这是indexloc提供的服务,不要输入任何密码

A note on Wang’s conjecture for harmonic functions with nonlinear boundary condition

Xiaohan Cai School of Mathematical Sciences, Shanghai Jiao Tong University xiaohancai@sjtu.edu.cn
Abstract.

We obtain some Liouville type theorems for positive harmonic functions on compact Riemannian manifolds with nonnegative Ricci curvature and strictly convex boundary and partially verifies Wang’s conjecture (J. Geom. Anal. 31 (2021)).

For the specific manifold 𝔹n\mathbb{B}^{n}, we present a new proof of this conjecture, which has been resolved by Gu-Li (Math. Ann. 391 (2025)). Our proof is based on a general principle of applying the P-function method to such Liouville type results. As a further application of this method, we obtain some classification results for nonnegative solutions of some semilinear elliptic equations with a nonlinear boundary condition.

1. Introduction

Wang proposed a conjecture for Liouville type result for harmonic functions with some specific nonlinear boundary condition [Wan21, Conjecture 1].

Conjecture 1 (Wang, [Wan21]).

Let (Mn,g)(n3)(M^{n},g)\ (n\geq 3) be a compact Riemannian manifold with Ric0\mathrm{Ric}\geq 0 and the second fundamental form Π1\Pi\geq 1 on M\partial M. If uC(M)u\in C^{\infty}(M) is a positive solution of the following equation

(1.1) {Δu=0in M,uν+λu=uqon M,\displaystyle\begin{cases}\Delta u=0&\text{in }M,\\ \frac{\partial u}{\partial\nu}+\lambda u=u^{q}&\text{on }\partial M,\end{cases}

where 1<qnn21<q\leq\frac{n}{n-2} and 0<λ1q10<\lambda\leq\frac{1}{q-1} are constants. Then either uu is a constant function, or q=nn2,λ=n22q=\frac{n}{n-2},\,\lambda=\frac{n-2}{2}, (Mn,g)(M^{n},g) is isometric to 𝔹nn\mathbb{B}^{n}\subset\mathbb{R}^{n} and uu corresponds to

u(x)=(n221|a|2|a|2|x|22x,a+1)n22,\displaystyle u(x)=\left(\frac{n-2}{2}\frac{1-|a|^{2}}{|a|^{2}|x|^{2}-2\langle x,a\rangle+1}\right)^{\frac{n-2}{2}},

where a𝔹na\in\mathbb{B}^{n}.

This conjecture, if proved to be true, have several interesting geometric consequences, such as a sharp upper bound of the area of the boundary and a sharp lower bound of Steklov eigenvalue on such manifolds. See [Wan21, Section 2] and also [GHW21, Section 5] for detailed discussions.

Inspired by Xia-Xiong’s work on Steklov eigenvalue estimate [XX24], Guo-Hang-Wang [GHW21, Theorem 2] verified conjecture 1 for some special cases under nonnegative sectional curvature condition:

Theorem 1 (Guo-Hang-Wang, [GHW21]).

Let (Mn,g)(n3)(M^{n},g)\ (n\geq 3) be a compact Riemannian manifold with Sec0\mathrm{Sec}\geq 0 and Π1\Pi\geq 1 on M\partial M. Then the only positive solution to 1.1 is constant provided 3n83\leq n\leq 8 and 1<q4n5n91<q\leq\frac{4n}{5n-9}, 0<λ1q10<\lambda\leq\frac{1}{q-1}.

In the first part of this note, we shall partially confirm conjecture 1 under Ricci curvature condition via integration by parts and meticulously choosing the parameters.

Theorem 2.

Let (Mn,g)(n3)(M^{n},g)\ (n\geq 3) be a compact Riemannian manifold with Ric0\mathrm{Ric}\geq 0 and Π1\Pi\geq 1 on M\partial M. Then the only positive solution to 1.1 is constant provided one of the following two conditions holds:

  1. (1)

    3n73\leq n\leq 7, 1<q3n4(n2)1<q\leq\frac{3n}{4(n-2)}, and 0<λmin{12(q1),3(n1)2q}0<\lambda\leq\min\{\frac{1}{2(q-1)},\frac{3(n-1)}{2q}\}

  2. (2)

    3n93\leq n\leq 9, 1<qn+1+(5n1)(n1)4(n2)1<q\leq\frac{n+1+\sqrt{(5n-1)(n-1)}}{4(n-2)} and 0<λmin{12(q1),6q+12q+1n12q}0<\lambda\leq\min\{\frac{1}{2(q-1)},\frac{6q+1}{2q+1}\frac{n-1}{2q}\}

Remark 1.1.

Let us compare the ranges of qq and λ\lambda in theorem 2 with those in theorem 1.

  • Condition (2) in theorem 2 allows one more dimension n=9n=9 compared with theorem 1.

  • theorem 2 yields a larger range of qq than theorem 1 in some dimensions. Explicitly, we have n+1+(5n1)(n1)4(n2)3n4(n1)4n5n9\frac{n+1+\sqrt{(5n-1)(n-1)}}{4(n-2)}\geq\frac{3n}{4(n-1)}\geq\frac{4n}{5n-9} if 3n53\leq n\leq 5, and n+1+(5n1)(n1)4(n2)4n5n93n4(n1)\frac{n+1+\sqrt{(5n-1)(n-1)}}{4(n-2)}\geq\frac{4n}{5n-9}\geq\frac{3n}{4(n-1)} if 6n96\leq n\leq 9.

  • The range of λ\lambda in theorem 2 is not sharp. Moreover, condition (2) doesn’t cover condition (1) since 6q+12q+1n12q<3(n1)2q\frac{6q+1}{2q+1}\frac{n-1}{2q}<\frac{3(n-1)}{2q}.

Except for studying it within some special ranges of parameters, another way toward conjecture 1 is to confine ourselves to some specific manifolds. Guo and Wang proposed such an individual conjecture on the model space 𝔹n\mathbb{B}^{n} [GW20, Conjecture 1]:

Conjecture 2 (Guo-Wang, [GW20]).

If uC(𝔹n)u\in C^{\infty}(\mathbb{B}^{n}) is a positive solution of the following equation

(1.2) {Δu=0in𝔹n,uν+λu=uqon𝕊n1,\begin{cases}\Delta u=0&\mathrm{in}\ \mathbb{B}^{n},\\ \frac{\partial u}{\partial\nu}+\lambda u=u^{q}&\mathrm{on}\ \mathbb{S}^{n-1},\end{cases}

where 1<qnn21<q\leq\frac{n}{n-2} and 0<λ1q10<\lambda\leq\frac{1}{q-1} are constants. Then either uu is a constant function, or q=nn2,λ=n22q=\frac{n}{n-2},\,\lambda=\frac{n-2}{2} and uu corresponds to

(1.3) u(x)=(n221|a|2|a|2|x|22x,a+1)n22,\displaystyle u(x)=\left(\frac{n-2}{2}\frac{1-|a|^{2}}{|a|^{2}|x|^{2}-2\langle x,a\rangle+1}\right)^{\frac{n-2}{2}},

where a𝔹na\in\mathbb{B}^{n}.

Historically, Escobar [Esc90, Theorem 2.1] (see also [Esc88]) classified all solution of 1.2 by Obata’s method [Oba71] when q=nn2q=\frac{n}{n-2} and λ=n22\lambda=\frac{n-2}{2}. After several works in this field [GW20, GHW21, LO23, Ou24], Gu-Li [GL25, Theorem 1.1] finally give an affirmative answer to conjecture 2.

Theorem 3 (Gu-Li, [GL25]).

If uC(𝔹n)u\in C^{\infty}(\mathbb{B}^{n}) is a positive solution of the equation 1.2 for some constants 1<q<nn21<q<\frac{n}{n-2} and 0<λ1q10<\lambda\leq\frac{1}{q-1}, then uu is a constant function.

Gu-Li’s method is based on sophisticated integration by parts, with several delicately chosen parameters, and the computation therein is more or less formidable.

In the second part of this note, we shall provide a simplified proof of theorem 3. We have to admit that our proof is essentially equivalent to Gu-Li’s original proof. However, our argument is based on a general principle for classifying solutions of such semilinear elliptic equations, which is a continuation and development of that in [Wan22].

The basic idea is to start with the critical power case (i.e. q=nn2q=\frac{n}{n-2}) and study the model solution 1.3 and come up with an appropriate function, known as the P-function in literature (in honer of L. Payne), whose constancy implies the rigidity of the solution uu. For the subcritical power case (i.e. 1<q<nn21<q<\frac{n}{n-2}), we regard the equation 1.2 as the critical one in a larger dimension space (see 3.3), then a modified argument as in the critical power case implies the conclusion. Readers interested in the P-function method are invited to [Pay68, Wei71, Dan11, CFP24] for more research in this realm.

Specific to conjecture 2, one merit of our argument is that the choice of the parameters is naturally indicated from the viewpoint of the P-function method. As an advantage, the computation is streamlined. Another contribution is that our calculation is in the spirit of Escobar’s work [Esc90] and clarifies the role of the weight function as providing a closed conformal vector field (see Lemma 3.2 and 3.10). This could shed light on some key difficulties for resolving conjecture 1.

Finally, we mention that Escobar [Esc90, Theorem 2.1] also classified all conformal metrics on 𝔹n\mathbb{B}^{n} with nonzero constant scalar curvature and constant boundary mean curvature by studying the solution of the following semilinear elliptic equation with a nonlinear boundary condition:

{Δu=n24(n1)Run+2n2in𝔹n,uν+n22u=n22(n1)Hunn2on𝕊n1,\begin{cases}-\Delta u=\frac{n-2}{4(n-1)}R\,u^{\frac{n+2}{n-2}}&\mathrm{in}\ \mathbb{B}^{n},\\ \frac{\partial u}{\partial\nu}+\frac{n-2}{2}u=\frac{n-2}{2(n-1)}Hu^{\frac{n}{n-2}}&\mathrm{on}\ \mathbb{S}^{n-1},\end{cases}

where R,HR,\,H are constants. The same strategy as our proof of theorem 3 could be applied to derive a slightly more general classification result for such kind of semilinear elliptic equations.

Theorem 4.

If uC(𝔹n)u\in C^{\infty}(\mathbb{B}^{n}) is a nonnegative solution of the following equation

(1.4) {Δu=n24(n1)Rupin𝔹n,uν+λu=n22(n1)Hup+12on𝕊n1,\begin{cases}-\Delta u=\frac{n-2}{4(n-1)}R\,u^{p}&\mathrm{in}\ \mathbb{B}^{n},\\ \frac{\partial u}{\partial\nu}+\lambda u=\frac{n-2}{2(n-1)}Hu^{\frac{p+1}{2}}&\mathrm{on}\ \mathbb{S}^{n-1},\end{cases}

where R>0,H0R>0,H\geq 0 are constants, 1<pn+2n21<p\leq\frac{n+2}{n-2} and 0λ2p10\leq\lambda\leq\frac{2}{p-1}.

  1. (1)

    If 1<pn+2n21<p\leq\frac{n+2}{n-2} and λ=0\lambda=0, then u0u\equiv 0.

  2. (2)

    If p=n+2n2p=\frac{n+2}{n-2} and 0<λ<2p1=n220<\lambda<\frac{2}{p-1}=\frac{n-2}{2}, then

    u(x)=(n(n1)R)n24(12ϵ|x|2+ϵ2)n22,\displaystyle u(x)=\left(\frac{n(n-1)}{R}\right)^{\frac{n-2}{4}}\left(\frac{1}{2\epsilon}|x|^{2}+\frac{\epsilon}{2}\right)^{-\frac{n-2}{2}},

    where 0<ϵ=n(n1)R(n22λHn1+(n22λ)2(Hn1)2+Rn(n1)(n2λ1))0<\epsilon=\sqrt{\frac{n(n-1)}{R}}\left(\frac{n-2}{2\lambda}\frac{H}{n-1}+\sqrt{(\frac{n-2}{2\lambda})^{2}(\frac{H}{n-1})^{2}+\frac{R}{n(n-1)}(\frac{n-2}{\lambda}-1)}\right).

  3. (3)

    If p=n+2n2p=\frac{n+2}{n-2} and λ=2p1=n22\lambda=\frac{2}{p-1}=\frac{n-2}{2}, then

    u(x)=(n(n1)R)n24((1+ϵ2|a|2)|x|2+2(1+ϵ2)x,a+(ϵ2+|a|2)2ϵ(1|a|2))n22,\displaystyle u(x)=\left(\frac{n(n-1)}{R}\right)^{\frac{n-2}{4}}\left(\frac{(1+\epsilon^{2}|a|^{2})|x|^{2}+2(1+\epsilon^{2})\langle x,a\rangle+(\epsilon^{2}+|a|^{2})}{2\epsilon(1-|a|^{2})}\right)^{-\frac{n-2}{2}},

    where a𝔹na\in\mathbb{B}^{n}, 0<ϵ=n(n1)R(Hn1+(Hn1)2+Rn(n1))0<\epsilon=\sqrt{\frac{n(n-1)}{R}}\left(\frac{H}{n-1}+\sqrt{(\frac{H}{n-1})^{2}+\frac{R}{n(n-1)}}\right).

Remark 1.2.

The case R=0R=0 is completely solved by theorem 3, so we don’t include it in the above theorem.

Remark 1.3.

The case R>0,H=0R>0,\,H=0 has been obtained by Dou-Hu-Xu [DHX25, Theorem 1.1]. Our arguments present a simplified proof of their result. We also invite readers to [DHX25] for some consequences of such a Liouville type result.

We also mention that our strategy for theorem 3 could be applied to give another proof of [BV91, Theorem 6.1] and hence answer a question raised by Wang [Wan22, Section 5]. This is not the main theme of this note, so we put it in the appendix. We hope that this strategy and general principle may also be useful in some other situations.

This note is organized as follows. In Section 2, we prove theorem 2. In Section 3, we present our new proof of theorem 3. In Section 4, we prove theorem 4. Finally, in appendix A, we include our proof of [BV91, Theorem 6.1].

Acknowledgement: This work was completed during a research visit to Michigan State University, supported by the Zhiyuan Scholarship of Shanghai Jiao Tong University. The author wishes to thank the university for its hospitality and is especially grateful to Prof. Xiaodong Wang and Dr. Zhixin Wang for their helpful discussions.

2. Proof of theorem 2

Our proof exploits two main ingredients in the method of integration by parts: Bochner formula (Step 1) and the equation itself (Step 2).

Proof.

Step 1: Let v:=u1av:=u^{-\frac{1}{a}}, where a>0a>0 is to be determined. We follow the notations in [GHW21] and define χ:=vν,f:=v|M\chi:=\frac{\partial v}{\partial\nu},\,f:=v|_{\partial M}. Then it’s straightforward to see that

(2.1) {Δv=(a+1)v1|v|2in M,χ=1a(λffa+1aq)on M.\displaystyle\begin{cases}\Delta v=(a+1)v^{-1}|\nabla v|^{2}&\text{in }M,\\ \chi=\frac{1}{a}(\lambda f-f^{a+1-aq})&\text{on }\partial M.\end{cases}

By Bochner formula, there holds

12Δ|v|2=|2vΔng|2+1n(Δv)2+Δv,v+Ric(v,v).\displaystyle\frac{1}{2}\Delta|\nabla v|^{2}=\left|\nabla^{2}v-\frac{\Delta}{n}g\right|^{2}+\frac{1}{n}(\Delta v)^{2}+\langle\nabla\Delta v,\nabla v\rangle+\mathrm{Ric}(\nabla v,\nabla v).

Multiply both sides by vbv^{b} and integrate it over MM, where bb is a constant to be determined, we have

(2.2) 12MvbΔ|v|2=Mvb(|2vΔng|2+Ric(v,v))+1nMvb(Δv)2+MvbΔv,v.\displaystyle\frac{1}{2}\int_{M}v^{b}\Delta|\nabla v|^{2}=\int_{M}v^{b}\left(\left|\nabla^{2}v-\frac{\Delta}{n}g\right|^{2}+\mathrm{Ric}(\nabla v,\nabla v)\right)+\frac{1}{n}\int_{M}v^{b}(\Delta v)^{2}+\int_{M}v^{b}\langle\nabla\Delta v,\nabla v\rangle.

It follows from 2.1, divergence theorem and the boundary curvature assumption Π1,Hn1\Pi\geq 1,H\geq n-1 that

12MvbΔ|v|2=12Mdiv(vb|v|2)vb,|v|2\displaystyle\frac{1}{2}\int_{M}v^{b}\Delta|\nabla v|^{2}=\frac{1}{2}\int_{M}\mathrm{div}(v^{b}\nabla|\nabla v|^{2})-\langle\nabla v^{b},\nabla|\nabla v|^{2}\rangle
=\displaystyle= Mfbf+χνv,νbMvb1vv,v\displaystyle\int_{\partial M}f^{b}\langle\nabla_{\nabla f+\chi\nu}\nabla v,\nu\rangle-b\int_{M}v^{b-1}\langle\nabla_{\nabla v}\nabla v,\nabla v\rangle
=\displaystyle= Mfb(f,χv,fν+χ2v(ν,ν))bMvb1vv,v\displaystyle\int_{\partial M}f^{b}\left(\langle\nabla f,\nabla\chi\rangle-\langle\nabla v,\nabla_{\nabla f}\nu\rangle+\chi\nabla^{2}v(\nu,\nu)\right)-b\int_{M}v^{b-1}\langle\nabla_{\nabla v}\nabla v,\nabla v\rangle
=\displaystyle= Mfb(f,χΠ(f,f)+χ(ΔvΔfHχ))bMvb1vv,v\displaystyle\int_{\partial M}f^{b}\left(\langle\nabla f,\nabla\chi\rangle-\Pi(\nabla f,\nabla f)+\chi(\Delta v-\Delta f-H\chi)\right)-b\int_{M}v^{b-1}\langle\nabla_{\nabla v}\nabla v,\nabla v\rangle
=\displaystyle= Mfb(2f,χΠ(f,f)+(a+1)χf1(|f|2+χ2)+bf1χ|f|2Hχ2)\displaystyle\int_{\partial M}f^{b}\left(2\langle\nabla f,\nabla\chi\rangle-\Pi(\nabla f,\nabla f)+(a+1)\chi f^{-1}(|\nabla f|^{2}+\chi^{2})+bf^{-1}\chi|\nabla f|^{2}-H\chi^{2}\right)
bMvb1vv,v\displaystyle-b\int_{M}v^{b-1}\langle\nabla_{\nabla v}\nabla v,\nabla v\rangle
\displaystyle\leq (2(q1)λ1)Mfb|f|2+(a+1+b+2(a+1aq))Mfbχf|f|2+(a+1)Mfbχfχ2\displaystyle(2(q-1)\lambda-1)\int_{\partial M}f^{b}|\nabla f|^{2}+\left(a+1+b+2(a+1-aq)\right)\int_{\partial M}f^{b}\frac{\chi}{f}|\nabla f|^{2}+(a+1)\int_{\partial M}f^{b}\frac{\chi}{f}\chi^{2}
(n1)Mfbχ2bMvb1vv,v\displaystyle-(n-1)\int_{\partial M}f^{b}\chi^{2}-b\int_{M}v^{b-1}\langle\nabla_{\nabla v}\nabla v,\nabla v\rangle
=\displaystyle= (2(q1)λ1)Mfb|f|2+a+1+b+2(a+1aq)aλMfb|f|2\displaystyle(2(q-1)\lambda-1)\int_{\partial M}f^{b}|\nabla f|^{2}+\frac{a+1+b+2(a+1-aq)}{a}\lambda\int_{\partial M}f^{b}|\nabla f|^{2}
a+1+b+2(a+1aq)aMfb+aaq|f|2+a+1aλMfbχ2a+1aMfb+aaqχ2\displaystyle-\frac{a+1+b+2(a+1-aq)}{a}\int_{\partial M}f^{b+a-aq}|\nabla f|^{2}+\frac{a+1}{a}\lambda\int_{\partial M}f^{b}\chi^{2}-\frac{a+1}{a}\int_{\partial M}f^{b+a-aq}\chi^{2}
(n1)Mfbχ2bMvb1vv,v\displaystyle-(n-1)\int_{\partial M}f^{b}\chi^{2}-b\int_{M}v^{b-1}\langle\nabla_{\nabla v}\nabla v,\nabla v\rangle
=\displaystyle= (a+b+3aλ1)Mfb|f|2+(a+1aλ(n1))Mfbχ2\displaystyle\left(\frac{a+b+3}{a}\lambda-1\right)\int_{\partial M}f^{b}|\nabla f|^{2}+\left(\frac{a+1}{a}\lambda-(n-1)\right)\int_{\partial M}f^{b}\chi^{2}
(2.3) +(2(q1)a+b+3a)Mfb+aaq|f|2a+1aMfb+aaqχ2bMvb1vv,v.\displaystyle+\left(2(q-1)-\frac{a+b+3}{a}\right)\int_{\partial M}f^{b+a-aq}|\nabla f|^{2}-\frac{a+1}{a}\int_{\partial M}f^{b+a-aq}\chi^{2}-b\int_{M}v^{b-1}\langle\nabla_{\nabla v}\nabla v,\nabla v\rangle.

On the other hand, the right hand side of 2.2 could be written as

Mvb(|2vΔvng|2+Ric(v,v))+(a+1)2nMwvb2|v|4(a+1)Mvb2|v|4\displaystyle\int_{M}v^{b}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\mathrm{Ric}(\nabla v,\nabla v)\right)+\frac{(a+1)^{2}}{n}\int_{M}wv^{b-2}|\nabla v|^{4}-(a+1)\int_{M}v^{b-2}|\nabla v|^{4}
(2.4) +2(a+1)Mvb1vv,v.\displaystyle+2(a+1)\int_{M}v^{b-1}\langle\nabla_{\nabla v}\nabla v,\nabla v\rangle.

Therefore, by 2.2, Section 2 and Section 2 we have

(a+b+3aλ1)Mfb|f|2+(a+1aλ(n1))Mfbχ2\displaystyle\left(\frac{a+b+3}{a}\lambda-1\right)\int_{\partial M}f^{b}|\nabla f|^{2}+\left(\frac{a+1}{a}\lambda-(n-1)\right)\int_{\partial M}f^{b}\chi^{2}
+(2(q1)a+b+3a)Mfb+aaq|f|2a+1aMfb+aaqχ2\displaystyle+\left(2(q-1)-\frac{a+b+3}{a}\right)\int_{\partial M}f^{b+a-aq}|\nabla f|^{2}-\frac{a+1}{a}\int_{\partial M}f^{b+a-aq}\chi^{2}
\displaystyle\geq Mvb(|2vΔvng|2+Ric(v,v))+((a+1)2n(a+1))Mvb2|v|4\displaystyle\int_{M}v^{b}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\mathrm{Ric}(\nabla v,\nabla v)\right)+\left(\frac{(a+1)^{2}}{n}-(a+1)\right)\int_{M}v^{b-2}|\nabla v|^{4}
(2.5) +(2(a+1)+b)Mvb1vv,v.\displaystyle+(2(a+1)+b)\int_{M}v^{b-1}\langle\nabla_{\nabla v}\nabla v,\nabla v\rangle.

Step 2: Multiply both sides of 2.1 by vbv^{b} and integrate it over MM, we have

(2.6) Mvb(Δv)2=(a+1)Mvb1|v|2Δv.\displaystyle\int_{M}v^{b}(\Delta v)^{2}=(a+1)\int_{M}v^{b-1}|\nabla v|^{2}\Delta v.

It follows from 2.1 that the left hand side of 2.6 could be written as

Mvb(Δv)2=Mdiv(vbΔvv)vb,vΔvΔv,vvb\displaystyle\int_{M}v^{b}(\Delta v)^{2}=\int_{M}\mathrm{div}(v^{b}\Delta v\nabla v)-\langle\nabla v^{b},\nabla v\rangle\Delta v-\langle\nabla\Delta v,\nabla v\rangle v^{b}
=\displaystyle= (a+1)Mfb1(|f|2+χ2)χ(a+1)bMvb2|v|4\displaystyle(a+1)\int_{\partial M}f^{b-1}(|\nabla f|^{2}+\chi^{2})\chi-(a+1)b\int_{M}v^{b-2}|\nabla v|^{4}
+(a+1)Mvb2|v|42(a+1)Mvb1vv,v\displaystyle+(a+1)\int_{M}v^{b-2}|\nabla v|^{4}-2(a+1)\int_{M}v^{b-1}\langle\nabla_{\nabla v}\nabla v,\nabla v\rangle
=\displaystyle= a+1aλMfb|f|2+a+1aλMfbχ2a+1aMfb+aaq|f|2a+1aMfb+aaqχ2\displaystyle\frac{a+1}{a}\lambda\int_{\partial M}f^{b}|\nabla f|^{2}+\frac{a+1}{a}\lambda\int_{\partial M}f^{b}\chi^{2}-\frac{a+1}{a}\int_{\partial M}f^{b+a-aq}|\nabla f|^{2}-\frac{a+1}{a}\int_{\partial M}f^{b+a-aq}\chi^{2}
(2.7) +(a+1)(1b)Mvb2|v|42(a+1)Mvb1vv,v.\displaystyle+(a+1)(1-b)\int_{M}v^{b-2}|\nabla v|^{4}-2(a+1)\int_{M}v^{b-1}\langle\nabla_{\nabla v}\nabla v,\nabla v\rangle.

Therefore, by 2.6 and Section 2 we have

a+1aλMfb|f|2+a+1aλMfbχ2a+1aMfb+aaq|f|2a+1aMfb+aaqχ2\displaystyle\frac{a+1}{a}\lambda\int_{\partial M}f^{b}|\nabla f|^{2}+\frac{a+1}{a}\lambda\int_{\partial M}f^{b}\chi^{2}-\frac{a+1}{a}\int_{\partial M}f^{b+a-aq}|\nabla f|^{2}-\frac{a+1}{a}\int_{\partial M}f^{b+a-aq}\chi^{2}
(2.8) =\displaystyle= ((a+1)2+(a+1)(b1))Mvb2|v|4+2(a+1)Mvb1vv,v.\displaystyle\left((a+1)^{2}+(a+1)(b-1)\right)\int_{M}v^{b-2}|\nabla v|^{4}+2(a+1)\int_{M}v^{b-1}\langle\nabla_{\nabla v}\nabla v,\nabla v\rangle.

Step 3: Now consider Section 2+cSection 2\lx@cref{creftype~refnum}{eq. equation 1}+c\lx@cref{creftype~refnum}{eq. equation 2}:

(a+b+3aλ1+a+1aλc)Mfb|f|2+(a+1aλ(n1)+a+1aλc)Mfbχ2\displaystyle\left(\frac{a+b+3}{a}\lambda-1+\frac{a+1}{a}\lambda c\right)\int_{\partial M}f^{b}|\nabla f|^{2}+\left(\frac{a+1}{a}\lambda-(n-1)+\frac{a+1}{a}\lambda c\right)\int_{\partial M}f^{b}\chi^{2}
+(2(q1)a+b+3aa+1ac)Mfb+aaq|f|2(a+1a+a+1ac)Mfb+aaqχ2\displaystyle+\left(2(q-1)-\frac{a+b+3}{a}-\frac{a+1}{a}c\right)\int_{\partial M}f^{b+a-aq}|\nabla f|^{2}-(\frac{a+1}{a}+\frac{a+1}{a}c)\int_{\partial M}f^{b+a-aq}\chi^{2}
\displaystyle\geq Mvb(|2vΔvng|2+Ric(v,v))+((1n+c)(a+1)2+(cbc1)(a+1))Mvb2|v|4\displaystyle\int_{M}v^{b}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\mathrm{Ric}(\nabla v,\nabla v)\right)+\left((\frac{1}{n}+c)(a+1)^{2}+(cb-c-1)(a+1)\right)\int_{M}v^{b-2}|\nabla v|^{4}
+(2(c+1)(a+1)+b)Mvb1vv,v.\displaystyle+\left(2(c+1)(a+1)+b\right)\int_{M}v^{b-1}\langle\nabla_{\nabla v}\nabla v,\nabla v\rangle.

Define β\beta by setting b=β(a+1)b=-\beta(a+1), x:=1ax:=\frac{1}{a} and choose c=1+β2c=-1+\frac{\beta}{2} to eliminate the term Mvb1vv,v\int_{M}v^{b-1}\langle\nabla_{\nabla v}\nabla v,\nabla v\rangle, we obtain

(4β2λx(1+βλ2))Mfb|f|2+(βλ2(x+1)(n1))Mfbχ2\displaystyle\left(\frac{4-\beta}{2}\lambda x-(1+\frac{\beta\lambda}{2})\right)\int_{\partial M}f^{b}|\nabla f|^{2}+\left(\frac{\beta\lambda}{2}(x+1)-(n-1)\right)\int_{\partial M}f^{b}\chi^{2}
+(4β2x+2(q1)+12β)Mfb+aaq|f|212β(x+1)Mfb+aaqχ2\displaystyle+\left(-\frac{4-\beta}{2}x+2(q-1)+\frac{1}{2}\beta\right)\int_{\partial M}f^{b+a-aq}|\nabla f|^{2}-\frac{1}{2}\beta(x+1)\int_{\partial M}f^{b+a-aq}\chi^{2}
\displaystyle\geq Mvb(|2vΔvng|2+Ric(v,v))\displaystyle\int_{M}v^{b}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\mathrm{Ric}(\nabla v,\nabla v)\right)
(2.9) +1x2(x+1)((12β2β+n1n)(x+1)+12β)Mvb2|v|4.\displaystyle+\frac{1}{x^{2}}(x+1)\left(-(\frac{1}{2}\beta^{2}-\beta+\frac{n-1}{n})(x+1)+\frac{1}{2}\beta\right)\int_{M}v^{b-2}|\nabla v|^{4}.

Step 4: Now we verify the condition (1) in theorem 2: Take β=1,x=β+4(q1)4β=1+4(q1)3\beta=1,x=\frac{\beta+4(q-1)}{4-\beta}=\frac{1+4(q-1)}{3} such that 4β2x+2(q1)+12β=0-\frac{4-\beta}{2}x+2(q-1)+\frac{1}{2}\beta=0. Equivalently, a=31+4(q1)a=\frac{3}{1+4(q-1)} and b=(a+1)=4q4q3b=-(a+1)=-\frac{4q}{4q-3}. Then Section 2 turns out to be

(2(q1)λ1)Mfb|f|2+(23qλ(n1))Mfbχ223qMfb+aaqχ2\displaystyle\left(2(q-1)\lambda-1\right)\int_{\partial M}f^{b}|\nabla f|^{2}+\left(\frac{2}{3}q\lambda-(n-1)\right)\int_{\partial M}f^{b}\chi^{2}-\frac{2}{3}q\int_{\partial M}f^{b+a-aq}\chi^{2}
(2.10) \displaystyle\geq Mvb(|2vΔvng|2+Ric(v,v))+(31+4(q1))243q(122(n2)3nq)Mvb2|v|4.\displaystyle\int_{M}v^{b}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\mathrm{Ric}(\nabla v,\nabla v)\right)+\left(\frac{3}{1+4(q-1)}\right)^{2}\frac{4}{3}q\left(\frac{1}{2}-\frac{2(n-2)}{3n}q\right)\int_{M}v^{b-2}|\nabla v|^{4}.

Then the condition (1) in theorem 2 implies that the left hand side of Section 2 is less or equal to zero, while the right hand side of Section 2 is larger or equal to zero. It follows that 0χ=vν0\equiv\chi=\frac{\partial v}{\partial\nu}. Hence by 2.1 we deduce that v|M=fv|_{\partial M}=f is constant, and uu is a harmonic function in MM with constant boundary value on M\partial M. Therefore uu is constant in MM.

Step 5: Now we verify the condition (2) in theorem 2: By analyzing the range of xx such that the left hand side of Section 2 is less or equal to zero and the right hand side of Section 2 is larger or equal to zero, we obtain the optimal value of β\beta as β=4q+24q+1\beta=\frac{4q+2}{4q+1}, x=β+4(q1)4β=8q24q16q+1x=\frac{\beta+4(q-1)}{4-\beta}=\frac{8q^{2}-4q-1}{6q+1}. Equivalently, we choose a=6q+18q24q1a=\frac{6q+1}{8q^{2}-4q-1} and b=4q+24q+1(a+1)=4q(2q+1)8q24q1b=-\frac{4q+2}{4q+1}(a+1)=-\frac{4q(2q+1)}{8q^{2}-4q-1}. Then Section 2 turns out to be

(2(q1)λ1)Mfb|f|2+(2q(2q+1)6q+1λ(n1))Mfbχ22q(2q+1)6q+1Mfb+aaqχ2\displaystyle\left(2(q-1)\lambda-1\right)\int_{\partial M}f^{b}|\nabla f|^{2}+\left(\frac{2q(2q+1)}{6q+1}\lambda-(n-1)\right)\int_{\partial M}f^{b}\chi^{2}-\frac{2q(2q+1)}{6q+1}\int_{\partial M}f^{b+a-aq}\chi^{2}
\displaystyle\geq Mvb(|2vΔvng|2+Ric(v,v))\displaystyle\int_{M}v^{b}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\mathrm{Ric}(\nabla v,\nabla v)\right)
(2.11) +(6q+18q24q1)2(2q(4q+1)6q+1)(4(n2)q2+2(n+1)q+n(6q+1)n)Mvb2|v|4.\displaystyle+\left(\frac{6q+1}{8q^{2}-4q-1}\right)^{2}\left(\frac{2q(4q+1)}{6q+1}\right)\left(\frac{-4(n-2)q^{2}+2(n+1)q+n}{(6q+1)n}\right)\int_{M}v^{b-2}|\nabla v|^{4}.

Then the condition (2) in theorem 2 implies that the left hand side of Section 2 is less or equal to zero, while the right hand side of Section 2 is larger or equal to zero. As before, we could conclude that uu is a constant function on MM. ∎

3. Proof of theorem 3

We shall first establish some identities that holds on general Riemannian manifolds.

Lemma 3.1.

Let (Mn,g)(M^{n},g) be a Riemannian manifold. For any vC(M)v\in C^{\infty}(M) and constant d>0d>0, there holds

(3.1) div(vvΔvdv)=|2vΔvng|2+(1n1d)(Δv)2+(11d)Δv,v+Ric(v,v).\displaystyle\mathrm{div}\left(\nabla_{\nabla v}\nabla v-\frac{\Delta v}{d}\nabla v\right)=\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\left(\frac{1}{n}-\frac{1}{d}\right)(\Delta v)^{2}+\left(1-\frac{1}{d}\right)\langle\nabla\Delta v,\nabla v\rangle+\mathrm{Ric}(\nabla v,\nabla v).
Proof.

This is a straightforward corollary of Bochner formula. ∎

Lemma 3.2.

Let (Mn,g)(M^{n},g) be a Riemannian manifold admitting a smooth function ww with 2w=Δwng\nabla^{2}w=\frac{\Delta w}{n}g, then for any vC(M)v\in C^{\infty}(M) and constant d>0d>0 there holds

(3.2) div(wvΔvdw)=(1n1d)ΔvΔw(11n)Δw,v+(11d)Δv,w.\displaystyle\mathrm{div}\left(\nabla_{\nabla w}\nabla v-\frac{\Delta v}{d}\nabla w\right)=\left(\frac{1}{n}-\frac{1}{d}\right)\Delta v\Delta w-\left(1-\frac{1}{n}\right)\langle\nabla\Delta w,\nabla v\rangle+\left(1-\frac{1}{d}\right)\langle\nabla\Delta v,\nabla w\rangle.
Proof.

Notice that

div(wv)\displaystyle\mathrm{div}(\nabla_{\nabla w}\nabla v) =122v,wg+Δv,w+Ric(v,w)\displaystyle=\frac{1}{2}\langle\nabla^{2}v,\mathcal{L}_{\nabla w}g\rangle+\langle\nabla\Delta v,\nabla w\rangle+Ric(\nabla v,\nabla w)
=1nΔvΔw+Δv,w+Ric(v,w),\displaystyle=\frac{1}{n}\Delta v\Delta w+\langle\nabla\Delta v,\nabla w\rangle+Ric(\nabla v,\nabla w),

where we used Ricci’s identity

div(2v)=Δv+Ric(v,).\displaystyle\mathrm{div}(\nabla^{2}v)=\nabla\Delta v+\mathrm{Ric}(\nabla v,\cdot).

The hypothesis on ww implies that the curvature operator RR satisfies

R(X,Y)w=X,ΔwnYY,ΔwnX,X,YTp(M).\displaystyle R(X,Y)\nabla w=\left\langle X,\frac{\nabla\Delta w}{n}\right\rangle Y-\left\langle Y,\frac{\nabla\Delta w}{n}\right\rangle X,\quad\forall X,Y\in T_{p}(M).

It follows that

Ric(w,)=n1nΔw.\displaystyle Ric(\nabla w,\cdot)=-\frac{n-1}{n}\nabla\Delta w.

Therefore, we derive

div(wv)=1nΔvΔw+Δv,wn1nΔw,v.\displaystyle\mathrm{div}(\nabla_{\nabla w}\nabla v)=\frac{1}{n}\Delta v\Delta w+\langle\nabla\Delta v,\nabla w\rangle-\frac{n-1}{n}\langle\nabla\Delta w,\nabla v\rangle.

Hence the desired identity follows. ∎

Now we are ready to present our proof of theorem 3. Roughly speaking, we regard the equation 1.2 as the critical power case in a dd-dimensional space, where

(3.3) d:=2qq1n.\displaystyle d:=\frac{2q}{q-1}\geq n.

Then we modify Escobar’s argument [Esc90] to fit in this ”critical case”, and use the boundary condition to tackle the emerging terms in this case.

At the end of our proof, we shall review and compare our choice of parameters with those in Gu-Li [GL25].

Proof of theorem 3:.

Denote gg to be the Euclidean metric on 𝔹n\mathbb{B}^{n} and ν\nu to be the unit outer normal vector of 𝔹n=𝕊n1\partial\mathbb{B}^{n}=\mathbb{S}^{n-1}.

Step 1: Consider the intrinsic dimension d:=2qq1d:=\frac{2q}{q-1} so that q=dd2q=\frac{d}{d-2}. Then dnqnn2d\geq n\Leftrightarrow q\leq\frac{n}{n-2}. Let v:=u2d2v:=u^{-\frac{2}{d-2}}, χ:=vν,f:=v|𝕊n1\chi:=\frac{\partial v}{\partial\nu},f:=v|_{\mathbb{S}^{n-1}}, then vv satisfies

(3.4) {Δv=d2v1|v|2in𝔹n,χ=2d2(λf1)on𝕊n1.\displaystyle\begin{cases}\Delta v=\frac{d}{2}v^{-1}|\nabla v|^{2}&\mathrm{in}\ \mathbb{B}^{n},\\ \chi=\frac{2}{d-2}(\lambda f-1)&\mathrm{on}\ \mathbb{S}^{n-1}.\end{cases}

We shall consider the P-function P:=v1|v|2=2dΔvP:=v^{-1}|\nabla v|^{2}=\frac{2}{d}\Delta v, which satisfies PconstantP\equiv constant if uu is the model solution 1.3, and derive the equation satisfied by PP (i.e. 3.6).

It’s straightforward to see from 3.4 that

(3.5) Δv=dv1(vvΔvdv).\displaystyle\nabla\Delta v=dv^{-1}\left(\nabla_{\nabla v}\nabla v-\frac{\Delta v}{d}\nabla v\right).

Hence by Lemma 3.1 we have

(3.6) div(v1d(vvΔvdv))=v1d(|2vΔvng|2+(1n1d)(Δv)2).\displaystyle\mathrm{div}\left(v^{1-d}\left(\nabla_{\nabla v}\nabla v-\frac{\Delta v}{d}\nabla v\right)\right)=v^{1-d}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\left(\frac{1}{n}-\frac{1}{d}\right)(\Delta v)^{2}\right).

Integrate this equation over 𝔹n\mathbb{B}^{n} and use the boundary value condition 3.4, we get

𝔹nv1d(|2vΔvng|2+(1n1d)(Δv)2)\displaystyle\int_{\mathbb{B}^{n}}v^{1-d}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\left(\frac{1}{n}-\frac{1}{d}\right)(\Delta v)^{2}\right)
=\displaystyle= 𝕊n1f1d(2vΔvdg)(v,ν)=𝕊n1f1d(2vΔvdg)(f+χν,ν)\displaystyle\int_{\mathbb{S}^{n-1}}f^{1-d}\left(\nabla^{2}v-\frac{\Delta v}{d}g\right)(\nabla v,\nu)=\int_{\mathbb{S}^{n-1}}f^{1-d}\left(\nabla^{2}v-\frac{\Delta v}{d}g\right)(\nabla f+\chi\nu,\nu)
=\displaystyle= 𝕊n1f1d(f,χ|f|2)+𝕊n1χf1d(2vΔvdg)(ν,ν)\displaystyle\int_{\mathbb{S}^{n-1}}f^{1-d}(\langle\nabla f,\nabla\chi\rangle-|\nabla f|^{2})+\int_{\mathbb{S}^{n-1}}\chi f^{1-d}\left(\nabla^{2}v-\frac{\Delta v}{d}g\right)(\nu,\nu)
=\displaystyle= (2d2λ1)𝕊n1f1d|f|2+2d2λ𝕊n1f2d(2vΔvdg)(ν,ν)\displaystyle\left(\frac{2}{d-2}\lambda-1\right)\int_{\mathbb{S}^{n-1}}f^{1-d}|\nabla f|^{2}+\frac{2}{d-2}\lambda\int_{\mathbb{S}^{n-1}}f^{2-d}\left(\nabla^{2}v-\frac{\Delta v}{d}g\right)(\nu,\nu)
(3.7) 2d2𝕊n1f1d(2vΔvdg)(ν,ν).\displaystyle-\frac{2}{d-2}\int_{\mathbb{S}^{n-1}}f^{1-d}\left(\nabla^{2}v-\frac{\Delta v}{d}g\right)(\nu,\nu).

Step 2: Take w:=1|x|22w:=\frac{1-|x|^{2}}{2}. Then ww satisfies: w|𝕊n1=0,w|𝕊n1=ν,2w=Δwng,Δwnw|_{\mathbb{S}^{n-1}}=0,\ \nabla w|_{\mathbb{S}^{n-1}}=-\nu,\ \nabla^{2}w=\frac{\Delta w}{n}g,\ \Delta w\equiv-n. We shall use ww to tackle the last two terms in the right hand side of Section 3.

Now use Lemma 3.2, 3.5 and Δwn\Delta w\equiv-n, we derive

(3.8) div(v2d(wvΔvdw))=(nd1)v2dΔv+v1dvvΔvdv,w.\displaystyle\mathrm{div}\left(v^{2-d}\left(\nabla_{\nabla w}\nabla v-\frac{\Delta v}{d}\nabla w\right)\right)=\left(\frac{n}{d}-1\right)v^{2-d}\Delta v+v^{1-d}\left\langle\nabla_{\nabla v}\nabla v-\frac{\Delta v}{d}\nabla v,\nabla w\right\rangle.

It follows from 3.6 and 3.8 that

wv1d(|2vΔvng|2+(1n1d)(Δv)2)=wdiv(v1d(vvΔvdv))\displaystyle wv^{1-d}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\left(\frac{1}{n}-\frac{1}{d}\right)(\Delta v)^{2}\right)=w\mathrm{div}\left(v^{1-d}\left(\nabla_{\nabla v}\nabla v-\frac{\Delta v}{d}\nabla v\right)\right)
=\displaystyle= div(wv1d(vvΔvdv))v1dvvΔvdv,w\displaystyle\mathrm{div}\left(wv^{1-d}\left(\nabla_{\nabla v}\nabla v-\frac{\Delta v}{d}\nabla v\right)\right)-v^{1-d}\left\langle\nabla_{\nabla v}\nabla v-\frac{\Delta v}{d}\nabla v,\nabla w\right\rangle
=\displaystyle= div(wv1d(vvΔvdv))div(v2d(wvΔvdw))+(nd1)v2dΔv.\displaystyle\mathrm{div}\left(wv^{1-d}\left(\nabla_{\nabla v}\nabla v-\frac{\Delta v}{d}\nabla v\right)\right)-\mathrm{div}\left(v^{2-d}\left(\nabla_{\nabla w}\nabla v-\frac{\Delta v}{d}\nabla w\right)\right)+\left(\frac{n}{d}-1\right)v^{2-d}\Delta v.

Integrate this equation over 𝔹n\mathbb{B}^{n} and notice that w|𝕊n1=ν\nabla w|_{\mathbb{S}^{n-1}}=-\nu, we get

𝔹nwv1d(|2vΔvng|2+(1n1d)(Δv)2)\displaystyle\int_{\mathbb{B}^{n}}wv^{1-d}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\left(\frac{1}{n}-\frac{1}{d}\right)(\Delta v)^{2}\right)
(3.9) =\displaystyle= 𝕊n1f2d(2vΔvdg)(ν,ν)+(nd1)𝔹nv2dΔv.\displaystyle\int_{\mathbb{S}^{n-1}}f^{2-d}\left(\nabla^{2}v-\frac{\Delta v}{d}g\right)(\nu,\nu)+\left(\frac{n}{d}-1\right)\int_{\mathbb{B}^{n}}v^{2-d}\Delta v.

Once again,3.5 and Lemma 3.2 implies

div(v1d(wvΔvdw))=(nd1)v1dΔv.\displaystyle\mathrm{div}\left(v^{1-d}\left(\nabla_{\nabla w}\nabla v-\frac{\Delta v}{d}\nabla w\right)\right)=\left(\frac{n}{d}-1\right)v^{1-d}\Delta v.

Integrate this equation over 𝔹n\mathbb{B}^{n} and notice that w|𝕊n1=ν\nabla w|_{\mathbb{S}^{n-1}}=-\nu, we get

(3.10) 𝕊n1f1d(2vΔvdg)(ν,ν)=(1nd)𝔹nv1dΔv.\displaystyle\int_{\mathbb{S}^{n-1}}f^{1-d}\left(\nabla^{2}v-\frac{\Delta v}{d}g\right)(\nu,\nu)=\left(1-\frac{n}{d}\right)\int_{\mathbb{B}^{n}}v^{1-d}\Delta v.

Note that 3.10 is exactly the Pohozaev identity [Sch88, Proposition 1.4] used by Escobar [Esc90], whose validity comes from the fact that w\nabla w is a closed conformal vector field.

Plug Section 3 and 3.10 into Section 3, we derive the key integral identity

𝔹n(12d2λw)v1d(|2vΔvng|2+(1n1d)(Δv)2)\displaystyle\int_{\mathbb{B}^{n}}\left(1-\frac{2}{d-2}\lambda w\right)v^{1-d}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\left(\frac{1}{n}-\frac{1}{d}\right)(\Delta v)^{2}\right)
=\displaystyle= (2d2λ1)𝕊n1f1d|f|2+2d2(nd1)(𝔹nv1dΔvλ𝔹nv2dΔv).\displaystyle\left(\frac{2}{d-2}\lambda-1\right)\int_{\mathbb{S}^{n-1}}f^{1-d}|\nabla f|^{2}+\frac{2}{d-2}\left(\frac{n}{d}-1\right)\left(\int_{\mathbb{B}^{n}}v^{1-d}\Delta v-\lambda\int_{\mathbb{B}^{n}}v^{2-d}\Delta v\right).

Notice that 12d2λw11d2λ01-\frac{2}{d-2}\lambda w\geq 1-\frac{1}{d-2}\lambda\geq 0 , 2d2λ10\frac{2}{d-2}\lambda-1\leq 0 and nd10\frac{n}{d}-1\leq 0, our proof would be complete once we show that

(3.11) 𝔹nv1dΔvλ𝔹nv2dΔv0.\displaystyle\int_{\mathbb{B}^{n}}v^{1-d}\Delta v-\lambda\int_{\mathbb{B}^{n}}v^{2-d}\Delta v\geq 0.

Step 3: We shall use the boundary condition 3.4 to make 3.11 homogeneous.

The boundary condition in 3.4 implies

𝕊n1f2dχ=𝔹ndiv(v2dv)=𝔹n(v2dΔv+(2d)vd|v|2)=4dd𝔹nv2dΔv,\displaystyle\int_{\mathbb{S}^{n-1}}f^{2-d}\chi=\int_{\mathbb{B}^{n}}\mathrm{div}(v^{2-d}\nabla v)=\int_{\mathbb{B}^{n}}(v^{2-d}\Delta v+(2-d)v^{-d}|\nabla v|^{2})=\frac{4-d}{d}\int_{\mathbb{B}^{n}}v^{2-d}\Delta v,
𝕊n1f1dχ=𝔹ndiv(v1dv)=𝔹n(v1dΔv+(1d)vd|v|2)=2dd𝔹nv1dΔv.\displaystyle\int_{\mathbb{S}^{n-1}}f^{1-d}\chi=\int_{\mathbb{B}^{n}}\mathrm{div}(v^{1-d}\nabla v)=\int_{\mathbb{B}^{n}}(v^{1-d}\Delta v+(1-d)v^{-d}|\nabla v|^{2})=\frac{2-d}{d}\int_{\mathbb{B}^{n}}v^{1-d}\Delta v.

Therefore we have

𝕊n1f1dχ2=2d2λ𝕊n1f2dχ2d2𝕊n1f1dχ=2(4d)d(d2)λ𝔹nv2dΔv+2d𝔹nv1dΔv.\displaystyle\int_{\mathbb{S}^{n-1}}f^{1-d}\chi^{2}=\frac{2}{d-2}\lambda\int_{\mathbb{S}^{n-1}}f^{2-d}\chi-\frac{2}{d-2}\int_{\mathbb{S}^{n-1}}f^{1-d}\chi=\frac{2(4-d)}{d(d-2)}\lambda\int_{\mathbb{B}^{n}}v^{2-d}\Delta v+\frac{2}{d}\int_{\mathbb{B}^{n}}v^{1-d}\Delta v.

Equivalently,

𝔹nv1dΔv=d2𝕊n1f1dχ2+d4d2λ𝔹nv2dΔv.\displaystyle\int_{\mathbb{B}^{n}}v^{1-d}\Delta v=\frac{d}{2}\int_{\mathbb{S}^{n-1}}f^{1-d}\chi^{2}+\frac{d-4}{d-2}\lambda\int_{\mathbb{B}^{n}}v^{2-d}\Delta v.

Hence we obtain

𝔹nv1dΔvλ𝔹nv2dΔv=d2𝕊n1f1dχ22d2λ𝔹nv2dΔv.\displaystyle\int_{\mathbb{B}^{n}}v^{1-d}\Delta v-\lambda\int_{\mathbb{B}^{n}}v^{2-d}\Delta v=\frac{d}{2}\int_{\mathbb{S}^{n-1}}f^{1-d}\chi^{2}-\frac{2}{d-2}\lambda\int_{\mathbb{B}^{n}}v^{2-d}\Delta v.

Therefore, it suffices to show that d2𝕊n1f1dχ22d2λ𝔹nv2dΔv0\frac{d}{2}\int_{\mathbb{S}^{n-1}}f^{1-d}\chi^{2}-\frac{2}{d-2}\lambda\int_{\mathbb{B}^{n}}v^{2-d}\Delta v\geq 0.

Step 4: Using 2w=g\nabla^{2}w=-g and 3.4, we could express 𝕊n1f1dχ2\int_{\mathbb{S}^{n-1}}f^{1-d}\chi^{2} as

𝕊n1f1dχ2=𝔹ndiv(v1dv,wv)\displaystyle\int_{\mathbb{S}^{n-1}}f^{1-d}\chi^{2}=-\int_{\mathbb{B}^{n}}\mathrm{div}\left(v^{1-d}\langle\nabla v,\nabla w\rangle\nabla v\right)
=\displaystyle= 𝔹n{v1dv,wΔv+(1d)vdv,w|v|2+v1dvv,w+v1d2w(v,v)}\displaystyle-\int_{\mathbb{B}^{n}}\left\{v^{1-d}\langle\nabla v,\nabla w\rangle\Delta v+(1-d)v^{-d}\langle\nabla v,\nabla w\rangle|\nabla v|^{2}+v^{1-d}\langle\nabla_{\nabla v}\nabla v,\nabla w\rangle+v^{1-d}\nabla^{2}w(\nabla v,\nabla v)\right\}
=\displaystyle= 𝔹nv1dvvd2dΔvv,w+2d𝔹nv2dΔv\displaystyle-\int_{\mathbb{B}^{n}}v^{1-d}\left\langle\nabla_{\nabla v}\nabla v-\frac{d-2}{d}\Delta v\nabla v,\nabla w\right\rangle+\frac{2}{d}\int_{\mathbb{B}^{n}}v^{2-d}\Delta v
=\displaystyle= 𝔹n{wdiv(v1d(vvd2dΔvv))div(wv1d(vvd2dΔvv))}\displaystyle\int_{\mathbb{B}^{n}}\left\{w\mathrm{div}\left(v^{1-d}\left(\nabla_{\nabla v}\nabla v-\frac{d-2}{d}\Delta v\nabla v\right)\right)-\mathrm{div}\left(wv^{1-d}\left(\nabla_{\nabla v}\nabla v-\frac{d-2}{d}\Delta v\nabla v\right)\right)\right\}
+2d𝔹nv2dΔv.\displaystyle+\frac{2}{d}\int_{\mathbb{B}^{n}}v^{2-d}\Delta v.

Therefore,

d2𝕊n1f1dχ22d2λ𝔹nv2dΔv\displaystyle\frac{d}{2}\int_{\mathbb{S}^{n-1}}f^{1-d}\chi^{2}-\frac{2}{d-2}\lambda\int_{\mathbb{B}^{n}}v^{2-d}\Delta v
(3.12) =\displaystyle= (12d2λ)𝔹nv2dΔv+d2𝔹nwdiv(v1d(vvd2dΔvv)).\displaystyle\left(1-\frac{2}{d-2}\lambda\right)\int_{\mathbb{B}^{n}}v^{2-d}\Delta v+\frac{d}{2}\int_{\mathbb{B}^{n}}w\mathrm{div}\left(v^{1-d}\left(\nabla_{\nabla v}\nabla v-\frac{d-2}{d}\Delta v\nabla v\right)\right).

Finally, we use Lemma 3.1 and 3.5 to calculate the last term in Section 3 as follows:

wdiv(v1d(vvd2dΔvv))\displaystyle w\mathrm{div}\left(v^{1-d}\left(\nabla_{\nabla v}\nabla v-\frac{d-2}{d}\Delta v\nabla v\right)\right)
=\displaystyle= wv1d(div(vvd2dΔvv)+(1d)v1vvd2dΔvv,v)\displaystyle wv^{1-d}\left(\mathrm{div}\left(\nabla_{\nabla v}\nabla v-\frac{d-2}{d}\Delta v\nabla v\right)+(1-d)v^{-1}\left\langle\nabla_{\nabla v}\nabla v-\frac{d-2}{d}\Delta v\nabla v,\nabla v\right\rangle\right)
=\displaystyle= wv1d(|2vΔvng|2+(1nd2d)(Δv)2+2v1vvΔvdv,v\displaystyle wv^{1-d}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\left(\frac{1}{n}-\frac{d-2}{d}\right)(\Delta v)^{2}+2v^{-1}\left\langle\nabla_{\nabla v}\nabla v-\frac{\Delta v}{d}\nabla v,\nabla v\right\rangle\right.
+(1d)v1vvd2dΔvv,v)\displaystyle\quad\quad\quad\left.+(1-d)v^{-1}\left\langle\nabla_{\nabla v}\nabla v-\frac{d-2}{d}\Delta v\nabla v,\nabla v\right\rangle\right)
=\displaystyle= wv1d(|2vΔvng|2+(3d)v1vv,v+(1nd2d+2(d3)d)(Δv)2)\displaystyle wv^{1-d}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+(3-d)v^{-1}\langle\nabla_{\nabla v}\nabla v,\nabla v\rangle+\left(\frac{1}{n}-\frac{d-2}{d}+\frac{2(d-3)}{d}\right)(\Delta v)^{2}\right)
=\displaystyle= wv1d(|2vΔvng+3d2dvdvv|2+(d3)(d+2n)+3(dn)nd2(Δv)2)0.\displaystyle wv^{1-d}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g+\frac{3-d}{2}\frac{\mathrm{d}v\otimes\mathrm{d}v}{v}\right|^{2}+\frac{(d-3)(d+2n)+3(d-n)}{nd^{2}}(\Delta v)^{2}\right)\geq 0.

This finishes the proof of theorem 3. ∎

Remark 3.1.

Gu-Li chose the power of vv as a=q+1q1a=-\frac{q+1}{q-1} (see [GL25, Section 3.1]), which is exactly 1d1-d in our 3.6. They chose the combination coefficient of the vector field as b=q12qb=\frac{q-1}{2q} (see [GL25, Section 3.2]), which is exactly 1d\frac{1}{d} in our 3.5. They finally choose the combination coefficient of the weight function as 21+c=λ(q1)\frac{2}{1+c}=\lambda(q-1) (see [GL25, Section 3.3]), which equals 2d2λ\frac{2}{d-2}\lambda and appears naturally in our Section 3.

4. Proof of theorem 4

Proof of theorem 4:.

Denote gg to be the Euclidean metric on 𝔹n\mathbb{B}^{n} and ν\nu to be the unit outer normal vector of 𝔹n=𝕊n1\partial\mathbb{B}^{n}=\mathbb{S}^{n-1}.

Assume uu is not identically zero, then uu is superharmonic by 1.4. Hence the maximum principle and the Hopf lemma imply that u>0u>0 on 𝔹n¯\overline{\mathbb{B}^{n}}.

The remaining calculation is a minor modification of our proof of theorem 3 in Section 3. For completeness, we repeat the calculation and provide all details.

Step 1: Define d:=2(p+1)p1d:=\frac{2(p+1)}{p-1}. Then dnpn+2n2d\geq n\Leftrightarrow p\leq\frac{n+2}{n-2}. Let v:=u2d2v:=u^{-\frac{2}{d-2}}, χ:=vν,f:=v|𝕊n1\chi:=\frac{\partial v}{\partial\nu},f:=v|_{\mathbb{S}^{n-1}}, then vv satisfies

(4.1) {Δv=d2v1|v|2+n22(d2)Rn1v1in𝔹n,χ=2d2λfn2d2Hn1on𝕊n1.\displaystyle\begin{cases}\Delta v=\frac{d}{2}v^{-1}|\nabla v|^{2}+\frac{n-2}{2(d-2)}\frac{R}{n-1}v^{-1}&\mathrm{in}\ \mathbb{B}^{n},\\ \chi=\frac{2}{d-2}\lambda f-\frac{n-2}{d-2}\frac{H}{n-1}&\mathrm{on}\ \mathbb{S}^{n-1}.\end{cases}

The key point is that 3.5 still holds in this case for a solution vv in 4.1:

(4.2) Δv=dv1(vvΔvdv).\displaystyle\nabla\Delta v=dv^{-1}\left(\nabla_{\nabla v}\nabla v-\frac{\Delta v}{d}\nabla v\right).

Hence by Lemma 3.1 we get 3.6. Integrate this over 𝔹n\mathbb{B}^{n} and use the boundary condition 4.1, we get

𝔹nv1d(|2vΔvng|2+(1n1d)(Δv)2)\displaystyle\int_{\mathbb{B}^{n}}v^{1-d}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\left(\frac{1}{n}-\frac{1}{d}\right)(\Delta v)^{2}\right)
=\displaystyle= 𝕊n1f1d(2vΔvdg)(v,ν)=𝕊n1f1d(2vΔvdg)(f+χν,ν)\displaystyle\int_{\mathbb{S}^{n-1}}f^{1-d}\left(\nabla^{2}v-\frac{\Delta v}{d}g\right)(\nabla v,\nu)=\int_{\mathbb{S}^{n-1}}f^{1-d}\left(\nabla^{2}v-\frac{\Delta v}{d}g\right)(\nabla f+\chi\nu,\nu)
=\displaystyle= 𝕊n1f1d(f,χ|f|2)+𝕊n1χf1d(2vΔvdg)(ν,ν)\displaystyle\int_{\mathbb{S}^{n-1}}f^{1-d}(\langle\nabla f,\nabla\chi\rangle-|\nabla f|^{2})+\int_{\mathbb{S}^{n-1}}\chi f^{1-d}\left(\nabla^{2}v-\frac{\Delta v}{d}g\right)(\nu,\nu)
=\displaystyle= (2d2λ1)𝕊n1f1d|f|2+2d2λ𝕊n1f2d(2vΔvdg)(ν,ν)\displaystyle\left(\frac{2}{d-2}\lambda-1\right)\int_{\mathbb{S}^{n-1}}f^{1-d}|\nabla f|^{2}+\frac{2}{d-2}\lambda\int_{\mathbb{S}^{n-1}}f^{2-d}\left(\nabla^{2}v-\frac{\Delta v}{d}g\right)(\nu,\nu)
(4.3) n2d2Hn1𝕊n1f1d(2vΔvdg)(ν,ν).\displaystyle-\frac{n-2}{d-2}\frac{H}{n-1}\int_{\mathbb{S}^{n-1}}f^{1-d}\left(\nabla^{2}v-\frac{\Delta v}{d}g\right)(\nu,\nu).

Step 2: Take w:=1|x|22w:=\frac{1-|x|^{2}}{2}. Then ww satisfies: w|𝕊n1=0,w|𝕊n1=ν,2w=Δwng,Δwnw|_{\mathbb{S}^{n-1}}=0,\ \nabla w|_{\mathbb{S}^{n-1}}=-\nu,\ \nabla^{2}w=\frac{\Delta w}{n}g,\ \Delta w\equiv-n. We shall use ww to tackle the last two terms in the right hand side of Section 4

Now use Lemma 3.2, 4.2 and Δwn\Delta w\equiv-n, we derive 3.8. It follows from 3.6 and 3.8 that

wv1d(|2vΔvng|2+(1n1d)(Δv)2)=wdiv(v1d(vvΔvdv))\displaystyle wv^{1-d}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\left(\frac{1}{n}-\frac{1}{d}\right)(\Delta v)^{2}\right)=w\mathrm{div}\left(v^{1-d}\left(\nabla_{\nabla v}\nabla v-\frac{\Delta v}{d}\nabla v\right)\right)
=\displaystyle= div(wv1d(vvΔvdv))v1dvvΔvdv,w\displaystyle\mathrm{div}\left(wv^{1-d}\left(\nabla_{\nabla v}\nabla v-\frac{\Delta v}{d}\nabla v\right)\right)-v^{1-d}\left\langle\nabla_{\nabla v}\nabla v-\frac{\Delta v}{d}\nabla v,\nabla w\right\rangle
=\displaystyle= div(wv1d(vvΔvdv))div(v2d(wvΔvdw))+(nd1)v2dΔv.\displaystyle\mathrm{div}\left(wv^{1-d}\left(\nabla_{\nabla v}\nabla v-\frac{\Delta v}{d}\nabla v\right)\right)-\mathrm{div}\left(v^{2-d}\left(\nabla_{\nabla w}\nabla v-\frac{\Delta v}{d}\nabla w\right)\right)+\left(\frac{n}{d}-1\right)v^{2-d}\Delta v.

Integrate this equation over 𝔹n\mathbb{B}^{n} and notice that w|𝕊n1=ν\nabla w|_{\mathbb{S}^{n-1}}=-\nu, we get Section 3:

𝔹nwv1d(|2vΔvng|2+(1n1d)(Δv)2)\displaystyle\int_{\mathbb{B}^{n}}wv^{1-d}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\left(\frac{1}{n}-\frac{1}{d}\right)(\Delta v)^{2}\right)
=\displaystyle= 𝕊n1f2d(2vΔvdg)(ν,ν)+(nd1)𝔹nv2dΔv.\displaystyle\int_{\mathbb{S}^{n-1}}f^{2-d}\left(\nabla^{2}v-\frac{\Delta v}{d}g\right)(\nu,\nu)+\left(\frac{n}{d}-1\right)\int_{\mathbb{B}^{n}}v^{2-d}\Delta v.

Once again, 4.2 and Lemma 3.2 implies

div(v1d(wvΔvdw))=(nd1)v1dΔv.\displaystyle\mathrm{div}\left(v^{1-d}\left(\nabla_{\nabla w}\nabla v-\frac{\Delta v}{d}\nabla w\right)\right)=\left(\frac{n}{d}-1\right)v^{1-d}\Delta v.

Integrate this equation over 𝔹n\mathbb{B}^{n} and notice that w|𝕊n1=ν\nabla w|_{\mathbb{S}^{n-1}}=-\nu, we get 3.10:

𝕊n1f1d(2vΔvdg)(ν,ν)=(1nd)𝔹nv1dΔv.\displaystyle\int_{\mathbb{S}^{n-1}}f^{1-d}\left(\nabla^{2}v-\frac{\Delta v}{d}g\right)(\nu,\nu)=\left(1-\frac{n}{d}\right)\int_{\mathbb{B}^{n}}v^{1-d}\Delta v.

Plug Section 3 and 3.10 into Section 4, we derive the following key integral identity:

0\displaystyle 0\leq 𝔹n(12d2λw)v1d(|2vΔvng|2+(1n1d)(Δv)2)\displaystyle\int_{\mathbb{B}^{n}}\left(1-\frac{2}{d-2}\lambda w\right)v^{1-d}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\left(\frac{1}{n}-\frac{1}{d}\right)(\Delta v)^{2}\right)
(4.4) =\displaystyle= (2d2λ1)𝕊n1f1d|f|2+2d2(nd1)(n22Hn1𝔹nv1dΔvλ𝔹nv2dΔv).\displaystyle\left(\frac{2}{d-2}\lambda-1\right)\int_{\mathbb{S}^{n-1}}f^{1-d}|\nabla f|^{2}+\frac{2}{d-2}\left(\frac{n}{d}-1\right)\left(\frac{n-2}{2}\frac{H}{n-1}\int_{\mathbb{B}^{n}}v^{1-d}\Delta v-\lambda\int_{\mathbb{B}^{n}}v^{2-d}\Delta v\right).

Step 3: Now we verify the first case in theorem 4.

If 1<pn+2n21<p\leq\frac{n+2}{n-2} and λ=0\lambda=0, then Section 4 reduces to

0\displaystyle 0\leq 𝔹nv1d(|2vΔvng|2+(1n1d)(Δv)2)\displaystyle\int_{\mathbb{B}^{n}}v^{1-d}\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\left(\frac{1}{n}-\frac{1}{d}\right)(\Delta v)^{2}\right)
=\displaystyle= 𝕊n1f1d|f|2+n2d2Hn1(nd1)𝔹nv1dΔv\displaystyle-\int_{\mathbb{S}^{n-1}}f^{1-d}|\nabla f|^{2}+\frac{n-2}{d-2}\frac{H}{n-1}\left(\frac{n}{d}-1\right)\int_{\mathbb{B}^{n}}v^{1-d}\Delta v
\displaystyle\leq 0.\displaystyle 0.

This forces

2v=Δvngin𝔹n,\displaystyle\nabla^{2}v=\frac{\Delta v}{n}g\quad\mathrm{in}\ \mathbb{B}^{n},

and v|𝕊n1=constantv|_{\mathbb{S}^{n-1}}=constant. It follows from Ricci’s identity that

Δv=div(2v)=div(Δvng)=Δvn.\displaystyle\nabla\Delta v=\mathrm{div}(\nabla^{2}v)=\mathrm{div}\left(\frac{\Delta v}{n}g\right)=\frac{\nabla\Delta v}{n}.

Therefore, Δv\Delta v is a constant in 𝔹n\mathbb{B}^{n}. Combining with v|𝕊n1=constantv|_{\mathbb{S}^{n-1}}=constant, we could set v(x)=r|x|2+sv(x)=r|x|^{2}+s for some constants r,sr,s. The equation 4.1 reduces to

{2nr2|x|2+2nrs=2dr2|x|2+n22(d2)Rn1in𝔹n,2r=n2d2Hn1on𝕊n1.\displaystyle\begin{cases}2nr^{2}|x|^{2}+2nrs=2dr^{2}|x|^{2}+\frac{n-2}{2(d-2)}\frac{R}{n-1}&\mathrm{in}\ \mathbb{B}^{n},\\ 2r=-\frac{n-2}{d-2}\frac{H}{n-1}&\mathrm{on}\ \mathbb{S}^{n-1}.\end{cases}

If follows that d=nd=n and

{rs=14nRn1,r=12Hn1.\displaystyle\begin{cases}rs=\frac{1}{4n}\frac{R}{n-1},\\ r=-\frac{1}{2}\frac{H}{n-1}.\end{cases}

If H=0H=0, then r=0r=0 and R=0R=0. It’s a contradiction.

If H>0H>0, then r=12Hn1<0,s=12nRH<0r=-\frac{1}{2}\frac{H}{n-1}<0,s=-\frac{1}{2n}\frac{R}{H}<0. This contradicts with the fact that v>0v>0 on 𝔹n\mathbb{B}^{n}.

In conclusion, there is no positive solution in this case, and the only nonnegative solution of 1.4 is u0u\equiv 0.

Step 4: If p=n+2n2p=\frac{n+2}{n-2} and 0<λ<2p1=n220<\lambda<\frac{2}{p-1}=\frac{n-2}{2}, then Section 4 reduces to

0\displaystyle 0\leq 𝔹n(12n2λw)v1n|2vΔvng|2=(2n2λ1)𝕊n1f1n|f|20.\displaystyle\int_{\mathbb{B}^{n}}\left(1-\frac{2}{n-2}\lambda w\right)v^{1-n}\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}=\left(\frac{2}{n-2}\lambda-1\right)\int_{\mathbb{S}^{n-1}}f^{1-n}|\nabla f|^{2}\leq 0.

This forces

2v=Δvngin𝔹n,\displaystyle\nabla^{2}v=\frac{\Delta v}{n}g\quad\mathrm{in}\ \mathbb{B}^{n},

and v|𝕊n1=constantv|_{\mathbb{S}^{n-1}}=constant. As before, one could derive that Δv\Delta v is a constant in 𝔹n\mathbb{B}^{n} and set v(x)=r|x|2+sv(x)=r|x|^{2}+s for some constants r,sr,s. Then it follows from the equation 4.1 that

{4rs=Rn(n1),r=λn2(r+s)H2(n1).\displaystyle\begin{cases}4rs=\frac{R}{n(n-1)},\\ r=\frac{\lambda}{n-2}(r+s)-\frac{H}{2(n-1)}.\end{cases}

Since vv is positive, we have s>0s>0 and we solve

r=12ϵRn(n1),s=ϵ2Rn(n1),\displaystyle r=\frac{1}{2\epsilon}\sqrt{\frac{R}{n(n-1)}},\quad s=\frac{\epsilon}{2}\sqrt{\frac{R}{n(n-1)}},

where 0<ϵ=n(n1)R(n22λHn1+(n22λ)2(Hn1)2+Rn(n1)(n2λ1))0<\epsilon=\sqrt{\frac{n(n-1)}{R}}\left(\frac{n-2}{2\lambda}\frac{H}{n-1}+\sqrt{(\frac{n-2}{2\lambda})^{2}(\frac{H}{n-1})^{2}+\frac{R}{n(n-1)}(\frac{n-2}{\lambda}-1)}\right).

In conclusion, v(x)=Rn(n1)(12ϵ|x|2+ϵ2)v(x)=\sqrt{\frac{R}{n(n-1)}}\left(\frac{1}{2\epsilon}|x|^{2}+\frac{\epsilon}{2}\right) and u=vn22u=v^{-\frac{n-2}{2}} is the desired solution.

Step 5: If p=n+2n2p=\frac{n+2}{n-2} and λ=n22\lambda=\frac{n-2}{2}, then Section 4 reduces to

0\displaystyle 0\leq 𝔹n(12n2λw)v1n|2vΔvng|2=(2n2λ1)𝕊n1f1n|f|2=0.\displaystyle\int_{\mathbb{B}^{n}}\left(1-\frac{2}{n-2}\lambda w\right)v^{1-n}\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}=\left(\frac{2}{n-2}\lambda-1\right)\int_{\mathbb{S}^{n-1}}f^{1-n}|\nabla f|^{2}=0.

As before, we could derive that Δv\Delta v is a constant in 𝔹n\mathbb{B}^{n} (but v|𝕊n1v|_{\mathbb{S}^{n-1}} is not necessarily constant) and set v(x)=r|x|2+ξ,x+sv(x)=r|x|^{2}+\langle\xi,x\rangle+s, where r,sr,s are constants and ξn\xi\in\mathbb{R}^{n}. It follows from the equation 4.1 that

{4rs=|ξ|2+Rn(n1),r=sHn1.\displaystyle\begin{cases}4rs=|\xi|^{2}+\frac{R}{n(n-1)},\\ r=s-\frac{H}{n-1}.\end{cases}

Since vv is positive, we have s>0s>0 and we solve

{r=12((Hn1)2+Rn(n1)+|ξ|2Hn1),s=12((Hn1)2+Rn(n1)+|ξ|2+Hn1).\displaystyle\begin{cases}r=\frac{1}{2}\left(\sqrt{(\frac{H}{n-1})^{2}+\frac{R}{n(n-1)}+|\xi|^{2}}-\frac{H}{n-1}\right),\\ s=\frac{1}{2}\left(\sqrt{(\frac{H}{n-1})^{2}+\frac{R}{n(n-1)}+|\xi|^{2}}+\frac{H}{n-1}\right).\end{cases}

For the fixed ξn\xi\in\mathbb{R}^{n}, there exists a unique a𝔹na\in\mathbb{B}^{n} such that

ξ=2(Hn1)2+Rn(n1)a1|a|2.\displaystyle\xi=2\sqrt{\left(\frac{H}{n-1}\right)^{2}+\frac{R}{n(n-1)}}\,\frac{a}{1-|a|^{2}}.

Hence we derive that

{r=12(1+|a|21|a|2(Hn1)2+Rn(n1)Hn1)=Rn(n1)1+ϵ2|a|22ϵ(1|a|2),s=12(1+|a|21|a|2(Hn1)2+Rn(n1)+Hn1)=Rn(n1)ϵ2+|a|22ϵ(1|a|2),ξ=Rn(n1)(1+ϵ2)aϵ(1|a|2),\displaystyle\begin{cases}r=\frac{1}{2}\left(\frac{1+|a|^{2}}{1-|a|^{2}}\sqrt{(\frac{H}{n-1})^{2}+\frac{R}{n(n-1)}}-\frac{H}{n-1}\right)=\sqrt{\frac{R}{n(n-1)}}\,\frac{1+\epsilon^{2}|a|^{2}}{2\epsilon(1-|a|^{2})},\\ s=\frac{1}{2}\left(\frac{1+|a|^{2}}{1-|a|^{2}}\sqrt{(\frac{H}{n-1})^{2}+\frac{R}{n(n-1)}}+\frac{H}{n-1}\right)=\sqrt{\frac{R}{n(n-1)}}\,\frac{\epsilon^{2}+|a|^{2}}{2\epsilon(1-|a|^{2})},\\ \xi=\sqrt{\frac{R}{n(n-1)}}\frac{(1+\epsilon^{2})a}{\epsilon(1-|a|^{2})},\end{cases}

where 0<ϵ=n(n1)R(Hn1+(Hn1)2+Rn(n1))0<\epsilon=\sqrt{\frac{n(n-1)}{R}}\left(\frac{H}{n-1}+\sqrt{(\frac{H}{n-1})^{2}+\frac{R}{n(n-1)}}\right).

In conclusion, v(x)=Rn(n1)(1+ϵ2|a|22ϵ(1|a|2)|x|2+1+ϵ2ϵ(1|a|2)x,a+ϵ2+|a|22ϵ(1|a|2))v(x)=\sqrt{\frac{R}{n(n-1)}}\left(\frac{1+\epsilon^{2}|a|^{2}}{2\epsilon(1-|a|^{2})}|x|^{2}+\frac{1+\epsilon^{2}}{\epsilon(1-|a|^{2})}\langle x,a\rangle+\frac{\epsilon^{2}+|a|^{2}}{2\epsilon(1-|a|^{2})}\right) and u=vn22u=v^{-\frac{n-2}{2}} is the desired solution. ∎

References

  • [BV91] Marie-Françoise Bidaut-Véron and Laurent Véron “Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations” In Inventiones mathematicae 106.1 Springer, 1991, pp. 489–539
  • [CFP24] Giulio Ciraolo, Alberto Farina and Camilla Chiara Polvara “Classification results, rigidity theorems and semilinear PDEs on Riemannian manifolds: a P-function approach” In arXiv preprint arXiv:2406.13699, 2024
  • [Dan11] Cristian-Paul Danet “The Classical Maximum Principle. Some of Its Extensions and Applications.” In Annals of the Academy of Romanian Scientists Series on Mathematics and its Applications 3, 2011, pp. 273–299
  • [DHX25] Jingbo Dou, Yunyun Hu and Lulu Xu “Classification of positive solutions for a semilinear elliptic equation in the unit ball with Neumann boundary” In submitted, 2025
  • [Esc88] José F Escobar “Sharp constant in a Sobolev trace inequality” In Indiana University Mathematics Journal 37.3 JSTOR, 1988, pp. 687–698
  • [Esc90] José F Escobar “Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate” In Communications on Pure and Applied Mathematics 43.7 Wiley Online Library, 1990, pp. 857–883
  • [GHW21] Qianqiao Guo, Fengbo Hang and Xiaodong Wang “Liouville type theorems on manifolds with nonnegative curvature and strictly convex boundary” In Mathematical Research Letters 28.5 International Press, Inc., 2021, pp. 1419–1439
  • [GL25] Pingxin Gu and Haizhong Li “A proof of Guo-Wang’s conjecture on the uniqueness of positive harmonic functions in the unit ball” In Mathematische Annalen Springer, 2025, pp. 1–17
  • [GW20] Qianqiao Guo and Xiaodong Wang “Uniqueness results for positive harmonic functions on 𝔹n\mathbb{B}^{n} satisfying a nonlinear boundary condition” In Calculus of Variations and Partial Differential Equations 59.5 Springer, 2020, pp. 146
  • [LO23] Daowen Lin and Qianzhong Ou “Liouville type theorems for positive harmonic functions on the unit ball with a nonlinear boundary condition” In Calculus of Variations and Partial Differential Equations 62.1 Springer, 2023, pp. 34
  • [Oba71] Morio Obata “The conjectures on conformal transformations of Riemannian manifolds” In Journal of Differential Geometry, 1971
  • [Ou24] Qianzhong Ou “A note on the Wang’s conjecture for a nonlinear Neumann problem on unit ball” In Proceedings of the American Mathematical Society 152.03, 2024, pp. 1031–1035
  • [Pay68] Lawrence E Payne “Bounds for the maximum stress in the Saint Venant torsion problem” In Indian J. Mech. Math. Special Issue 69, 1968, pp. 51–59
  • [Sch88] Richard M Schoen “The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation” In Communications on pure and applied mathematics 41.3 Wiley Online Library, 1988, pp. 317–392
  • [Wan21] Xiaodong Wang “On compact Riemannian manifolds with convex boundary and Ricci curvature bounded from below” In The Journal of Geometric Analysis 31 Springer, 2021, pp. 3988–4003
  • [Wan22] Xiaodong Wang “Uniqueness results on a geometric PDE in Riemannian and CR geometry revisited” In Mathematische Zeitschrift 301.2 Springer, 2022, pp. 1299–1314
  • [Wei71] Hans F Weinberger “Remark on the preceding paper of Serrin” In Archive for Rational Mechanics and Analysis 43.4 Springer, 1971, pp. 319–320
  • [XX24] Chao Xia and Changwei Xiong “Escobar’s conjecture on a sharp lower bound for the first nonzero Steklov eigenvalue” In Peking Mathematical Journal 7.2 Springer, 2024, pp. 759–778

Appendix A

Bidaut-Véron and Véron [BV91, Theorem 6.1] established the following uniqueness result:

Theorem 5 ([BV91]).

Let (Mn,g),n3(M^{n},g),n\geq 3 be a complete, compact Riemannian manifold without boundary. Assume Ricn1Ric\geq n-1, and 1<qn+2n21<q\leq\frac{n+2}{n-2}, 0<λnq10<\lambda\leq\frac{n}{q-1} are constants. Let uC2(M)u\in C^{2}(M) be a positive solution of

(A.1) Δu+λu=uqinM,\displaystyle-\Delta u+\lambda u=u^{q}\quad\mathrm{in~}M,

Then either uu is constant on MM or q=n+2n2,λ=n(n2)4q=\frac{n+2}{n-2},\,\lambda=\frac{n(n-2)}{4} and (Mn,g)(M^{n},g) is isometric to (𝕊n,g0)(\mathbb{S}^{n},g_{0}). In the latter case, there holds

u(x)=cn(cosht+(sinht)xξ)n22\displaystyle u(x)=\frac{c_{n}}{(\cosh t+(\sinh t)x\cdot\xi)^{\frac{n-2}{2}}}

for some ξ𝕊n\xi\in\mathbb{S}^{n} and some constant t0t\geq 0.

For the critical power case (i.e. q=n+2n2q=\frac{n+2}{n-2}), the solution could be classified via a conceptually simple strategy as follows. By carefully analyzing the model solution, Wang [Wan22, Section 2] come up with an appropriate function ϕ\phi, known as a P-function, which is constant if and only if the solution uu is given by the model case. Then the Bochner formula implies that, up to a first order term, ϕ\phi is a subharmonic function. Hence the maximum principle could be applied to show that ϕ\phi must be constant and the proof finishes.

In the subcritical power case (i.e. 1<q<n+2n21<q<\frac{n+2}{n-2}), as pointed out by Wang [Wan22, Section 5], the choice of parameters (and the P-function) is delicate if one wishes to use the same strategy. In the following, we shall utilize our principle used in our proof of theorem 3 to present the appropriate P-function and prove theorem 5 in its full generality.

The idea of the proof is as follows. As in our proof in Section 3, to handle the subcritical power case, we introduce the intrinsic dimension dd such that q=d+2d2q=\frac{d+2}{d-2}. Then we mimic Wang’s proof of the critical power case [Wan22] and finally use an integral inequality (Proposition A.1) to treat the emerging terms in the subcritical case and conclude the results.

We note that Proposition A.1 is crucial for the sharp range of λ\lambda in the subcritical power case. Moreover, it also has its independent interest.

Proposition A.1.

Let (Mn,g)(M^{n},g) be a compact manifold without boundary, satisfying Ric(n1)k0\mathrm{Ric}\geq(n-1)k\geq 0, then for any constant s(,0][4(n+2)4n1,+)s\in(-\infty,0]\cup[\frac{4(n+2)}{4n-1},+\infty), there holds

(A.2) M|2vΔvng|2vs+1nM(Δv)2vskM|v|2vs, 0<vC(M).\displaystyle\int_{M}\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}v^{s}+\frac{1}{n}\int_{M}(\Delta v)^{2}v^{s}\geq k\int_{M}|\nabla v|^{2}v^{s},\quad\forall\ 0<v\in C^{\infty}(M).

Moreover, if A.2 holds for some s(,0)(4(n+2)4n1,+)s\in(-\infty,0)\cup(\frac{4(n+2)}{4n-1},+\infty) and some 0<vC(M)0<v\in C^{\infty}(M), then vv is a constant function.

We shall postpone the proof of Proposition A.1 and prove theorem 5 right now.

Proof of theorem 5.

Let d:=2(q+1)q1d:=\frac{2(q+1)}{q-1}. Then qn+2n2dnq\leq\frac{n+2}{n-2}\Leftrightarrow d\geq n, and λnq1λn(d2)4\lambda\leq\frac{n}{q-1}\Leftrightarrow\lambda\leq\frac{n(d-2)}{4}. Define v:=uq12=u2d2v:=u^{-\frac{q-1}{2}}=u^{-\frac{2}{d-2}}. A straightforward calculation gives

Δv=d2v1|v|2+2d2v12λd2v.\displaystyle\Delta v=\frac{d}{2}v^{-1}|\nabla v|^{2}+\frac{2}{d-2}v^{-1}-\frac{2\lambda}{d-2}v.

Consider the P-function

ϕ:=Δv+4λd2v=v1(d2|v|2+2d2+2λd2v2).\displaystyle\phi:=\Delta v+\frac{4\lambda}{d-2}v=v^{-1}\left(\frac{d}{2}|\nabla v|^{2}+\frac{2}{d-2}+\frac{2\lambda}{d-2}v^{2}\right).

On the one hand,

Δ(vϕ)=vΔϕ+2v,ϕ+(Δv)2+4λd2vΔv.\displaystyle\Delta(v\phi)=v\Delta\phi+2\langle\nabla v,\nabla\phi\rangle+(\Delta v)^{2}+\frac{4\lambda}{d-2}v\Delta v.

On the other hand, by Bochner formula, there holds

Δ(vϕ)\displaystyle\Delta(v\phi) =d(|2v|2+v,(ϕ4λd2v)+Ric(v,v))+2λd2(2|v|2+2vΔv)\displaystyle=d\left(|\nabla^{2}v|^{2}+\left\langle\nabla v,\nabla\left(\phi-\frac{4\lambda}{d-2}v\right)\right\rangle+Ric(\nabla v,\nabla v)\right)+\frac{2\lambda}{d-2}(2|\nabla v|^{2}+2v\Delta v)
=d(|2vΔvng|2+(Δv)2n+v,ϕ+Ric(v,v))4(d1)λd2|v|2+4λd2vΔv.\displaystyle=d\left(\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+\frac{(\Delta v)^{2}}{n}+\langle\nabla v,\nabla\phi\rangle+Ric(\nabla v,\nabla v)\right)-\frac{4(d-1)\lambda}{d-2}|\nabla v|^{2}+\frac{4\lambda}{d-2}v\Delta v.

We deduce that ϕ\phi satisfies the following equation

vΔϕ+(2d)v,ϕ=d|2vΔvng|2+(dn1)(Δv)2+dRic(v,v)4(d1)λd2|v|2.\displaystyle v\Delta\phi+(2-d)\langle\nabla v,\nabla\phi\rangle=d\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}+(\frac{d}{n}-1)(\Delta v)^{2}+d\ \mathrm{Ric}(\nabla v,\nabla v)-\frac{4(d-1)\lambda}{d-2}|\nabla v|^{2}.

Multiply both sides of this equation by v1dv^{1-d} and use Ricn1Ric\geq n-1, we derive the following key inequality:

div(v2dϕ)\displaystyle\mathrm{div}(v^{2-d}\nabla\phi)\geq (dn)|2vΔvng|2v1d+(dn1)(Δv)2v1d\displaystyle(d-n)\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}v^{1-d}+\left(\frac{d}{n}-1\right)(\Delta v)^{2}v^{1-d}
(A.3) +(d(n1)4(d1)λd2)|v|2v1d.\displaystyle+\left(d(n-1)-\frac{4(d-1)\lambda}{d-2}\right)|\nabla v|^{2}v^{1-d}.

Now integrate appendix A over MM and use Proposition A.1 (with parameter s=1ds=1-d), we get

(A.4) 0=M𝑑iv(v2dϕ)(dn+d(n1)4(d1)λd2)M|v|2v1d0,\displaystyle 0=\int_{M}div(v^{2-d}\nabla\phi)\geq\left(d-n+d(n-1)-\frac{4(d-1)\lambda}{d-2}\right)\int_{M}|\nabla v|^{2}v^{1-d}\geq 0,

since λn(d2)4\lambda\leq\frac{n(d-2)}{4}. Therefore, equality holds in A.4.

For 1<q<n+2n21<q<\frac{n+2}{n-2}, this forces that the equality holds in Proposition A.1. Hence vv is a constant.

For 0<λ<nq10<\lambda<\frac{n}{q-1}, A.4 implies that vv is a constant.

For q=n+2n2q=\frac{n+2}{n-2} and λ=n(n2)4\lambda=\frac{n(n-2)}{4}, we have 2vΔvng0\nabla^{2}v-\frac{\Delta v}{n}g\equiv 0 and Ric(v,v)n1\mathrm{Ric}(\nabla v,\nabla v)\equiv n-1. It follows that (Mn,g)(M^{n},g) is isometric to the round sphere 𝕊n\mathbb{S}^{n}. ∎

Finally we present the proof of Proposition A.1 with the help of two auxiliary lemmas.

Lemma A.1.

Let (Mn,g)(M^{n},g) be a compact manifold without boundary. Then for any uC(M)u\in C^{\infty}(M), there holds

M(Δu)2=\displaystyle\int_{M}(\Delta u)^{2}= nn1M|2uΔung|2+nn1MRic(u,u).\displaystyle\frac{n}{n-1}\int_{M}\left|\nabla^{2}u-\frac{\Delta u}{n}g\right|^{2}+\frac{n}{n-1}\int_{M}\mathrm{Ric}(\nabla u,\nabla u).
Proof.

By Bochner formula,

12Δ|u|2=|2uΔung|2+1n(Δu)2+Δu,u+Ric(u,u).\displaystyle\frac{1}{2}\Delta|\nabla u|^{2}=\left|\nabla^{2}u-\frac{\Delta u}{n}g\right|^{2}+\frac{1}{n}(\Delta u)^{2}+\langle\nabla\Delta u,\nabla u\rangle+\mathrm{Ric}(\nabla u,\nabla u).

Integrate it over M, we get

0=M(|2uΔung|2+Ric(u,u))+1nM(Δu)2+M(div(Δuu)(Δu)2).\displaystyle 0=\int_{M}\left(\left|\nabla^{2}u-\frac{\Delta u}{n}g\right|^{2}+\mathrm{Ric}(\nabla u,\nabla u)\right)+\frac{1}{n}\int_{M}(\Delta u)^{2}+\int_{M}(\mathrm{div}(\Delta u\nabla u)-(\Delta u)^{2}).

Rearrange it and the proof finishes. ∎

Lemma A.2.

Let (Mn,g)(M^{n},g) be a compact manifold without boundary. If uC(M)u\in C^{\infty}(M) is a positive function, then

Mu1|u|2Δu=\displaystyle\int_{M}u^{-1}|\nabla u|^{2}\Delta u= nn+2Mu2|u|42nn+2M2uΔung,duduu1n|u|2ug.\displaystyle\frac{n}{n+2}\int_{M}u^{-2}|\nabla u|^{4}-\frac{2n}{n+2}\int_{M}\left\langle\nabla^{2}u-\frac{\Delta u}{n}g,\frac{du\otimes du}{u}-\frac{1}{n}\frac{|\nabla u|^{2}}{u}g\right\rangle.
Proof.

By divergence theorem,

Mu1|u|2Δu=\displaystyle\int_{M}u^{-1}|\nabla u|^{2}\Delta u= Mdiv(u1|u|2u)(2u1uu,uu2|u|4)\displaystyle\int_{M}\mathrm{div}(u^{-1}|\nabla u|^{2}\nabla u)-(2u^{-1}\langle\nabla_{\nabla u}\nabla u,\nabla u\rangle-u^{-2}|\nabla u|^{4})
=\displaystyle= Mu2|u|42M2u,duduu1n|u|2ug2nMu1|u|2Δu.\displaystyle\int_{M}u^{-2}|\nabla u|^{4}-2\int_{M}\left\langle\nabla^{2}u,\frac{du\otimes du}{u}-\frac{1}{n}\frac{|\nabla u|^{2}}{u}g\right\rangle-\frac{2}{n}\int_{M}u^{-1}|\nabla u|^{2}\Delta u.

Rearrange it and the proof finishes. ∎

Proof of Proposition A.1.

First assume that s(,2)(2,0][4(n+2)4n1,+)s\in(-\infty,-2)\cup(-2,0]\cup[\frac{4(n+2)}{4n-1},+\infty). Let t:=s+2(,0)(0,2][6(2n+1)4n1,+)t:=s+2\in(-\infty,0)\cup(0,2]\cup[\frac{6(2n+1)}{4n-1},+\infty) and u:=vt2u:=v^{\frac{t}{2}}. Then we have

vs2\displaystyle v^{\frac{s}{2}} =u2t+1,\displaystyle=u^{-\frac{2}{t}+1},
vs2(2vΔvng)\displaystyle v^{\frac{s}{2}}(\nabla^{2}v-\frac{\Delta v}{n}g) =2t(2uΔung)+2t(2t1)(duduu1n|u|2ug),\displaystyle=\frac{2}{t}\left(\nabla^{2}u-\frac{\Delta u}{n}g\right)+\frac{2}{t}\left(\frac{2}{t}-1\right)\left(\frac{du\otimes du}{u}-\frac{1}{n}\frac{|\nabla u|^{2}}{u}g\right),
vs2Δv\displaystyle v^{\frac{s}{2}}\Delta v =2t(2t1)u1|u|2+2tΔu,\displaystyle=\frac{2}{t}\left(\frac{2}{t}-1\right)u^{-1}|\nabla u|^{2}+\frac{2}{t}\Delta u,
vs2v\displaystyle v^{\frac{s}{2}}\nabla v =2tu.\displaystyle=\frac{2}{t}\nabla u.

By Lemma A.1 , Lemma A.2 and the fact that |duduu1n|u|2ug|2=n1nu2|u|4|\frac{du\otimes du}{u}-\frac{1}{n}\frac{|\nabla u|^{2}}{u}g|^{2}=\frac{n-1}{n}u^{-2}|\nabla u|^{4}, we have

M|2vΔvng|2vs+1nM(Δv)2vs\displaystyle\int_{M}\left|\nabla^{2}v-\frac{\Delta v}{n}g\right|^{2}v^{s}+\frac{1}{n}\int_{M}(\Delta v)^{2}v^{s}
=\displaystyle= (2t)2M|2uΔung|2+(2t)2(2t1)2n1nMu2|u|4\displaystyle\left(\frac{2}{t}\right)^{2}\int_{M}|\nabla^{2}u-\frac{\Delta u}{n}g|^{2}+\left(\frac{2}{t}\right)^{2}\left(\frac{2}{t}-1\right)^{2}\frac{n-1}{n}\int_{M}u^{-2}|\nabla u|^{4}
+2(2t)2(2t1)M2uΔung,duduu1n|u|2ug\displaystyle+2\left(\frac{2}{t}\right)^{2}\left(\frac{2}{t}-1\right)\int_{M}\left\langle\nabla^{2}u-\frac{\Delta u}{n}g,\frac{du\otimes du}{u}-\frac{1}{n}\frac{|\nabla u|^{2}}{u}g\right\rangle
+1n(2t)2(2t1)2Mu2|u|4+1n(2t)2nn1M(|2uΔung|2+Ric(u,u))\displaystyle+\frac{1}{n}\left(\frac{2}{t}\right)^{2}\left(\frac{2}{t}-1\right)^{2}\int_{M}u^{-2}|\nabla u|^{4}+\frac{1}{n}\left(\frac{2}{t}\right)^{2}\frac{n}{n-1}\int_{M}\left(\left|\nabla^{2}u-\frac{\Delta u}{n}g\right|^{2}+\mathrm{Ric}(\nabla u,\nabla u)\right)
+2n(2t)2(2t1)nn+2Mu2|u|4\displaystyle+\frac{2}{n}\left(\frac{2}{t}\right)^{2}\left(\frac{2}{t}-1\right)\frac{n}{n+2}\int_{M}u^{-2}|\nabla u|^{4}
2n(2t)2(2t1)2nn+2M2uΔung,duduu1n|u|2ug\displaystyle-\frac{2}{n}\left(\frac{2}{t}\right)^{2}\left(\frac{2}{t}-1\right)\frac{2n}{n+2}\int_{M}\left\langle\nabla^{2}u-\frac{\Delta u}{n}g,\frac{du\otimes du}{u}-\frac{1}{n}\frac{|\nabla u|^{2}}{u}g\right\rangle
=\displaystyle= nn1(2t)2M|2uΔung|2+2nn+2(2t)2(2t1)M2uΔung,duduu1n|u|2ug\displaystyle\frac{n}{n-1}\left(\frac{2}{t}\right)^{2}\int_{M}\left|\nabla^{2}u-\frac{\Delta u}{n}g\right|^{2}+\frac{2n}{n+2}\left(\frac{2}{t}\right)^{2}\left(\frac{2}{t}-1\right)\int_{M}\left\langle\nabla^{2}u-\frac{\Delta u}{n}g,\frac{du\otimes du}{u}-\frac{1}{n}\frac{|\nabla u|^{2}}{u}g\right\rangle
+((2t)2(2t1)2+2n+2(2t)2(2t1))Mu2|u|4+1n1(2t)2MRic(u,u)\displaystyle+\left(\left(\frac{2}{t}\right)^{2}\left(\frac{2}{t}-1\right)^{2}+\frac{2}{n+2}\left(\frac{2}{t}\right)^{2}\left(\frac{2}{t}-1\right)\right)\int_{M}u^{-2}|\nabla u|^{4}+\frac{1}{n-1}\left(\frac{2}{t}\right)^{2}\int_{M}\mathrm{Ric}(\nabla u,\nabla u)
=\displaystyle= nn1(2t)2M|2uΔung+(2t1)n1n+2(duduu1n|u|2ug)|2\displaystyle\frac{n}{n-1}\left(\frac{2}{t}\right)^{2}\int_{M}\left|\nabla^{2}u-\frac{\Delta u}{n}g+\left(\frac{2}{t}-1\right)\frac{n-1}{n+2}\left(\frac{du\otimes du}{u}-\frac{1}{n}\frac{|\nabla u|^{2}}{u}g\right)\right|^{2}
+3(2n+1)(n+2)2(2t)2(2t1)(2t4n13(2n+1))Mu2|u|4+1n1(2t)2MRic(u,u)\displaystyle+\frac{3(2n+1)}{(n+2)^{2}}\left(\frac{2}{t}\right)^{2}\left(\frac{2}{t}-1\right)\left(\frac{2}{t}-\frac{4n-1}{3(2n+1)}\right)\int_{M}u^{-2}|\nabla u|^{4}+\frac{1}{n-1}\left(\frac{2}{t}\right)^{2}\int_{M}\mathrm{Ric}(\nabla u,\nabla u)
=\displaystyle= nn1(2t)2M|2uΔung+(2t1)n1n+2(duduu1n|u|2ug)|2\displaystyle\frac{n}{n-1}\left(\frac{2}{t}\right)^{2}\int_{M}\left|\nabla^{2}u-\frac{\Delta u}{n}g+\left(\frac{2}{t}-1\right)\frac{n-1}{n+2}\left(\frac{du\otimes du}{u}-\frac{1}{n}\frac{|\nabla u|^{2}}{u}g\right)\right|^{2}
+4n14(n+2)2s(s4(n+2)4n1)Mvs2|v|4+1n1MvsRic(v,v)\displaystyle+\frac{4n-1}{4(n+2)^{2}}s\left(s-\frac{4(n+2)}{4n-1}\right)\int_{M}v^{s-2}|\nabla v|^{4}+\frac{1}{n-1}\int_{M}v^{s}\mathrm{Ric}(\nabla v,\nabla v)
\displaystyle\geq 4n14(n+2)2s(s4(n+2)4n1)Mvs2|v|4+kM|v|2vskM|v|2vs.\displaystyle\frac{4n-1}{4(n+2)^{2}}s\left(s-\frac{4(n+2)}{4n-1}\right)\int_{M}v^{s-2}|\nabla v|^{4}+k\int_{M}|\nabla v|^{2}v^{s}\geq k\int_{M}|\nabla v|^{2}v^{s}.

Hence we have proved A.2 for s(,2)(2,0][4(n+2)4n1,+)s\in(-\infty,-2)\cup(-2,0]\cup[\frac{4(n+2)}{4n-1},+\infty).

The case s=2s=-2 could be obtained by taking the limit s2s\to-2 in A.2. ∎