/2+λ21/2.\sum_{A<n\leqslant B}e(f(n)))\ll A\lambda_{2}^{1/2}+\lambda_{2}^{-1/2}.
Proof.

See Theorem 2.1 of Graham and Kolesnik [4] and Corollary 8.13 of Iwaniec and Kowalski [7]. ∎

Lemma 3.5.

Let MM and M1M_{1} be positive numbers such that 5M<M12M5\leqslant M<M_{1}\leqslant 2M. Suppose that aa and bb are real numbers subject to ab0ab\not=0, and γ1\gamma_{1} and γ2\gamma_{2} are two distinct real numbers with 1<γ1,γ2<21<\gamma_{1},\gamma_{2}<2. Define

𝒮:=𝒮(M,a,b,γ1,γ2)=M<mM1e(amγ1+bmγ2),\mathcal{S}:=\mathcal{S}(M,a,b,\gamma_{1},\gamma_{2})=\sum_{M<m\leqslant M_{1}}e(am^{\gamma_{1}}+bm^{\gamma_{2}}),

and

=|a|Mγ1+|b|Mγ2.\mathcal{R}=|a|M^{\gamma_{1}}+|b|M^{\gamma_{2}}.

If M11/8\mathcal{R}M^{-1}\leqslant 1/8, then one has

𝒮M1/2.\mathcal{S}\ll M\mathcal{R}^{-1/2}. (3.1)

If MM2M\ll\mathcal{R}\ll M^{2}, then one has

𝒮1/2+M1/3.\mathcal{S}\ll\mathcal{R}^{1/2}+M\mathcal{R}^{-1/3}. (3.2)
Proof.

See Lemma 5 and Lemma 6 of Zhai [14]. ∎

Now, we focus on the upper bound estimate of S(x,y)S(x,y) for (x,y)Ω2(x,y)\in\Omega_{2}. Suppose that 1<d<c<39/371<d<c<39/37 and fix (x,y)Ω2(x,y)\in\Omega_{2}. Write R=|x|Xc+|y|XdR=|x|X^{c}+|y|X^{d}. Trivially, there holds X3/4ηRX39/37(logX)200X^{3/4-\eta}\ll R\ll X^{39/37}(\log X)^{-200}.

Lemma 3.6.

Suppose that a(m)a(m) are sequences supported on the intervals (M,2M](M,2M]. Suppose further that

mM|a(m)|2M(logM)2A,A>0.\sum_{m\sim M}\big|a(m)\big|^{2}\ll M(\log M)^{2A},\qquad A>0.

Then, for Mmin(X25/37,X59/37R1),MNXM\ll\min\big(X^{25/37},X^{59/37}R^{-1}\big),\,MN\asymp X, we have

SI=mMa(m)nNe(x(mn)c+y(mn)d)X34/37(logX)A+1.S_{I}=\sum_{m\sim M}a(m)\sum_{n\sim N}e\big(x(mn)^{c}+y(mn)^{d}\big)\ll X^{34/37}(\log X)^{A+1}.
Proof.

If MX34/37R1/2M\ll X^{34/37}R^{-1/2}, then it follows from Cauchy’s inequality and (3.2) that

SI\displaystyle S_{I}\ll (mM|a(m)|2)1/2(mM|nNe(x(mn)c+y(mn)d)|2)1/2\displaystyle\,\,\Bigg(\sum_{m\sim M}\big|a(m)\big|^{2}\Bigg)^{1/2}\Bigg(\sum_{m\sim M}\Bigg|\sum_{n\sim N}e\big(x(mn)^{c}+y(mn)^{d}\big)\Bigg|^{2}\Bigg)^{1/2}
\displaystyle\ll (M(logM)2A)1/2(M(R1/2+NR1/3)2)1/2\displaystyle\,\,\big(M(\log M)^{2A}\big)^{1/2}\big(M(R^{1/2}+NR^{-1/3})^{2}\big)^{1/2}
\displaystyle\ll M(R1/2+NR1/3)(logM)AX34/37(logX)A.\displaystyle\,\,M(R^{1/2}+NR^{-1/3})(\log M)^{A}\ll X^{34/37}(\log X)^{A}.

From now on we always postulate that MX34/37R1/2M\gg X^{34/37}R^{-1/2}. Set Q=[X6/37]Q=[X^{6/37}]. It follows from Cauchy’s inequality and Lemma 3.2 that

|SI|2X2Q1(logX)2A+XQ1(logX)2A1qQ|Eq|,\big|S_{I}\big|^{2}\ll X^{2}Q^{-1}(\log X)^{2A}+XQ^{-1}(\log X)^{2A}\sum_{1\leqslant q\leqslant Q}\big|E_{q}\big|,

where

Eq=mMN<n2Nqe(xmcΔ(n,q;c)+ymdΔ(n,q;d)),E_{q}=\sum_{m\sim M}\sum_{N<n\leqslant 2N-q}e\big(xm^{c}\Delta(n,q;c)+ym^{d}\Delta(n,q;d)\big),

and

Δ(n,q;t)=(n+q)tnt.\Delta(n,q;t)=(n+q)^{t}-n^{t}.

Therefore, it suffices to show that

1qQ|Eq|X(logX)2.\sum_{1\leqslant q\leqslant Q}\big|E_{q}\big|\ll X(\log X)^{2}.

For each fixed qq subject to 1qQ1\leqslant q\leqslant Q, define

f(m,n)=xmcΔ(n,q;c)+ymdΔ(n,q;d).f(m,n)=xm^{c}\Delta(n,q;c)+ym^{d}\Delta(n,q;d).

Now, we consider the following four cases.

Case 1. If |fm|103|f_{m}|\leqslant 10^{-3}, then one can see easily that

|xmcΔ(n,q;c)|q|x|mcnc1q|x|XcN1,\displaystyle\big|xm^{c}\Delta(n,q;c)\big|\asymp q|x|m^{c}n^{c-1}\asymp q|x|X^{c}N^{-1},
|ymdΔ(n,q;d)|q|y|mdnd1q|y|XdN1,\displaystyle\big|ym^{d}\Delta(n,q;d)\big|\asymp q|y|m^{d}n^{d-1}\asymp q|y|X^{d}N^{-1},

and thus

|xmcΔ(n,q;c)|+|ymdΔ(n,q;d)|qRN1.\big|xm^{c}\Delta(n,q;c)\big|+\big|ym^{d}\Delta(n,q;d)\big|\asymp qRN^{-1}.

We apply (3.1) to the sum over mm to derive that

EqNM(qRN1)1/2MN3/2q1/2R1/2,E_{q}\ll NM(qRN^{-1})^{-1/2}\ll MN^{3/2}q^{-1/2}R^{-1/2},

which combined with the two conditions MX34/37R1/2M\gg X^{34/37}R^{-1/2} and RX3/4ηR\gg X^{3/4-\eta} yields that

1qQ|Eq|\displaystyle\sum_{1\leqslant q\leqslant Q}\big|E_{q}\big|\ll MN3/2Q1/2R1/2X117/74M1/2R1/2\displaystyle\,\,MN^{3/2}Q^{1/2}R^{-1/2}\ll X^{117/74}M^{-1/2}R^{-1/2}
\displaystyle\ll X83/74R1/4X553/592+η=o(X).\displaystyle\,\,X^{83/74}R^{-1/4}\ll X^{553/592+\eta}=o(X).

Case 2. If |fn|103|f_{n}|\leqslant 10^{-3}, then for fixed mm, there holds

fn=cxmcΔ(n,q;c1)+dymdΔ(n,q;d1),\displaystyle f_{n}=cxm^{c}\Delta(n,q;c-1)+dym^{d}\Delta(n,q;d-1),
Δ(n,q;c1)=(c1)qnc2+O(q2Nc3),\displaystyle\Delta(n,q;c-1)=(c-1)qn^{c-2}+O(q^{2}N^{c-3}),
Δ(n,q;d1)=(d1)qnd2+O(q2Nd3),\displaystyle\Delta(n,q;d-1)=(d-1)qn^{d-2}+O(q^{2}N^{d-3}),

and hence

fn=c(c1)xqmcnc2+d(d1)yqmdnd2+O(q2RN3).f_{n}=c(c-1)xqm^{c}n^{c-2}+d(d-1)yqm^{d}n^{d-2}+O(q^{2}RN^{-3}).

If xy>0xy>0, then fnqRN2=o(1)f_{n}\asymp qRN^{-2}=o(1), which combined with Lemma 3.4 yields that

EqMN2q1R1,E_{q}\ll MN^{2}q^{-1}R^{-1},

and thus

1qQ|Eq|\displaystyle\sum_{1\leqslant q\leqslant Q}\big|E_{q}\big|\ll MN2R1logXX2M1R1logX\displaystyle\,\,MN^{2}R^{-1}\log X\ll X^{2}M^{-1}R^{-1}\log X
\displaystyle\ll X40/37R1/2logXX209/296+η=o(X).\displaystyle\,\,X^{40/37}R^{-1/2}\log X\ll X^{209/296+\eta}=o(X).

If xy<0xy<0, define

𝒥1={n(N,2Nq]:|fn|q1/2R1/2N3/2},\displaystyle\mathcal{J}_{1}=\big\{n\in(N,2N-q]:\,|f_{n}|\leqslant q^{1/2}R^{1/2}N^{-3/2}\big\},
𝒥2={n(N,2Nq]:|fn|>q1/2R1/2N3/2}.\displaystyle\mathcal{J}_{2}=\big\{n\in(N,2N-q]:\,|f_{n}|>q^{1/2}R^{1/2}N^{-3/2}\big\}.

For n𝒥1n\in\mathcal{J}_{1}, we get

c(c1)xqmcnc2=\displaystyle c(c-1)xqm^{c}n^{c-2}= d(d1)yqmdnd2+O(q1/2R1/2N3/2+q2RN3)\displaystyle\,\,-d(d-1)yqm^{d}n^{d-2}+O\big(q^{1/2}R^{1/2}N^{-3/2}+q^{2}RN^{-3}\big)
=\displaystyle= d(d1)yqmdnd2(1+O(q1/2R1/2N1/2+qN1)),\displaystyle\,\,-d(d-1)yqm^{d}n^{d-2}\big(1+O\big(q^{-1/2}R^{-1/2}N^{1/2}+qN^{-1}\big)\big),

which implies

n=\displaystyle n= (d(d1)ymdc(c1)xmc)1/(cd)(1+O(q1/2R1/2N1/2+qN1))1/(cd)\displaystyle\,\,\bigg(-\frac{d(d-1)ym^{d}}{c(c-1)xm^{c}}\bigg)^{1/(c-d)}\big(1+O\big(q^{-1/2}R^{-1/2}N^{1/2}+qN^{-1}\big)\big)^{1/(c-d)}
=\displaystyle= (d(d1)ymdc(c1)xmc)1/(cd)(1+O(q1/2R1/2N1/2+qN1))\displaystyle\,\,\bigg(-\frac{d(d-1)ym^{d}}{c(c-1)xm^{c}}\bigg)^{1/(c-d)}\big(1+O\big(q^{-1/2}R^{-1/2}N^{1/2}+qN^{-1}\big)\big)
=\displaystyle= (d(d1)ymdc(c1)xmc)1/(cd)+O(q+q1/2R1/2N3/2).\displaystyle\,\,\bigg(-\frac{d(d-1)ym^{d}}{c(c-1)xm^{c}}\bigg)^{1/(c-d)}+O\big(q+q^{-1/2}R^{-1/2}N^{3/2}\big).

Consequently, we obtain

|𝒥1|q+q1/2R1/2N3/2.|\mathcal{J}_{1}|\ll q+q^{-1/2}R^{-1/2}N^{3/2}.

For n𝒥2n\in\mathcal{J}_{2}, it follows from Lemma 3.4 that

N<n2Nqq1/2R1/2N3/2<|fn|103e(f(m,n))q1/2R1/2N3/2.\sum_{\begin{subarray}{c}N<n\leqslant 2N-q\\ q^{1/2}R^{1/2}N^{-3/2}<|f_{n}|\leqslant 10^{-3}\end{subarray}}e(f(m,n))\ll q^{-1/2}R^{-1/2}N^{3/2}.

Therefore, for xy<0xy<0, one has

N<n2Nq|fn|103e(f(m,n))q+q1/2R1/2N3/2.\sum_{\begin{subarray}{c}N<n\leqslant 2N-q\\ |f_{n}|\leqslant 10^{-3}\end{subarray}}e(f(m,n))\ll q+q^{-1/2}R^{-1/2}N^{3/2}.

Combining the above two cases (i.e., xy>0xy>0 and xy<0xy<0), we derive that

mMN<n2Nq|fn|103e(f(m,n))Mq+q1/2R1/2MN3/2+MN2q1R1,\sum_{m\sim M}\sum_{\begin{subarray}{c}N<n\leqslant 2N-q\\ |f_{n}|\leqslant 10^{-3}\end{subarray}}e(f(m,n))\ll Mq+q^{-1/2}R^{-1/2}MN^{3/2}+MN^{2}q^{-1}R^{-1},

and thus

1qQmMN<n2Nq|fn|103e(f(m,n))\displaystyle\sum_{1\leqslant q\leqslant Q}\sum_{m\sim M}\sum_{\begin{subarray}{c}N<n\leqslant 2N-q\\ |f_{n}|\leqslant 10^{-3}\end{subarray}}e(f(m,n))\ll MQ2+Q1/2R1/2MN3/2+MN2R1logQ\displaystyle\,\,MQ^{2}+Q^{1/2}R^{-1/2}MN^{3/2}+MN^{2}R^{-1}\log Q
\displaystyle\ll XlogX,\displaystyle\,\,X\log X,

provided that X34/37R1/2MX25/37X^{34/37}R^{-1/2}\ll M\ll X^{25/37}.

Case 3. Suppose that there exist two non–negative integers ii and jj subject to 2i+j32\leqslant i+j\leqslant 3 such that

|i+jfminj|qRlogXQMiNj+1.\bigg|\frac{\partial^{i+j}f}{\partial m^{i}\partial n^{j}}\bigg|\leqslant\frac{qR\log X}{QM^{i}N^{j+1}}. (3.3)

Set

𝔠(γ,i)={γ(γ1)(γi+1),if i1,1,if i=0.\mathfrak{c}(\gamma,i)=\begin{cases}\gamma(\gamma-1)\cdots(\gamma-i+1),&\textrm{if $i\geqslant 1$},\\ \qquad\qquad 1,&\textrm{if $i=0$}.\end{cases}

Then one has

i+jfminj=𝔠(c,i)𝔠(c,j)xmciΔ(n,q;cj)+𝔠(d,i)𝔠(d,j)ymdiΔ(n,q;dj).\frac{\partial^{i+j}f}{\partial m^{i}\partial n^{j}}=\mathfrak{c}(c,i)\mathfrak{c}(c,j)xm^{c-i}\Delta(n,q;c-j)+\mathfrak{c}(d,i)\mathfrak{c}(d,j)ym^{d-i}\Delta(n,q;d-j).

By noting the fact that 𝔠(c,i)𝔠(c,j)\mathfrak{c}(c,i)\mathfrak{c}(c,j) and 𝔠(d,i)𝔠(d,j)\mathfrak{c}(d,i)\mathfrak{c}(d,j) are the same sign, without loss of generality, we can postulate xy<0xy<0. Otherwise, there exists no pair (m,n)(m,n) which satisfies (3.3). For (m,n)(m,n) satisfying (3.3), we deduce that

𝔠(c,i)𝔠(c,j)xmciΔ(n,q;cj)=\displaystyle\mathfrak{c}(c,i)\mathfrak{c}(c,j)xm^{c-i}\Delta(n,q;c-j)= 𝔠(d,i)𝔠(d,j)ymdiΔ(n,q;dj)+O(qRlogXQMiNj+1)\displaystyle\,\,-\mathfrak{c}(d,i)\mathfrak{c}(d,j)ym^{d-i}\Delta(n,q;d-j)+O\bigg(\frac{qR\log X}{QM^{i}N^{j+1}}\bigg)
=\displaystyle= 𝔠(d,i)𝔠(d,j)ymdiΔ(n,q;dj)(1+O(Q1logX)),\displaystyle\,\,-\mathfrak{c}(d,i)\mathfrak{c}(d,j)ym^{d-i}\Delta(n,q;d-j)\big(1+O(Q^{-1}\log X)\big),

which implies that

m=\displaystyle m= (𝔠(d,i)𝔠(d,j)yΔ(n,q;dj)𝔠(c,i)𝔠(c,j)xΔ(n,q;cj))1/(cd)(1+O(Q1logX))1/(cd)\displaystyle\,\,\bigg(-\frac{\mathfrak{c}(d,i)\mathfrak{c}(d,j)y\Delta(n,q;d-j)}{\mathfrak{c}(c,i)\mathfrak{c}(c,j)x\Delta(n,q;c-j)}\bigg)^{1/(c-d)}\big(1+O(Q^{-1}\log X)\big)^{1/(c-d)}
=\displaystyle= (𝔠(d,i)𝔠(d,j)yΔ(n,q;dj)𝔠(c,i)𝔠(c,j)xΔ(n,q;cj))1/(cd)(1+O(Q1logX))\displaystyle\,\,\bigg(-\frac{\mathfrak{c}(d,i)\mathfrak{c}(d,j)y\Delta(n,q;d-j)}{\mathfrak{c}(c,i)\mathfrak{c}(c,j)x\Delta(n,q;c-j)}\bigg)^{1/(c-d)}\big(1+O(Q^{-1}\log X)\big)
=\displaystyle= (𝔠(d,i)𝔠(d,j)yΔ(n,q;dj)𝔠(c,i)𝔠(c,j)xΔ(n,q;cj))1/(cd)+O(MQ1logX).\displaystyle\,\,\bigg(-\frac{\mathfrak{c}(d,i)\mathfrak{c}(d,j)y\Delta(n,q;d-j)}{\mathfrak{c}(c,i)\mathfrak{c}(c,j)x\Delta(n,q;c-j)}\bigg)^{1/(c-d)}+O\big(MQ^{-1}\log X\big).

Therefore, we get

mMN<n2Nq|i+jfminj|qRlogXQMiNj+12i+j3e(f(m,n))MNlogXQXlogXQ,\mathop{\sum_{m\sim M}\sum_{N<n\leqslant 2N-q}}_{\begin{subarray}{c}\big|\frac{\partial^{i+j}f}{\partial m^{i}\partial n^{j}}\big|\leqslant\frac{qR\log X}{QM^{i}N^{j+1}}\\ 2\leqslant i+j\leqslant 3\end{subarray}}e(f(m,n))\ll\frac{MN\log X}{Q}\ll\frac{X\log X}{Q},

which implies that

1qQmMN<n2Nq|i+jfminj|qRlogXQMiNj+12i+j3e(f(m,n))XlogX.\sum_{1\leqslant q\leqslant Q}\mathop{\sum_{m\sim M}\sum_{N<n\leqslant 2N-q}}_{\begin{subarray}{c}\big|\frac{\partial^{i+j}f}{\partial m^{i}\partial n^{j}}\big|\leqslant\frac{qR\log X}{QM^{i}N^{j+1}}\\ 2\leqslant i+j\leqslant 3\end{subarray}}e(f(m,n))\ll X\log X.

Case 4. In this case, we postulate that all the conditions, which are in the Cases 1–3, do not hold. Then, |fn|>103>0|f_{n}|>10^{-3}>0, which means fnf_{n} keep the same sign. Without loss of generality, we suppose that fn>0f_{n}>0. For any fixed jj subject to 0j(log(10Q))/log20\leqslant j\leqslant(\log(10Q))/\log 2, denote by Ij=[Aj,Bj]I_{j}=[A_{j},B_{j}] the subinterval of [N,2Nq][N,2N-q] in which

2jqRQN3<|2fn2|2j+1qRQN3,\frac{2^{j}qR}{QN^{3}}<\bigg|\frac{\partial^{2}f}{\partial n^{2}}\bigg|\leqslant\frac{2^{j+1}qR}{QN^{3}},

where AjA_{j} and BjB_{j} may depend on mm. By Lemma 3.1, we obtain

nIje(f(m,n))=e(1/8)ν1(m)<νν2(m)bνe(𝔰(m,ν))|𝒢(m,ν)|+O((m,q,j)),\sum_{n\in I_{j}}e(f(m,n))=e(1/8)\sum_{\nu_{1}(m)<\nu\leqslant\nu_{2}(m)}b_{\nu}\frac{e(\mathfrak{s}(m,\nu))}{\sqrt{|\mathcal{G}(m,\nu)|}}+O\big(\mathcal{R}(m,q,j)\big),

where

fn(m,g(m,ν))=ν,𝔰(m,ν)=f(m,g(m,ν))νg(m,ν),f_{n}(m,g(m,\nu))=\nu,\qquad\mathfrak{s}(m,\nu)=f(m,g(m,\nu))-\nu\cdot g(m,\nu),
𝒢(m,ν)=fnn(m,g(m,ν)),qRQN2ν1(m),ν2(m)qRN2,\mathcal{G}(m,\nu)=f_{nn}(m,g(m,\nu)),\qquad\frac{qR}{QN^{2}}\ll\nu_{1}(m),\nu_{2}(m)\ll\frac{qR}{N^{2}},
(m,q,j)=logX+QN22jqR+min(Q1/2N3/22j/2q1/2R1/2,1ν1(m),1ν2(m)).\mathcal{R}(m,q,j)=\log X+\frac{QN^{2}}{2^{j}qR}+\min\bigg(\frac{Q^{1/2}N^{3/2}}{2^{j/2}q^{1/2}R^{1/2}},\frac{1}{\|\nu_{1}(m)\|},\frac{1}{\|\nu_{2}(m)\|}\bigg).

Since the condition in Case 2 does not hold, one has |fn|qRN21|f_{n}|\asymp qRN^{-2}\gg 1. Moreover, by noting that

ν1(m)qRQMN2andν2(m)qRQMN2,\nu_{1}^{\prime}(m)\gg\frac{qR}{QMN^{2}}\qquad\textrm{and}\qquad\nu_{2}^{\prime}(m)\gg\frac{qR}{QMN^{2}},

it follows from Lemma 3.3 that

1qQ0jlogQmM(m,q,j)\displaystyle\,\,\sum_{1\leqslant q\leqslant Q}\sum_{0\leqslant j\ll\log Q}\sum_{m\sim M}\mathcal{R}(m,q,j)
\displaystyle\ll 1qQ0jlogQ(MlogX+QMN22jqR+qRN2Q1/2N3/22j/2q1/2R1/2+qRN2QMN2qR)\displaystyle\,\,\sum_{1\leqslant q\leqslant Q}\sum_{0\leqslant j\ll\log Q}\Bigg(M\log X+\frac{QMN^{2}}{2^{j}qR}+\frac{qR}{N^{2}}\cdot\frac{Q^{1/2}N^{3/2}}{2^{j/2}q^{1/2}R^{1/2}}+\frac{qR}{N^{2}}\cdot\frac{QMN^{2}}{qR}\Bigg)
\displaystyle\ll MQ2(logX)2+QMN2R1logX+Q2R1/2N1/2\displaystyle\,\,MQ^{2}(\log X)^{2}+QMN^{2}R^{-1}\log X+Q^{2}R^{1/2}N^{-1/2}
\displaystyle\ll X(logX)2.\displaystyle\,\,X(\log X)^{2}.

Set ν1=minmMν1(m),ν2=maxmMν2(m)\nu_{1}=\min\limits_{m\sim M}\nu_{1}(m),\nu_{2}=\max\limits_{m\sim M}\nu_{2}(m). Then we derive that

mMν1(m)<νν2(m)bνe(𝔰(m,ν))|𝒢(m,ν)|ν1νν2|mνe(𝔰(m,ν))|𝒢(m,ν)||,\sum_{m\sim M}\sum_{\nu_{1}(m)<\nu\leqslant\nu_{2}(m)}b_{\nu}\frac{e(\mathfrak{s}(m,\nu))}{\sqrt{|\mathcal{G}(m,\nu)|}}\ll\sum_{\nu_{1}\leqslant\nu\leqslant\nu_{2}}\Bigg|\sum_{m\in\mathcal{I}_{\nu}}\frac{e(\mathfrak{s}(m,\nu))}{\sqrt{|\mathcal{G}(m,\nu)|}}\Bigg|,

where ν\mathcal{I}_{\nu} is a subinterval of [M,2M][M,2M]. Thus, it suffices to estimate the inner sum over mm. First, we shall show that |𝒢(m,ν)|1/2|\mathcal{G}(m,\nu)|^{-1/2} is monotonic in mm. Write 𝔤=g(m,ν)\mathfrak{g}=g(m,\nu) for abbreviation. Differentiating the equation fn(m,g(m,ν))=νf_{n}(m,g(m,\nu))=\nu over mm, we obtain

gm(m,ν)=fnm(m,𝔤)fnn(m,𝔤),g_{m}(m,\nu)=-\frac{f_{nm}(m,\mathfrak{g})}{f_{nn}(m,\mathfrak{g})},

and thus

𝒢m(m,ν)=fmnn+fnnngm=fnnmfnnfnnnfnmfnn.\mathcal{G}_{m}(m,\nu)=f_{mnn}+f_{nnn}g_{m}=\frac{f_{nnm}f_{nn}-f_{nnn}f_{nm}}{f_{nn}}.

By the assumption, we know that fnnf_{nn} always keeps the definite sign. Hence, it suffices to show that fnnmfnnfnnnfnmf_{nnm}f_{nn}-f_{nnn}f_{nm} has the same sign on some subinterval of [M,2M][M,2M]. Now, by simple calculations, we get

fnm=\displaystyle f_{nm}= c2xmc1Δ(𝔤,q;c1)+d2ymd1Δ(𝔤,q;d1)\displaystyle\,\,c^{2}xm^{c-1}\Delta(\mathfrak{g},q;c-1)+d^{2}ym^{d-1}\Delta(\mathfrak{g},q;d-1)
=\displaystyle= c2(c1)xqmc1𝔤c2+d2(d1)yqmd1𝔤d2+O(q2RM1N3).\displaystyle\,\,c^{2}(c-1)xqm^{c-1}\mathfrak{g}^{c-2}+d^{2}(d-1)yqm^{d-1}\mathfrak{g}^{d-2}+O\big(q^{2}RM^{-1}N^{-3}\big).

Since the condition of Case 3 does not hold, we have

|fnm|>qRlogXQMN2,|f_{nm}|>\frac{qR\log X}{QMN^{2}},

and thus

fnm=(c2(c1)xqmc1𝔤c2+d2(d1)yqmd1𝔤d2)(1+O(Q2N1(logX)1)).f_{nm}=\big(c^{2}(c-1)xqm^{c-1}\mathfrak{g}^{c-2}+d^{2}(d-1)yqm^{d-1}\mathfrak{g}^{d-2}\big)\big(1+O\big(Q^{2}N^{-1}(\log X)^{-1}\big)\big).

For fnnf_{nn}, we have

fnn=\displaystyle f_{nn}= c(c1)xmcΔ(𝔤,q;c2)+d(d1)ymdΔ(𝔤,q;d2)\displaystyle\,\,c(c-1)xm^{c}\Delta(\mathfrak{g},q;c-2)+d(d-1)ym^{d}\Delta(\mathfrak{g},q;d-2)
=\displaystyle= c(c1)(c2)qxmc𝔤c3+d(d1)(d2)qymd𝔤d3+O(q2RN4).\displaystyle\,\,c(c-1)(c-2)qxm^{c}\mathfrak{g}^{c-3}+d(d-1)(d-2)qym^{d}\mathfrak{g}^{d-3}+O\big(q^{2}RN^{-4}\big).

Since the condition of Case 3 does not hold, we have

|fnn|>qRlogXQN3,|f_{nn}|>\frac{qR\log X}{QN^{3}},

and thus

fnn=(c(c1)(c2)xqmc𝔤c3+d(d1)(d2)yqmd𝔤d3)(1+O(Q2N1(logX)1)).f_{nn}=\big(c(c-1)(c-2)xqm^{c}\mathfrak{g}^{c-3}+d(d-1)(d-2)yqm^{d}\mathfrak{g}^{d-3}\big)\big(1+O\big(Q^{2}N^{-1}(\log X)^{-1}\big)\big).

In a similar way, one can deduce that

fnnm=(c2(c1)(c2)xqmc1𝔤c3+d2(d1)(d2)yqmd1𝔤d3)(1+O(Q2N1(logX)1)),f_{nnm}=\big(c^{2}(c-1)(c-2)xqm^{c-1}\mathfrak{g}^{c-3}+d^{2}(d-1)(d-2)yqm^{d-1}\mathfrak{g}^{d-3}\big)\big(1+O\big(Q^{2}N^{-1}(\log X)^{-1}\big)\big),

and

fnnn=(c(c1)(c2)(c3)xqmc𝔤c4+d(d1)(d2)(d3)yqmd𝔤d4)(1+O(Q2N1(logX)1)).f_{nnn}=\big(c(c-1)(c-2)(c-3)xqm^{c}\mathfrak{g}^{c-4}+d(d-1)(d-2)(d-3)yqm^{d}\mathfrak{g}^{d-4}\big)\big(1+O\big(Q^{2}N^{-1}(\log X)^{-1}\big)\big).

For simplicity, we set s=xmc𝔤c,t=ymd𝔤ds=xm^{c}\mathfrak{g}^{c},t=ym^{d}\mathfrak{g}^{d}. Under these symbols, we obtain

fnnfnnmfnmfnnn=q2m1𝔤6(As2+2Bst+Ct2)(1+O(Q2N1(logX)1)),\displaystyle f_{nn}f_{nnm}-f_{nm}f_{nnn}=q^{2}m^{-1}\mathfrak{g}^{-6}(As^{2}+2Bst+Ct^{2})\big(1+O(Q^{2}N^{-1}(\log X)^{-1})\big), (3.4)

where

A=\displaystyle A= c3(c1)2(c2)<0,\displaystyle\,\,c^{3}(c-1)^{2}(c-2)<0,
B=\displaystyle B= c(c1)d(d1)(3cdc2d2cd)<0,\displaystyle\,\,c(c-1)d(d-1)(3cd-c^{2}-d^{2}-c-d)<0,
C=\displaystyle C= d3(d1)2(d2)<0.\displaystyle\,\,d^{3}(d-1)^{2}(d-2)<0.

Accordingly, it suffices to show that

As2+2Bst+Ct20.As^{2}+2Bst+Ct^{2}\not=0. (3.5)

If xy>0xy>0, then (3.5) is trivial. Now, we postulate xy<0xy<0. It is easy to see that

4B24AC=4c2(c1)2d2(d1)2(cd)2(2c+2d+1+c2+d24cd)>0,4B^{2}-4AC=4c^{2}(c-1)^{2}d^{2}(d-1)^{2}(c-d)^{2}(2c+2d+1+c^{2}+d^{2}-4cd)>0,

which implies that there exist constants a1,a2,b1,b2a_{1},a_{2},b_{1},b_{2} such that

As2+2Bst+Ct2=(a1s+b1t)(a2s+b2t).As^{2}+2Bst+Ct^{2}=(a_{1}s+b_{1}t)(a_{2}s+b_{2}t).

By noting the fact that A<0,B<0,C<0A<0,B<0,C<0, there must hold a1b1>0,a2b2>0a_{1}b_{1}>0,a_{2}b_{2}>0. Without loss of generality, we assume that a1>0,b1>0,a2>0,b2>0a_{1}>0,b_{1}>0,a_{2}>0,b_{2}>0. For α>0\alpha>0 and β>0\beta>0, let 𝒩(α,β)\mathscr{N}(\alpha,\beta) denote the number of solutions of the following inequality

|αxmcnc+βymdnd|RQ1/2logX\big|\alpha xm^{c}n^{c}+\beta ym^{d}n^{d}\big|\leqslant\frac{R}{Q^{1/2}\log X} (3.6)

subject to mMm\sim M and nNn\sim N. Then we claim that, for sufficiently small σ(0,1)\sigma\in(0,1), there holds 𝒩(α,β)σX34/37\mathscr{N}(\alpha,\beta)\ll_{\sigma}X^{34/37} uniformly for α,β[σ,σ1]\alpha,\beta\in[\sigma,\sigma^{-1}]. Actually, if xy>0xy>0, then 𝒩(α,β)=0\mathscr{N}(\alpha,\beta)=0. Thus, we suppose that xy<0xy<0. If (m,n)(m,n) satisfies the inequality (3.6), then

αxmcnc=\displaystyle\alpha xm^{c}n^{c}= βymdnd+O(RQ1/2logX)\displaystyle\,-\beta ym^{d}n^{d}+O\bigg(\frac{R}{Q^{1/2}\log X}\bigg)
=\displaystyle= βymdnd(1+O(Q1/2(logX)1)),\displaystyle\,-\beta ym^{d}n^{d}\big(1+O\big(Q^{-1/2}(\log X)^{-1}\big)\big),

which implies that

mn=\displaystyle mn= (βyαx)1/(cd)(1+O(Q1/2(logX)1))1/(cd)\displaystyle\,\,\bigg(-\frac{\beta y}{\alpha x}\bigg)^{1/(c-d)}\big(1+O\big(Q^{-1/2}(\log X)^{-1}\big)\big)^{1/(c-d)}
=\displaystyle= (βyαx)1/(cd)(1+O(Q1/2(logX)1))\displaystyle\,\,\bigg(-\frac{\beta y}{\alpha x}\bigg)^{1/(c-d)}\big(1+O\big(Q^{-1/2}(\log X)^{-1}\big)\big)
=\displaystyle= (βyαx)1/(cd)+O(XQ1/2(logX)1).\displaystyle\,\,\bigg(-\frac{\beta y}{\alpha x}\bigg)^{1/(c-d)}+O\big(XQ^{-1/2}(\log X)^{-1}\big).

Therefore, it follows from a divisor argument that

𝒩(α,β)XQ1/2X34/37\mathscr{N}(\alpha,\beta)\ll XQ^{-1/2}\ll X^{34/37} (3.7)

holds uniformly for α,β[σ,σ1]\alpha,\beta\in[\sigma,\sigma^{-1}] with sufficiently small σ(0,1)\sigma\in(0,1). Now, we take

σ=12min(|a1|,|a2|,|b1|1,|b2|1).\sigma=\frac{1}{2}\min\big(|a_{1}|,|a_{2}|,|b_{1}|^{-1},|b_{2}|^{-1}\big).

According to the above arguments, without loss of generality, we postulate ss and tt do not satisfy the inequality (3.6). (Otherwise, if ss and tt satisfy the inequality (3.6), then we can use trivial estimate and (3.7) to counting the number of solutions pairs (m,n)(m,n) to get SIX34/37S_{I}\ll X^{34/37}.) At this time, we have

|a1s+b1t|>RQ1/2logX,|a2s+b2t|>RQ1/2logX,|a_{1}s+b_{1}t|>\frac{R}{Q^{1/2}\log X},\qquad|a_{2}s+b_{2}t|>\frac{R}{Q^{1/2}\log X},

and thus

|As2+2Bst+Ct2|R2Q(logX)2,|As^{2}+2Bst+Ct^{2}|\geqslant\frac{R^{2}}{Q(\log X)^{2}},

which combined with (3.4) implies that fnnmfnnfnnnfnmf_{nnm}f_{nn}-f_{nnn}f_{nm} always has the same sign on subinterval of (M,2M](M,2M]. By the above arguments, we know that |𝒢(m,ν)||\mathcal{G}(m,\nu)| is monotonic in mm, and so is |𝒢(m,ν)|1/2|\mathcal{G}(m,\nu)|^{-1/2}. Next, we compute 𝔰mm(m,ν)\mathfrak{s}_{mm}(m,\nu). By simple calculation, one has

𝔰m(m,ν)=\displaystyle\mathfrak{s}_{m}(m,\nu)= fm(m,𝔤)+fn(m,𝔤)𝔤mν𝔤m=fm(m,𝔤),\displaystyle\,\,f_{m}(m,\mathfrak{g})+f_{n}(m,\mathfrak{g})\mathfrak{g}_{m}-\nu\mathfrak{g}_{m}=f_{m}(m,\mathfrak{g}),
𝔰mm(m,ν)=\displaystyle\mathfrak{s}_{mm}(m,\nu)= fmm(m,𝔤)+fmn(m,𝔤)𝔤m=(fmmfnnfmn2)fnn1.\displaystyle\,\,f_{mm}(m,\mathfrak{g})+f_{mn}(m,\mathfrak{g})\mathfrak{g}_{m}=(f_{mm}f_{nn}-f_{mn}^{2})f_{nn}^{-1}.

By the calculation of 𝒢m\mathcal{G}_{m}, one has

fmmfnnfmn2=2q2m2n4(A1s2+B1st+C1t2)(1+O(Q2N1(logX)1)),f_{mm}f_{nn}-f_{mn}^{2}=-2q^{2}m^{-2}n^{-4}(A_{1}s^{2}+B_{1}st+C_{1}t^{2})\big(1+O(Q^{2}N^{-1}(\log X)^{-1})\big),

where

A1=c3(c1)2,B1=c(c1)d(d1)(c+d),C1=d3(d1)2,A_{1}=c^{3}(c-1)^{2},\qquad B_{1}=c(c-1)d(d-1)(c+d),\qquad C_{1}=d^{3}(d-1)^{2},

and B124A1C1>0B_{1}^{2}-4A_{1}C_{1}>0. Now, if xy>0xy>0, one immediately obtains

|fmmfnnfmn2|q2R2M2N4.\big|f_{mm}f_{nn}-f_{mn}^{2}\big|\gg\frac{q^{2}R^{2}}{M^{2}N^{4}}.

If xy<0xy<0, then it follows from the similar arguments of 𝒢m\mathcal{G}_{m} that

|A1s2+B1st+C1t2|R2Q(logX)2,|A_{1}s^{2}+B_{1}st+C_{1}t^{2}|\gg\frac{R^{2}}{Q(\log X)^{2}},

which implies that

|fmmfnnfmn2|q2R2QM2N4(logX)2.\big|f_{mm}f_{nn}-f_{mn}^{2}\big|\gg\frac{q^{2}R^{2}}{QM^{2}N^{4}(\log X)^{2}}.

Combining the above arguments and the estimate |fnn|qRN3|f_{nn}|\asymp qRN^{-3}, we get

|𝔰mm|q2R2QM2N4(logX)2N3qR=qRQM2N(logX)2,|\mathfrak{s}_{mm}|\gg\frac{q^{2}R^{2}}{QM^{2}N^{4}(\log X)^{2}}\cdot\frac{N^{3}}{qR}=\frac{qR}{QM^{2}N(\log X)^{2}},

which implies that

|𝔰mm|𝒞qRQM2N(logX)2|\mathfrak{s}_{mm}|\geqslant\frac{\mathcal{C}^{*}qR}{QM^{2}N(\log X)^{2}}

holds for some 𝒞>0\mathcal{C}^{*}>0. On the other hand, we have

|𝔤m|=|fnm||fnn|qM1N2RqRN3NM,|\mathfrak{g}_{m}|=\frac{|f_{nm}|}{|f_{nn}|}\asymp\frac{qM^{-1}N^{-2}R}{qRN^{-3}}\asymp\frac{N}{M},

which implies the trivial estimate

|𝔰mm||fmm|+|fmn𝔤m|qRM2N+qRMN2NMqRM2N.\big|\mathfrak{s}_{mm}\big|\ll\big|f_{mm}\big|+\big|f_{mn}\mathfrak{g}_{m}\big|\ll\frac{qR}{M^{2}N}+\frac{qR}{MN^{2}}\cdot\frac{N}{M}\ll\frac{qR}{M^{2}N}.

For 0(log(Q(logX)2))/log20\leqslant\ell\leqslant(\log(Q(\log X)^{2}))/\log 2, we set

ν,={mν:𝒞2qRQM2N(logX)2<|𝔰mm|𝒞2+1qRQM2N(logX)2}.\mathcal{I}_{\nu,\ell}=\bigg\{m\in\mathcal{I}_{\nu}:\,\frac{\mathcal{C}^{*}2^{\ell}qR}{QM^{2}N(\log X)^{2}}<\big|\mathfrak{s}_{mm}\big|\leqslant\frac{\mathcal{C}^{*}2^{\ell+1}qR}{QM^{2}N(\log X)^{2}}\bigg\}.

By the assumption (i.e., the condition in Case 3 does not hold), we know that

|𝒢(m,ν)|=|fnn(m,𝔤)|>qRlogXQN3>qRQN3.\big|\mathcal{G}(m,\nu)\big|=\big|f_{nn}(m,\mathfrak{g})\big|>\frac{qR\log X}{QN^{3}}>\frac{qR}{QN^{3}}.

Then it follows from partial summation and Lemma 3.4 that

1qQ0jlog(10Q)log2ν1νν2|mνe(𝔰(m,ν))|𝒢(m,ν)||\displaystyle\,\,\sum_{1\leqslant q\leqslant Q}\sum_{0\leqslant j\leqslant\frac{\log(10Q)}{\log 2}}\sum_{\nu_{1}\leqslant\nu\leqslant\nu_{2}}\Bigg|\sum_{m\in\mathcal{I}_{\nu}}\frac{e(\mathfrak{s}(m,\nu))}{\sqrt{|\mathcal{G}(m,\nu)|}}\Bigg|
\displaystyle\ll 1qQ0jlog(10Q)log2ν1νν20log(Q(logX)2)log2|mν,e(𝔰(m,ν))|𝒢(m,ν)||\displaystyle\,\,\sum_{1\leqslant q\leqslant Q}\sum_{0\leqslant j\leqslant\frac{\log(10Q)}{\log 2}}\sum_{\nu_{1}\leqslant\nu\leqslant\nu_{2}}\sum_{0\leqslant\ell\leqslant\frac{\log(Q(\log X)^{2})}{\log 2}}\Bigg|\sum_{m\in\mathcal{I}_{\nu,\ell}}\frac{e(\mathfrak{s}(m,\nu))}{\sqrt{|\mathcal{G}(m,\nu)|}}\Bigg|
\displaystyle\ll 1qQ0jlog(10Q)log2ν1νν20log(Q(logX)2)log2(QN3qR)1/2\displaystyle\,\,\sum_{1\leqslant q\leqslant Q}\sum_{0\leqslant j\leqslant\frac{\log(10Q)}{\log 2}}\sum_{\nu_{1}\leqslant\nu\leqslant\nu_{2}}\sum_{0\leqslant\ell\leqslant\frac{\log(Q(\log X)^{2})}{\log 2}}\bigg(\frac{QN^{3}}{qR}\bigg)^{1/2}
×(M(2qRQM2N(logX)2)1/2+(QM2N(logX)22qR)1/2)\displaystyle\,\,\quad\times\Bigg(M\bigg(\frac{2^{\ell}qR}{QM^{2}N(\log X)^{2}}\bigg)^{1/2}+\bigg(\frac{QM^{2}N(\log X)^{2}}{2^{\ell}qR}\bigg)^{1/2}\Bigg)
\displaystyle\ll 1qQ0jlog(10Q)log2ν1νν2(QN3qR)1/2((qR)1/2logXN1/2+M(QN(logX)2)1/2(qR)1/2)\displaystyle\,\,\sum_{1\leqslant q\leqslant Q}\sum_{0\leqslant j\leqslant\frac{\log(10Q)}{\log 2}}\sum_{\nu_{1}\leqslant\nu\leqslant\nu_{2}}\bigg(\frac{QN^{3}}{qR}\bigg)^{1/2}\Bigg(\frac{(qR)^{1/2}\log X}{N^{1/2}}+\frac{M(QN(\log X)^{2})^{1/2}}{(qR)^{1/2}}\Bigg)
\displaystyle\ll 1qQ0jlog(10Q)log2qRN2(QN3qR)1/2((qR)1/2logXN1/2+M(QN(logX)2)1/2(qR)1/2)\displaystyle\,\,\sum_{1\leqslant q\leqslant Q}\sum_{0\leqslant j\leqslant\frac{\log(10Q)}{\log 2}}\frac{qR}{N^{2}}\bigg(\frac{QN^{3}}{qR}\bigg)^{1/2}\Bigg(\frac{(qR)^{1/2}\log X}{N^{1/2}}+\frac{M(QN(\log X)^{2})^{1/2}}{(qR)^{1/2}}\Bigg)
\displaystyle\ll Q5/2RN1(logX)2+MQ2(logX)2X(logX)2,\displaystyle\,\,Q^{5/2}RN^{-1}(\log X)^{2}+MQ^{2}(\log X)^{2}\ll X(\log X)^{2},

provided that Mmin(X59/37R1,X25/37)M\ll\min\big(X^{59/37}R^{-1},X^{25/37}\big). This completes the proof of Lemma 3.6. ∎

Lemma 3.7.

Suppose that a(m)a(m) and b(n)b(n) are sequences supported on the intervals (M,2M](M,2M] and (N,2N](N,2N], respectively. Suppose further that

mM|a(m)|2M(logM)2A,nN|b(n)|2N(logN)2B,A>0,B>0.\sum_{m\sim M}\big|a(m)\big|^{2}\ll M(\log M)^{2A},\quad\sum_{n\sim N}\big|b(n)\big|^{2}\ll N(\log N)^{2B},\quad A>0,\quad B>0.

Then, for X6/37Nmin(X56/37R1,RX12/37),MNXX^{6/37}\ll N\ll\min\big(X^{56/37}R^{-1},RX^{-12/37}\big),\,MN\asymp X, one has

SII=mMa(m)nNb(n)e(x(mn)c+y(mn)d)X34/37(logX)A+B+1.S_{II}=\sum_{m\sim M}a(m)\sum_{n\sim N}b(n)e\big(x(mn)^{c}+y(mn)^{d}\big)\ll X^{34/37}(\log X)^{A+B+1}.
Proof.

Take Q=[X6/37(logX)1]=o(N)Q=[X^{6/37}(\log X)^{-1}]=o(N). It follows from Cauchy’s inequality and Lemma 3.2 that

|SII|2X2(logX)2(A+B)Q+X(logX)2AQ1qQnNn+qN|b(n+q)b(n)||mMe(f(m,n))|,\big|S_{II}\big|^{2}\ll\frac{X^{2}(\log X)^{2(A+B)}}{Q}+\frac{X(\log X)^{2A}}{Q}\sum_{1\leqslant q\leqslant Q}\sum_{\begin{subarray}{c}n\sim N\\ n+q\sim N\end{subarray}}\big|b(n+q)b(n)\big|\Bigg|\sum_{m\sim M}e\big(f(m,n)\big)\Bigg|, (3.8)

where

f(m,n)=xmcΔ(n,q;c)+ymdΔ(n,q;d),f(m,n)=xm^{c}\Delta(n,q;c)+ym^{d}\Delta(n,q;d),

and

Δ(n,q;t)=(n+q)tnt.\Delta(n,q;t)=(n+q)^{t}-n^{t}.

By (3.2), we obtain

mMe(f(m,n))q1/2R1/2N1/2+Mq1/3R1/3N1/3.\sum_{m\sim M}e\big(f(m,n)\big)\ll q^{1/2}R^{1/2}N^{-1/2}+Mq^{-1/3}R^{-1/3}N^{1/3}. (3.9)

By noting the fact that Q=o(N)Q=o(N), it is easy to see that, for fixed qq subject to 1qQ1\leqslant q\leqslant Q, there holds

nNn+qN|b(n+q)b(n)|nN|b(n)|2+nNn+qN|b(n+q)|2N(logN)2B.\sum_{\begin{subarray}{c}n\sim N\\ n+q\sim N\end{subarray}}\big|b(n+q)b(n)\big|\ll\sum_{n\sim N}\big|b(n)\big|^{2}+\sum_{\begin{subarray}{c}n\sim N\\ n+q\sim N\end{subarray}}\big|b(n+q)\big|^{2}\ll N(\log N)^{2B}. (3.10)

Combining (3.8), (3.9) and (3.10), we get

1qQnNn+qN|b(n+q)b(n)||mMe(f(m,n))|\displaystyle\,\,\sum_{1\leqslant q\leqslant Q}\sum_{\begin{subarray}{c}n\sim N\\ n+q\sim N\end{subarray}}\big|b(n+q)b(n)\big|\Bigg|\sum_{m\sim M}e\big(f(m,n)\big)\Bigg|
\displaystyle\ll N(logN)2B1qQ(q1/2R1/2N1/2+Mq1/3R1/3N1/3)\displaystyle\,\,N(\log N)^{2B}\sum_{1\leqslant q\leqslant Q}\big(q^{1/2}R^{1/2}N^{-1/2}+Mq^{-1/3}R^{-1/3}N^{1/3}\big)
\displaystyle\ll N(logN)2B(Q3/2R1/2N1/2+MN1/3Q2/3R1/3)\displaystyle\,\,N(\log N)^{2B}\big(Q^{3/2}R^{1/2}N^{-1/2}+MN^{1/3}Q^{2/3}R^{-1/3}\big)
\displaystyle\ll (logN)2B(N1/2X9/37R1/2+N1/3X41/37R1/3)X,\displaystyle\,\,(\log N)^{2B}\big(N^{1/2}X^{9/37}R^{1/2}+N^{1/3}X^{41/37}R^{-1/3}\big)\ll X,

provided that

Nmin(X56/37R1,RX12/37).N\ll\min\big(X^{56/37}R^{-1},RX^{-12/37}\big). (3.11)

This completes the proof of Lemma 3.7. ∎

Lemma 3.8.

Let z1z\geqslant 1 and k1k\geqslant 1. Then, for any n2zkn\leqslant 2z^{k}, there holds

Λ(n)=j=1k(1)j1(kj)n1n2n2j=nnj+1,,n2jz(logn1)μ(nj+1)μ(n2j).\Lambda(n)=\sum_{j=1}^{k}(-1)^{j-1}\binom{k}{j}\mathop{\sum\cdots\sum}_{\begin{subarray}{c}n_{1}n_{2}\cdots n_{2j}=n\\ n_{j+1},\dots,n_{2j}\leqslant z\end{subarray}}(\log n_{1})\mu(n_{j+1})\cdots\mu(n_{2j}).
Proof.

See the arguments on pp. 1366–1367 of Heath–Brown [5]. ∎

4. Exponential sum estimate on

In this section, we shall demonstrate the details of the proof of Lemma 2.6. Set

𝔄=min(X59/37R1,X25/37),𝔅=X6/37,=min(X56/37R1,RX12/37).\displaystyle\mathfrak{A}=\min\big(X^{59/37}R^{-1},X^{25/37}\big),\qquad\mathfrak{B}=X^{6/37},\qquad\mathfrak{C}=\min\big(X^{56/37}R^{-1},RX^{-12/37}\big).

It follows from the inequality X3/4ηRX39/37(logX)200X^{3/4-\eta}\ll R\ll X^{39/37}(\log X)^{-200} that

X1/9X/𝔄,𝔅2.\displaystyle X^{1/9}\ll X/\mathfrak{A}\leqslant\mathfrak{C},\qquad\mathfrak{B}^{2}\leqslant\mathfrak{C}.

Trivially, we have

S(x,y)=λX<nXΛ(n)e(ncx+ndy)+O(X1/2).\displaystyle S(x,y)=\sum_{\lambda X<n\leqslant X}\Lambda(n)e(n^{c}x+n^{d}y)+O(X^{1/2}). (4.1)

According to Heath–Brown’s identity (i.e., Lemma 3.8) with k=10k=10, it is easy to see that

λX<nXΛ(n)e(ncx+ndy)\displaystyle\sum_{\lambda X<n\leqslant X}\Lambda(n)e(n^{c}x+n^{d}y)

can be written as linear combination of O((logX)20)O\big((\log X)^{20}\big) sums, each of which is of the form

𝒰(N1,,N20):=\displaystyle\mathscr{U}(N_{1},\dots,N_{20}):= n1N1n20N20(logn1)μ(n11)μ(n12)μ(n20)\displaystyle\,\,\sum_{n_{1}\sim N_{1}}\cdots\sum_{n_{20}\sim N_{20}}(\log n_{1})\mu(n_{11})\mu(n_{12})\cdots\mu(n_{20})
×e((n1n20)cx+(n1n20)dy),\displaystyle\,\,\qquad\qquad\qquad\qquad\times e\big((n_{1}\dots n_{20})^{c}x+(n_{1}\dots n_{20})^{d}y\big),

where N1N20X,Nj(2X)1/10,(j=11,12,,20)N_{1}\dots N_{20}\asymp X,N_{j}\leqslant(2X)^{1/10},(j=11,12,\dots,20), and some nin_{i} may only take value 11. Therefore, it is sufficient for us to give upper bound estimates as follows

𝒰(N1,,N20)X34/37(logX)185.\mathscr{U}(N_{1},\dots,N_{20})\ll X^{34/37}(\log X)^{185}.

Next, we shall consider three cases.

Case 1. If there exists an NjN_{j} which satisfies NjX/𝔄X1/9N_{j}\gg X/\mathfrak{A}\gg X^{1/9}, then there must hold j10j\leqslant 10 for the fact that NjX1/10N_{j}\ll X^{1/10} with j=11,12,,20j=11,12,\dots,20. Let

m=1i20ijni,n=nj,M=1i20ijNi,N=Nj.m=\prod_{\begin{subarray}{c}1\leqslant i\leqslant 20\\ i\not=j\end{subarray}}n_{i},\qquad n=n_{j},\qquad M=\prod_{\begin{subarray}{c}1\leqslant i\leqslant 20\\ i\not=j\end{subarray}}N_{i},\qquad N=N_{j}.

In this case, we can see that 𝒰(N1,,N20)\mathscr{U}(N_{1},\dots,N_{20}) is a sum of “Type I”, i.e., SIS_{I}, subject to M𝔄M\ll\mathfrak{A}. By Lemma 3.6 and a divisor argument, we derive that

𝒰(N1,,N20)X34/37(logX)185.\mathscr{U}(N_{1},\dots,N_{20})\ll X^{34/37}(\log X)^{185}.

Case 2. If there exists an NjN_{j} such that 𝔅Nj<X/𝔄\mathfrak{B}\leqslant N_{j}<X/\mathfrak{A}\leqslant\mathfrak{C}, then we take

m=1i20ijni,n=nj,M=1i20ijNi,N=Nj.m=\prod_{\begin{subarray}{c}1\leqslant i\leqslant 20\\ i\not=j\end{subarray}}n_{i},\qquad n=n_{j},\qquad M=\prod_{\begin{subarray}{c}1\leqslant i\leqslant 20\\ i\not=j\end{subarray}}N_{i},\qquad N=N_{j}.

Thus, 𝒰(N1,,N20)\mathscr{U}(N_{1},\dots,N_{20}) is a sum of “Type II”, i.e., SIIS_{II}, subject to 𝔅N\mathfrak{B}\ll N\ll\mathfrak{C}. By Lemma 3.7, we derive that

𝒰(N1,,N20)X34/37(logX)185.\mathscr{U}(N_{1},\dots,N_{20})\ll X^{34/37}(\log X)^{185}.

Case 3. If Ni<𝔅(i=1,2,,20)N_{i}<\mathfrak{B}\,(i=1,2,\dots,20), without loss of generality, we postulate that N1N2N20N_{1}\geqslant N_{2}\geqslant\dots\geqslant N_{20}. Denote by \ell the natural number such that

N1N1<𝔅,N1N1N𝔅.N_{1}\dots N_{\ell-1}<\mathfrak{B},\qquad N_{1}\dots N_{\ell-1}N_{\ell}\geqslant\mathfrak{B}.

Since N1<𝔅N_{1}<\mathfrak{B} and N20<𝔅N_{20}<\mathfrak{B}, then 2192\leqslant\ell\leqslant 19. Therefore, there holds

𝔅N1N=N1N1N<𝔅𝔅.\mathfrak{B}\leqslant N_{1}\dots N_{\ell}=N_{1}\dots N_{\ell-1}\cdot N_{\ell}<\mathfrak{B}\cdot\mathfrak{B}\leqslant\mathfrak{C}.

Let

m=i=+120ni,n=i=1ni,M=i=+120Ni,N=i=1Ni.m=\prod_{i=\ell+1}^{20}n_{i},\qquad n=\prod_{i=1}^{\ell}n_{i},\qquad M=\prod_{i=\ell+1}^{20}N_{i},\qquad N=\prod_{i=1}^{\ell}N_{i}.

At this time, 𝒰(N1,,N20)\mathscr{U}(N_{1},\dots,N_{20}) is a sum of “Type II”, i.e., SIIS_{II}, subject to 𝔅N\mathfrak{B}\ll N\ll\mathfrak{C}. By Lemma 3.7, we derive that

𝒰(N1,,N20)X34/37(logX)185.\mathscr{U}(N_{1},\dots,N_{20})\ll X^{34/37}(\log X)^{185}.

Based on the above three cases, we obtain

λX<nXΛ(n)e(ncx+ndy)\displaystyle\sum_{\lambda X<n\leqslant X}\Lambda(n)e(n^{c}x+n^{d}y)\ll X34/37(logX)185(logX)20\displaystyle\,\,X^{34/37}(\log X)^{185}\cdot(\log X)^{20}
\displaystyle\ll X34/37(logX)205,\displaystyle\,\,X^{34/37}(\log X)^{205},

which combined with (4.1) implies

S(x,y)X34/37(logX)205.S(x,y)\ll X^{34/37}(\log X)^{205}.

This completes the proof of Lemma 2.6.

Acknowledgement

The authors would like to appreciate the referee for his/her patience in refereeing this paper. This work is supported by Beijing Natural Science Foundation (Grant No. 1242003), and the National Natural Science Foundation of China (Grant Nos. 12471009, 12301006, 11901566, 12001047).

References

  • [1] R. Baker, A. Weingartner, Some applications of the double large sieve, Monatsh. Math., 170 (2013), no. 3–4, 261–304.
  • [2] R. Baker, Some Diophantine equations and inequalities with primes, Funct. Approx. Comment. Math., 64 (2021), no. 2, 203–250.
  • [3] M. Z. Garaev, On the Waring–Goldbach problem with small non–integer exponent, Acta Arith., 108 (2003), no. 3, 297–302.
  • [4] S. W. Graham, G. Kolesnik, Van der Corput’s method of exponential sums, Cambridge University Press, New York, 1991.
  • [5] D. R. Heath–Brown, Prime numbers in short intervals and a generalized Vaughan identity, Canadian J. Math., 34 (1982), no. 6, 1365–1377.
  • [6] L. K. Hua, Some results in the additive prime number theory, Quart. J. Math. Oxford Ser. (2), 9 (1938), no. 1, 68–80.
  • [7] H. Iwaniec, E. Kowalski, Analytic number theory, American Mathematical Society, Providence, RI, 2004.
  • [8] A. A. Karatsuba, S. M. Voronin, The Riemann zeta-function, Walter de Gruyter, Berlin, 1992.
  • [9] E. Krätzel, Lattice points, Kluwer Academic Publishers Group, Dordrecht, 1988.
  • [10] I. I. Piatetski–Shapiro, On a variant of Waring–Goldbach’s problem, Mat. Sb., 30(72) (1952), no. 1, 105–120.
  • [11] D. I. Tolev, On a Diophantine inequality involving prime numbers, Acta Arith., 61 (1992), no. 3, 289–306.
  • [12] D. I. Tolev, On a system of two Diophantine inequalities with prime numbers, Acta Arith., 69 (1995), no. 4, 387–400.
  • [13] I. M. Vinogradov, Representation of an odd number as the sum of three primes, Dokl. Akad. Nauk. SSSR, 15 (1937), 169–172.
  • [14] W. G. Zhai, On a system of two Diophantine inequalities with prime numbers, Acta Arith., 92 (2000), no. 1, 31–46.
  • [15] W. G. Zhai, X. D. Cao, On a Diophantine inequality over primes, Adv. Math. (China), 32 (2003), no. 1, 63–73.
  • [16] W. G. Zhai, X. D. Cao, On a Diophantine inequality over primes (II), Monatsh. Math., 150 (2007), no. 2, 173–179.