这是indexloc提供的服务,不要输入任何密码

Slow Fluid Antenna Multiple Access with Multiport Receivers

José P. González-Coma and F. Javier López-Martínez
Abstract

We investigate whether equipping fluid-antenna (FA) receivers with multiple (L>1𝐿1L>1italic_L > 1) radiofrequency (RF) chains can improve the performance of the slow fluid-antenna multiple access (FAMA) technique, which enables open-loop connectivity with channel state information (CSI) available only at the receiver side. We analyze the case of slow-FAMA users equipped with multiport receivers, so that L𝐿Litalic_L ports of the FA are selected and combined to reduce interference. We show that a joint design of the port selection matrix and the combining vector at each receiver yields significant performance gains over reference schemes, demonstrating the potential of multiport reception in FA systems with a limited number of RF chains.

Index Terms:
Fluid antenna systems, fluid antenna multiple access, MIMO, multi-user communications, interference.
00footnotetext: Manuscript received XX XX, XXXX. The review of this paper was coordinated by XXXX. This work is supported by grant PID2023-149975OB-I00 (COSTUME) funded by MICIU/AEI/10.13039/501100011033 and FEDER/UE. The authors thank the Defense University Center at the Spanish Naval Academy for their support. This work has been submitted to the IEEE for publication. Copyright may be transferred without notice, after which this version may no longer be accessible00footnotetext: J.P. González-Coma is with the Defense University Center at the Spanish Naval Academy, 36920 Marín, Spain. Contact email: jose.gcoma@cud.uvigo.es.00footnotetext: F.J. López-Martínez is with Dept. Signal Theory, Networking and Communications, Research Centre for Information and Communication Technologies (CITIC-UGR), University of Granada, 18071, Granada, (Spain).

I Introduction

Fluid antenna systems (FASs) have gained considerable attention in recent years as a promising alternative to conventional MIMO (MIMO) systems that rely on fixed-position antennas [1]. FASs refer to any controllable structure —whether electronically, mechanically, or otherwise actuated— that can dynamically alter its fundamental radio-frequency (RF) characteristics, effectively emulating physical changes in shape or position to adapt to the wireless environment [2]. The fine-grained capability of FASs to sample spatial locations brings enhanced flexibility to exploit spatial diversity, by selecting the receive antenna port (akin to position) that is more beneficial for signal reception [3].

One of the key potential use cases of FASs is the provision of simplified open-loop multiple access, without the need for CSI (CSI) at the transmitter side or SIC (SIC) at the receiver side. This technique, referred to as FAMA (FAMA), allows serving multiple users in the same time/frequency resource with CSI required only at the receiver side. Specifically, the slow-FAMA paradigm introduced in [4] manages to relax the stringent port-switching requirements of the fast-FAMA counterpart [5], thus reducing complexity while still allowing for user multiplexing.

Since their inception, FASs have been envisioned as a low-complexity alternative to conventional MIMO architectures to improve system performance. For that reason, virtually all FAMA-based schemes consider a single RF (RF) chain at the receiver (user) ends, and the port selection mechanism aims to choose that with the best SINR (SINR). Indeed, there have been attempts to consider the case with a larger number of RF chains at the receiver ends in the context of FASs: for instance, the use of MRC (MRC) to combine the signals of the L𝐿Litalic_L best ports was proposed in [6] for a point-to-point (single user) case. However, MRC offers limited benefits in the presence of interference, which is the operational regime in FAMA. In [7], the CUMA (CUMA) architecture was proposed, allowing to select a subset of ports for which the desired signal is phase-aligned. While CUMA manages to improve slow-FAMA multiplexing capabilities by using a limited number of RF chains (up to four [8]), it comes in hand with some practical challenges: (i) requires a pre-processing stage to configure the subset of active ports; (ii) assumes that an arbitrary number of ports are active at the same time; and (iii) requires precise knowledge of CSI at all ports.

In this work, we revisit the problem of slow-FAMA when FA users have multiport receivers, i.e., they can be equipped with more than one RF chain. Contrary to prior art, we propose a method to jointly select the active ports of the FA and the combining vector for the signals of the designated ports. One of the key novelties lies in the fact that the spatial features of the channel matrix for the FA array are considered in the procedure. This novel approach enhances the achievable gain and, more importantly, considerably reduces the inter-user interference. Results show that the use of only a few RF chains at the FA users can significantly boost the SINR compared to state-of-the-art alternatives.

Notation: a𝑎aitalic_a is a scalar, 𝐚𝐚\mathbf{a}bold_a is a vector, and 𝐀𝐀\mathbf{A}bold_A is a matrix. Transpose and conjugate transpose of 𝐀𝐀\mathbf{A}bold_A are denoted by 𝐀Tsuperscript𝐀T\mathbf{A}^{\operatorname{T}}bold_A start_POSTSUPERSCRIPT roman_T end_POSTSUPERSCRIPT and 𝐀Hsuperscript𝐀H\mathbf{A}^{\operatorname{H}}bold_A start_POSTSUPERSCRIPT roman_H end_POSTSUPERSCRIPT, respectively. Calligraphic letters, e.g., 𝒜𝒜\mathcal{A}caligraphic_A denote sets and sequences. 𝒜delimited-∣∣𝒜\mid\mathcal{A}\mid∣ caligraphic_A ∣ represents the set cardinality. Finally, the expectation operator is 𝔼{}𝔼\mathbb{E}\left\{\cdot\right\}blackboard_E { ⋅ } and p\parallel\cdot\parallel_{p}∥ ⋅ ∥ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT denotes the p𝑝pitalic_p-norm.

II System Model

Let us consider a general MIMO system with a BS (BS) deploying M𝑀Mitalic_M antennas that serves K𝐾Kitalic_K users, each equipped with a FA array of N𝑁Nitalic_N ports capable of selecting L𝐿Litalic_L active FA ports based on channel conditions. In coherence with the original formulation of slow-FAMA [4], we assume that the number of antennas at the BS M𝑀Mitalic_M and the number of users K𝐾Kitalic_K are equal, i.e., M=K𝑀𝐾M=Kitalic_M = italic_K.

We denote the data symbol intended for user k𝑘kitalic_k as zksubscript𝑧𝑘z_{k}\in\mathbb{C}italic_z start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_C with 𝔼{|zk|2}=σS2𝔼superscriptsubscript𝑧𝑘2superscriptsubscript𝜎𝑆2\mathbb{E}\left\{|z_{k}|^{2}\right\}=\sigma_{S}^{2}blackboard_E { | italic_z start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT } = italic_σ start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , so that the received signal at the k𝑘kitalic_k-th user can be written as:

𝐱k=𝐇k𝐩kzk+jk𝐇k𝐩jzj+𝐧k,subscript𝐱𝑘subscript𝐇𝑘subscript𝐩𝑘subscript𝑧𝑘subscript𝑗𝑘subscript𝐇𝑘subscript𝐩𝑗subscript𝑧𝑗subscript𝐧𝑘\mathbf{x}_{k}=\mathbf{H}_{k}\mathbf{p}_{k}z_{k}+\sum_{j\neq k}\mathbf{H}_{k}% \mathbf{p}_{j}z_{j}+\mathbf{n}_{k},bold_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = bold_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT bold_p start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + ∑ start_POSTSUBSCRIPT italic_j ≠ italic_k end_POSTSUBSCRIPT bold_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT bold_p start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT + bold_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , (1)

where 𝐇kN×Msubscript𝐇𝑘superscript𝑁𝑀\mathbf{H}_{k}\in\mathbb{C}^{N\times M}bold_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_C start_POSTSUPERSCRIPT italic_N × italic_M end_POSTSUPERSCRIPT is the channel matrix between the base station and user k𝑘kitalic_k, and 𝐱kN×1subscript𝐱𝑘superscript𝑁1\mathbf{x}_{k}\in\mathbb{C}^{N\times 1}bold_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_C start_POSTSUPERSCRIPT italic_N × 1 end_POSTSUPERSCRIPT denotes the received signal vector at the FA-user side111Note that while the vector form of 𝐱ksubscript𝐱𝑘\mathbf{x}_{k}bold_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT suggests a 1D implementation of the FA array, the 2D case is also captured by a proper remapping of the 2D FA indices.. As one of the key features of slow-FAMA is its simplicity, each of the transmit antennas is dedicated to a different user, i.e., no channel knowledge is required at the BS [4]. Accordingly, the precoding vector at the BS is simply set as 𝐩k=𝐞ksubscript𝐩𝑘subscript𝐞𝑘\mathbf{p}_{k}=\mathbf{e}_{k}bold_p start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = bold_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, where 𝐞ksubscript𝐞𝑘\mathbf{e}_{k}bold_e start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is the M𝑀Mitalic_M-dimension canonical vector with zero entries except for the k𝑘kitalic_k-th position. We consider that such 𝐩ksubscript𝐩𝑘\mathbf{p}_{k}bold_p start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is given and fixed. Finally, 𝐧kN×1subscript𝐧𝑘superscript𝑁1\mathbf{n}_{k}\in\mathbb{C}^{N\times 1}bold_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_C start_POSTSUPERSCRIPT italic_N × 1 end_POSTSUPERSCRIPT represents the additive Gaussian white noise vector whose elements have σ2superscript𝜎2\sigma^{2}italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT power.

At the receiver side, each FA-equipped user selects the appropriate L𝐿Litalic_L ports based on the user channel gain and interference. We model this feature by introducing the port selection matrix 𝐒ksubscript𝐒𝑘\mathbf{S}_{k}\in\mathcal{B}bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ caligraphic_B, with the set of matrices :={𝐙{0,1}N×L,𝐙0,1}assignformulae-sequence𝐙superscript01𝑁𝐿subscriptnorm𝐙01\mathcal{B}:=\left\{\mathbf{Z}\in\{0,1\}^{N\times L},\|\mathbf{Z}\|_{0,\infty}% \leq 1\right\}caligraphic_B := { bold_Z ∈ { 0 , 1 } start_POSTSUPERSCRIPT italic_N × italic_L end_POSTSUPERSCRIPT , ∥ bold_Z ∥ start_POSTSUBSCRIPT 0 , ∞ end_POSTSUBSCRIPT ≤ 1 }. Moreover, the resulting signals from the L𝐿Litalic_L ports can be coherently received by using the combiner 𝐰kLsubscript𝐰𝑘superscript𝐿\mathbf{w}_{k}\in\mathbb{C}^{L}bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_C start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT, with 𝐰k2=1subscriptnormsubscript𝐰𝑘21\|\mathbf{w}_{k}\|_{2}=1∥ bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 1, kfor-all𝑘\forall k∀ italic_k. As such, the received symbol results222Note that the matrix 𝐒ksubscript𝐒𝑘\mathbf{S}_{k}bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and the vector 𝐰ksubscript𝐰𝑘\mathbf{w}_{k}bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT can be designed independently (locally) for each user; since they are implemented at the receiver ends, they do not affect the amount of interference suffered by the remaining users in the system. in

z^k=𝐰kH𝐒kT𝐱k.subscript^𝑧𝑘superscriptsubscript𝐰𝑘𝐻superscriptsubscript𝐒𝑘𝑇subscript𝐱𝑘\hat{z}_{k}=\mathbf{w}_{k}^{H}\mathbf{S}_{k}^{T}\mathbf{x}_{k}.over^ start_ARG italic_z end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT . (2)

From a channel modeling perspective, the fluid antenna array resembles a collection of co-located radiating elements, representing the ports where the fluid antenna can switch into. Thus, when considering the case of spatially correlated Rayleigh fading, the m𝑚mitalic_m-th column of the channel matrix 𝐇ksubscript𝐇𝑘\mathbf{H}_{k}bold_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT can be expressed as

𝐡k,m𝒩(𝟎,𝚺k),similar-tosubscript𝐡𝑘𝑚subscript𝒩0subscript𝚺𝑘\mathbf{h}_{k,m}\sim\mathcal{N}_{\mathbb{C}}(\mathbf{0},\boldsymbol{\Sigma}_{k% }),bold_h start_POSTSUBSCRIPT italic_k , italic_m end_POSTSUBSCRIPT ∼ caligraphic_N start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT ( bold_0 , bold_Σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , (3)

where the dependence on the port positions appears in the channel spatial correlation matrix 𝚺kN×Nsubscript𝚺𝑘superscript𝑁𝑁\boldsymbol{\Sigma}_{k}\in\mathbb{C}^{N\times N}bold_Σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_C start_POSTSUPERSCRIPT italic_N × italic_N end_POSTSUPERSCRIPT. In general, the structure of 𝚺ksubscript𝚺𝑘\boldsymbol{\Sigma}_{k}bold_Σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is determined by the fluid antenna topology, i.e., the relative positions of the antenna ports within the overall aperture. For a 1D fluid antenna, Jakes’ correlation model is widely adopted. However, this model does not generalize properly to planar (2D) arrays with N1×N2subscript𝑁1subscript𝑁2N_{1}\times N_{2}italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT × italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ports. For such systems, we will employ Clarke’s model to define 𝚺ksubscript𝚺𝑘\boldsymbol{\Sigma}_{k}bold_Σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, considering N=N1×N2𝑁subscript𝑁1subscript𝑁2N=N_{1}\times N_{2}italic_N = italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT × italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [9]. In all instances, we assume that the ports in each dimension are equally spaced and denote by W𝑊Witalic_W, (or equivalently W1×W2subscript𝑊1subscript𝑊2W_{1}\times W_{2}italic_W start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT × italic_W start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT), the length of the fluid antenna normalized by the wavelength.

To evaluate the performance of the proposed setup, we consider the SINR of each user, as follows

SINRk=|𝐰kH𝐒kT𝐇k𝐩k|2jk|𝐰kH𝐒kT𝐇k𝐩j|2+1SNR,subscriptSINR𝑘superscriptsuperscriptsubscript𝐰𝑘𝐻superscriptsubscript𝐒𝑘𝑇subscript𝐇𝑘subscript𝐩𝑘2subscript𝑗𝑘superscriptsuperscriptsubscript𝐰𝑘𝐻superscriptsubscript𝐒𝑘𝑇subscript𝐇𝑘subscript𝐩𝑗21SNR\text{SINR}_{k}=\frac{|\mathbf{w}_{k}^{H}\mathbf{S}_{k}^{T}\mathbf{H}_{k}% \mathbf{p}_{k}|^{2}}{\sum_{j\neq k}|\mathbf{w}_{k}^{H}\mathbf{S}_{k}^{T}% \mathbf{H}_{k}\mathbf{p}_{j}|^{2}+\frac{1}{\mathrm{SNR}}},SINR start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = divide start_ARG | bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT bold_p start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ∑ start_POSTSUBSCRIPT italic_j ≠ italic_k end_POSTSUBSCRIPT | bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT bold_p start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG roman_SNR end_ARG end_ARG , (4)

as it is directly related to the achievable SE (SE) Rksubscript𝑅𝑘R_{k}italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, with SNR=σS2/σ2SNRsuperscriptsubscript𝜎𝑆2superscript𝜎2\mathrm{SNR}=\sigma_{S}^{2}/\sigma^{2}roman_SNR = italic_σ start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT being the transmit SNR. Thus, we define the problem formulation as follows

max{𝐒k,𝐰k}k=1Ksuperscriptsubscriptsubscript𝐒𝑘subscript𝐰𝑘𝑘1𝐾max\displaystyle\underset{\{\mathbf{S}_{k}\in\mathcal{B},\mathbf{w}_{k}\}_{k=1}^{% K}}{\text{max}}\quadstart_UNDERACCENT { bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ caligraphic_B , bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT end_UNDERACCENT start_ARG max end_ARG k=1KRk=k=1Klog2(1+SINRk).superscriptsubscript𝑘1𝐾subscript𝑅𝑘superscriptsubscript𝑘1𝐾subscript21subscriptSINR𝑘\displaystyle\sum\nolimits_{k=1}^{K}R_{k}\;=\;\sum\nolimits_{k=1}^{K}\log_{2}% \big{(}1+\text{SINR}_{k}\big{)}.∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT roman_log start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( 1 + SINR start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) . (5)

Since FAMA operates in open-loop, each user can design their corresponding 𝐒ksubscript𝐒𝑘\mathbf{S}_{k}bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and 𝐰ksubscript𝐰𝑘\mathbf{w}_{k}bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT independently. From the perspective of the k𝑘kitalic_k-th user, the problem formulation requires the joint design of the port selection matrix 𝐒ksubscript𝐒𝑘\mathbf{S}_{k}bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and the combining vector 𝐰ksubscript𝐰𝑘\mathbf{w}_{k}bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT. The FAMA-based literature has primarily focused in the baseline case where L=1𝐿1L=1italic_L = 1; hence, the usual strategy is to select the port that maximizes the SINR, and a trivial scalar value of one is used as the combining vector.

For the cases of CUMA using more than one RF chain [7], 𝐒ksubscript𝐒𝑘\mathbf{S}_{k}bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and 𝐰ksubscript𝐰𝑘\mathbf{w}_{k}bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT are designed sequentially: first, the selection matrix is configured following a sign-based criterion for selecting a subset of ports for which the desired signal adds up constructively. Then, direct detection or matrix inversion-based strategies are proposed to implement 𝐰ksubscript𝐰𝑘\mathbf{w}_{k}bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT. Taking a look at the related literature regarding classical antenna selection schemes, algorithms that avoid an exhaustive search over all candidate antenna subsets to design 𝐒ksubscript𝐒𝑘\mathbf{S}_{k}bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT are described, e.g. [10, 11, 12, 13]. In general, these approaches rewrite the performance metric Rksubscript𝑅𝑘R_{k}italic_R start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT by isolating the contribution of a particular column of the channel matrix. However, such formulations are well-suited for a single-user scenario, but cannot be adapted to the multi-user case in FAMA due to the inter-user interference term.

III SINR-based port selection and combining

In this section, we focus on the design of the selection matrix and the combining vector for a FA-based multiport receiver equipped with L>1𝐿1L>1italic_L > 1 RF chains.

III-A Digital Combining

We first aim to generalize the port selection criterion in slow-FAMA to the case with L𝐿Litalic_L active ports. Similar to [11, 13], we solve the problem formulation in (5) in two stages. First, we start by designing the matrix 𝐒ksubscript𝐒𝑘\mathbf{S}_{k}bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT following the slow FAMA heuristic in [4] (i.e., selecting the L𝐿Litalic_L ports with the best SINR). Then, after the active ports are decided, we determine 𝐰ksubscript𝐰𝑘\mathbf{w}_{k}bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT aiming to maximize the SINR after combination. This scheme will be referred to as DC (DC).

Let us denote as 𝐡k,rTsuperscriptsubscript𝐡𝑘𝑟𝑇\mathbf{h}_{k,r}^{T}bold_h start_POSTSUBSCRIPT italic_k , italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT the r𝑟ritalic_r-th row of 𝐇ksubscript𝐇𝑘\mathbf{H}_{k}bold_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT. Then, for the canonical precoding vectors 𝐩ksubscript𝐩𝑘\mathbf{p}_{k}bold_p start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT described in Sect. II, we can formulate the slow FAMA port selection procedure with L𝐿Litalic_L ports as follows

argmax𝒩k{1,2,,N},|𝒩k|=Lr𝒩k|𝐡k,rT𝐩k|2𝐡k,r22|𝐡k,rT𝐩k|2+1SNR.formulae-sequencesubscript𝒩𝑘12𝑁subscript𝒩𝑘𝐿argmaxsubscript𝑟subscript𝒩𝑘superscriptsuperscriptsubscript𝐡𝑘𝑟𝑇subscript𝐩𝑘2superscriptsubscriptnormsubscript𝐡𝑘𝑟22superscriptsuperscriptsubscript𝐡𝑘𝑟𝑇subscript𝐩𝑘21SNR\underset{\mathcal{N}_{k}\subset\{1,2,\dots,N\},\,|\mathcal{N}_{k}|=L}{% \operatorname{arg\,max}}\sum_{r\in\mathcal{N}_{k}}\frac{|\mathbf{h}_{k,r}^{T}% \mathbf{p}_{k}|^{2}}{\|\mathbf{h}_{k,r}\|_{2}^{2}-|\mathbf{h}_{k,r}^{T}\mathbf% {p}_{k}|^{2}+\frac{1}{\mathrm{SNR}}}.start_UNDERACCENT caligraphic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ⊂ { 1 , 2 , … , italic_N } , | caligraphic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT | = italic_L end_UNDERACCENT start_ARG roman_arg roman_max end_ARG ∑ start_POSTSUBSCRIPT italic_r ∈ caligraphic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_POSTSUBSCRIPT divide start_ARG | bold_h start_POSTSUBSCRIPT italic_k , italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_p start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ∥ bold_h start_POSTSUBSCRIPT italic_k , italic_r end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - | bold_h start_POSTSUBSCRIPT italic_k , italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_p start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG roman_SNR end_ARG end_ARG . (6)

By finding the solution to this formulation, we build the selection matrix with the canonical vectors corresponding to the rows in 𝒩ksubscript𝒩𝑘\mathcal{N}_{k}caligraphic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, i.e. 𝐒k=[𝐞𝒩k(1),𝐞𝒩k(2),,𝐞𝒩k(L)]subscript𝐒𝑘subscript𝐞subscript𝒩𝑘1subscript𝐞subscript𝒩𝑘2subscript𝐞subscript𝒩𝑘𝐿\mathbf{S}_{k}=[\mathbf{e}_{\mathcal{N}_{k}(1)},\mathbf{e}_{\mathcal{N}_{k}(2)% },\ldots,\mathbf{e}_{\mathcal{N}_{k}(L)}]bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = [ bold_e start_POSTSUBSCRIPT caligraphic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( 1 ) end_POSTSUBSCRIPT , bold_e start_POSTSUBSCRIPT caligraphic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT , … , bold_e start_POSTSUBSCRIPT caligraphic_N start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_L ) end_POSTSUBSCRIPT ]. For the given selection matrix 𝐒ksubscript𝐒𝑘\mathbf{S}_{k}bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, we need to design an adequate combining vector 𝐰ksubscript𝐰𝑘\mathbf{w}_{k}bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT. This vector should increase the signal strength and, at the same time, reduce the inter-user interference. In other words, we aim to solve

max𝐰k𝐰kH𝐀~k𝐰k𝐰kH𝐁~k𝐰k,subscript𝐰𝑘maxsuperscriptsubscript𝐰𝑘𝐻subscript~𝐀𝑘subscript𝐰𝑘superscriptsubscript𝐰𝑘𝐻subscript~𝐁𝑘subscript𝐰𝑘\underset{\mathbf{w}_{k}}{\text{max}}\frac{\mathbf{w}_{k}^{H}\tilde{\mathbf{A}% }_{k}\mathbf{w}_{k}}{\mathbf{w}_{k}^{H}\tilde{\mathbf{B}}_{k}\mathbf{w}_{k}},start_UNDERACCENT bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_UNDERACCENT start_ARG max end_ARG divide start_ARG bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT over~ start_ARG bold_A end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG start_ARG bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT over~ start_ARG bold_B end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG , (7)

where we introduced 𝐀~k=𝐒kT𝐀k𝐒ksubscript~𝐀𝑘superscriptsubscript𝐒𝑘𝑇subscript𝐀𝑘subscript𝐒𝑘\tilde{\mathbf{A}}_{k}=\mathbf{S}_{k}^{T}\mathbf{A}_{k}\mathbf{S}_{k}over~ start_ARG bold_A end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT as a submatrix of 𝐀k=𝐇k𝐩k𝐩kH𝐇kHsubscript𝐀𝑘subscript𝐇𝑘subscript𝐩𝑘superscriptsubscript𝐩𝑘𝐻superscriptsubscript𝐇𝑘𝐻\mathbf{A}_{k}=\mathbf{H}_{k}\mathbf{p}_{k}\mathbf{p}_{k}^{H}\mathbf{H}_{k}^{H}bold_A start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = bold_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT bold_p start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT bold_p start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT bold_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT, and 𝐁~k=𝐒kT𝐁k𝐒ksubscript~𝐁𝑘superscriptsubscript𝐒𝑘𝑇subscript𝐁𝑘subscript𝐒𝑘\tilde{\mathbf{B}}_{k}=\mathbf{S}_{k}^{T}\mathbf{B}_{k}\mathbf{S}_{k}over~ start_ARG bold_B end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT as a positive definite submatrix of 𝐁k=jk𝐇k𝐩j𝐩jH𝐇kH+𝐈R/SNRsubscript𝐁𝑘subscript𝑗𝑘subscript𝐇𝑘subscript𝐩𝑗superscriptsubscript𝐩𝑗𝐻superscriptsubscript𝐇𝑘𝐻subscript𝐈𝑅SNR\mathbf{B}_{k}=\sum_{j\neq k}\mathbf{H}_{k}\mathbf{p}_{j}\mathbf{p}_{j}^{H}% \mathbf{H}_{k}^{H}+\mathbf{I}_{R}/\mathrm{SNR}bold_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_j ≠ italic_k end_POSTSUBSCRIPT bold_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT bold_p start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT bold_p start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT bold_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT + bold_I start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT / roman_SNR. Due to 𝐒ksubscript𝐒𝑘\mathbf{S}_{k}bold_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, the selected row and column indices are common for both 𝐀~ksubscript~𝐀𝑘\tilde{\mathbf{A}}_{k}over~ start_ARG bold_A end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and 𝐁~ksubscript~𝐁𝑘\tilde{\mathbf{B}}_{k}over~ start_ARG bold_B end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT. Hence, finding the optimal combining vector 𝐰ksubscript𝐰𝑘\mathbf{w}_{k}bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT can be recast as a generalized eigenvalue problem [14], and solved by the dominant generalized eigenvector of the matrix pair (𝐀~k,𝐁~k)subscript~𝐀𝑘subscript~𝐁𝑘(\tilde{\mathbf{A}}_{k},\tilde{\mathbf{B}}_{k})( over~ start_ARG bold_A end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , over~ start_ARG bold_B end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) [15]. In particular, note that defining the vector 𝐱k=𝐁~k1/2𝐰ksubscript𝐱𝑘superscriptsubscript~𝐁𝑘12subscript𝐰𝑘\mathbf{x}_{k}=\tilde{\mathbf{B}}_{k}^{-1/2}\mathbf{w}_{k}bold_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = over~ start_ARG bold_B end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT bold_w start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT we can find a solution using that 𝐱ksubscript𝐱𝑘\mathbf{x}_{k}bold_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is the dominant eigenvector of 𝐂~k=𝐁~kH/2𝐀~k𝐁~k1/2subscript~𝐂𝑘superscriptsubscript~𝐁𝑘𝐻2subscript~𝐀𝑘superscriptsubscript~𝐁𝑘12\tilde{\mathbf{C}}_{k}=\tilde{\mathbf{B}}_{k}^{-H/2}\tilde{\mathbf{A}}_{k}% \tilde{\mathbf{B}}_{k}^{-1/2}over~ start_ARG bold_C end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = over~ start_ARG bold_B end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - italic_H / 2 end_POSTSUPERSCRIPT over~ start_ARG bold_A end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT over~ start_ARG bold_B end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT, and the achievable SINR for the k𝑘kitalic_k-th user is the associated dominant eigenvalue.

III-B Generalized Eigenvector Port Selection

The extension of the slow-FAMA port selection scheme to the multiport case from in (6) aims to select the most promising L𝐿Litalic_L ports from the SINR perspective. However, under this criterion the effect of spatial correlation among ports is neglected in the process. In other words, DC selects isolated entries from 𝐀𝐀\mathbf{A}bold_A and 𝐁𝐁\mathbf{B}bold_B, but the structure of such matrices is ignored. Besides, the sequential design of the selection matrix and the combining vector may not yield optimal performance. Hence, it is legitimate to ask whether some improvement over the DC scheme can be attained when these aspects are taken into consideration. In the sequel, for the sake of notational simplicity, the dependence on the user index k𝑘kitalic_k is dropped.

We propose an alternative strategy that jointly designs 𝐒𝐒\mathbf{S}bold_S and 𝐰𝐰\mathbf{w}bold_w, and exploits the spatial information provided by 𝐀𝐀\mathbf{A}bold_A and 𝐁𝐁\mathbf{B}bold_B. This scheme will be referred to as GEPort (GEPort). Let us take as starting assumption that we can afford to select all N𝑁Nitalic_N ports at the FA. Then, let us evaluate what is the SINR loss introduced by switching off one of the N𝑁Nitalic_N available ports. This measure will be obtained by considering the SINRs related to the matrix entries as well as the matrix structures, potentially achieving improved system performance. We define the proposed metric in the following lemma.

Lemma 1.

Let 𝐯1,𝐯2,,𝐯Nsubscript𝐯1subscript𝐯2subscript𝐯𝑁\mathbf{v}_{1},\mathbf{v}_{2},\ldots,\mathbf{v}_{N}bold_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , bold_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , bold_v start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT be the generalized eigenvectors of the matrix pair (𝐀,𝐁)𝐀𝐁(\mathbf{A},\mathbf{B})( bold_A , bold_B ), associated with the corresponding generalized eigenvalues λ1λ2λNsubscript𝜆1subscript𝜆2subscript𝜆𝑁\lambda_{1}\leq\lambda_{2}\dots\leq\lambda_{N}italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ italic_λ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⋯ ≤ italic_λ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT, and vN,lsubscript𝑣𝑁𝑙v_{N,l}italic_v start_POSTSUBSCRIPT italic_N , italic_l end_POSTSUBSCRIPT the l𝑙litalic_l-th element of 𝐯Nsubscript𝐯𝑁\mathbf{v}_{N}bold_v start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT. In addition, let αl,1αl,2αl,N1subscript𝛼𝑙1subscript𝛼𝑙2subscript𝛼𝑙𝑁1\alpha_{l,1}\leq\alpha_{l,2}\dots\leq\alpha_{l,N-1}italic_α start_POSTSUBSCRIPT italic_l , 1 end_POSTSUBSCRIPT ≤ italic_α start_POSTSUBSCRIPT italic_l , 2 end_POSTSUBSCRIPT ⋯ ≤ italic_α start_POSTSUBSCRIPT italic_l , italic_N - 1 end_POSTSUBSCRIPT be generalized eigenvalues of the matrix pair (𝐀~l,𝐁~l)subscript~𝐀𝑙subscript~𝐁𝑙(\tilde{\mathbf{A}}_{l},\tilde{\mathbf{B}}_{l})( over~ start_ARG bold_A end_ARG start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , over~ start_ARG bold_B end_ARG start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) obtained by disabling the l𝑙litalic_l-th port (i.e. removing row l𝑙litalic_l and column l𝑙litalic_l from 𝐀𝐀\mathbf{A}bold_A and 𝐁𝐁\mathbf{B}bold_B). Then, the SINR drop δlsubscript𝛿𝑙\delta_{l}italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT due to deactivating port l𝑙litalic_l is given by

δl=|vN,l|2(λNλN1)t=1N2(λNλt)(λNαl,t).subscript𝛿𝑙superscriptsubscript𝑣𝑁𝑙2subscript𝜆𝑁subscript𝜆𝑁1superscriptsubscriptproduct𝑡1𝑁2subscript𝜆𝑁subscript𝜆𝑡subscript𝜆𝑁subscript𝛼𝑙𝑡\delta_{l}=|v_{N,l}|^{2}(\lambda_{N}-\lambda_{N-1})\prod_{t=1}^{N-2}\frac{(% \lambda_{N}-\lambda_{t})}{(\lambda_{N}-\alpha_{l,t})}.italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT = | italic_v start_POSTSUBSCRIPT italic_N , italic_l end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_λ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT italic_N - 1 end_POSTSUBSCRIPT ) ∏ start_POSTSUBSCRIPT italic_t = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N - 2 end_POSTSUPERSCRIPT divide start_ARG ( italic_λ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) end_ARG start_ARG ( italic_λ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT - italic_α start_POSTSUBSCRIPT italic_l , italic_t end_POSTSUBSCRIPT ) end_ARG . (8)
Proof.

See Appendix. ∎

The result in Lemma (1) is useful to the discard the port that presents the lowest performance reduction. As we will later discuss, this process can be iterated until we reach the subset of L𝐿Litalic_L ports with the lowest aggregate SINR loss. After observing Lemma (1), some relevant remarks are in order: Note that the first and third factors in (8) depend on the candidate port l𝑙litalic_l. Unfortunately, the third factor includes αl,nsubscript𝛼𝑙𝑛\alpha_{l,n}italic_α start_POSTSUBSCRIPT italic_l , italic_n end_POSTSUBSCRIPT in the denominator, which is unknown unless the generalized eigenvalues of the reduced matrix pair (𝐀~,𝐁~)~𝐀~𝐁(\tilde{\mathbf{A}},\tilde{\mathbf{B}})( over~ start_ARG bold_A end_ARG , over~ start_ARG bold_B end_ARG ) are computed. Obtaining αl,tsubscript𝛼𝑙𝑡\alpha_{l,t}italic_α start_POSTSUBSCRIPT italic_l , italic_t end_POSTSUBSCRIPT l,tfor-all𝑙𝑡\forall l,t∀ italic_l , italic_t can be impractical when the number of ports N𝑁Nitalic_N grows large. To avoid this and reduce complexity, we can exploit the Cauchy interlacing theorem, which states that the eigenvalues of a Hermitian matrix interlace with those of any of its principal submatrices. Specifically, the eigenvalues of a matrix and a submatrix satisfy [16]

λi+1αl,iλi,i{1,,N1},l{1,,N}.formulae-sequencesubscript𝜆𝑖1subscript𝛼𝑙𝑖subscript𝜆𝑖formulae-sequencefor-all𝑖1𝑁1for-all𝑙1𝑁\lambda_{i+1}\geq\alpha_{l,i}\geq\lambda_{i},\;\forall i\in\{1,\ldots,N-1\},\;% \forall l\in\{1,\ldots,N\}.italic_λ start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT ≥ italic_α start_POSTSUBSCRIPT italic_l , italic_i end_POSTSUBSCRIPT ≥ italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , ∀ italic_i ∈ { 1 , … , italic_N - 1 } , ∀ italic_l ∈ { 1 , … , italic_N } . (9)

As such, all the differences in the product of the third factor (8) are positive valued, and the quotients for such a factor are smaller than or equal to 1111. Consequently, we set a lower bound for the SINR drop as follows

δl|vN,l|2(λNλN1).subscript𝛿𝑙superscriptsubscript𝑣𝑁𝑙2subscript𝜆𝑁subscript𝜆𝑁1\delta_{l}\geq|v_{N,l}|^{2}(\lambda_{N}-\lambda_{N-1}).italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ≥ | italic_v start_POSTSUBSCRIPT italic_N , italic_l end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_λ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT italic_N - 1 end_POSTSUBSCRIPT ) . (10)

Note also that the first factor |vN,l|2superscriptsubscript𝑣𝑁𝑙2|v_{N,l}|^{2}| italic_v start_POSTSUBSCRIPT italic_N , italic_l end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, which is given by the entries of the dominant generalized eigenvector of the complete matrix pair (𝐀,𝐁)𝐀𝐁(\mathbf{A},\mathbf{B})( bold_A , bold_B ), depends on l𝑙litalic_l, while the remaining factor in (10) is equal for different ports. Moreover, when |vN,l|20superscriptsubscript𝑣𝑁𝑙20|v_{N,l}|^{2}\approx 0| italic_v start_POSTSUBSCRIPT italic_N , italic_l end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≈ 0, the SINR drop satisfies δl0subscript𝛿𝑙0\delta_{l}\approx 0italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ≈ 0 and deactivating the port l𝑙litalic_l has a negligible impact on the performance. As a consequence, we are interested in the index l𝑙litalic_l attaining the smallest value of |vN,l|2superscriptsubscript𝑣𝑁𝑙2|v_{N,l}|^{2}| italic_v start_POSTSUBSCRIPT italic_N , italic_l end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, potentially leading to a small performance reduction when the port l𝑙litalic_l becomes inactive.

Algorithm 1 Generalized Eigenvector Port Selection (GEPort)
1:  Initialization: n0𝑛0n\leftarrow 0italic_n ← 0, 𝒩𝒩\mathcal{N}\leftarrow\emptysetcaligraphic_N ← ∅, 𝐀~𝐀,𝐁~𝐁formulae-sequence~𝐀𝐀~𝐁𝐁\tilde{\mathbf{A}}\leftarrow\mathbf{A},\tilde{\mathbf{B}}\leftarrow\mathbf{B}over~ start_ARG bold_A end_ARG ← bold_A , over~ start_ARG bold_B end_ARG ← bold_B
2:  while Nn>L𝑁𝑛𝐿N-n>Litalic_N - italic_n > italic_L do
3:     𝐯Nnsubscript𝐯𝑁𝑛absent\mathbf{v}_{N-n}\leftarrowbold_v start_POSTSUBSCRIPT italic_N - italic_n end_POSTSUBSCRIPT ← Power method for (𝐀~,𝐁~)~𝐀~𝐁(\tilde{\mathbf{A}},\tilde{\mathbf{B}})( over~ start_ARG bold_A end_ARG , over~ start_ARG bold_B end_ARG )
4:     λNnsubscript𝜆𝑁𝑛absent\lambda_{N-n}\leftarrowitalic_λ start_POSTSUBSCRIPT italic_N - italic_n end_POSTSUBSCRIPT ← Compute with (12)
5:     largminl|vNn,l|2superscript𝑙subscript𝑙superscriptsubscript𝑣𝑁𝑛𝑙2l^{*}\leftarrow\arg\min_{l}|v_{N-n,l}|^{2}italic_l start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ← roman_arg roman_min start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT | italic_v start_POSTSUBSCRIPT italic_N - italic_n , italic_l end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
6:     𝒩𝒩{l}𝒩𝒩superscript𝑙\mathcal{N}\leftarrow\mathcal{N}\cup\{l^{*}\}caligraphic_N ← caligraphic_N ∪ { italic_l start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT } 
7:     𝐀~~𝐀absent\tilde{\mathbf{A}}\leftarrowover~ start_ARG bold_A end_ARG ← Remove row and column lsuperscript𝑙l^{*}italic_l start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT from 𝐀~~𝐀\tilde{\mathbf{A}}over~ start_ARG bold_A end_ARG
8:     𝐁~~𝐁absent\tilde{\mathbf{B}}\leftarrowover~ start_ARG bold_B end_ARG ← Remove row and column lsuperscript𝑙l^{*}italic_l start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT from 𝐁~~𝐁\tilde{\mathbf{B}}over~ start_ARG bold_B end_ARG
9:     δλNλNn𝛿subscript𝜆𝑁subscript𝜆𝑁𝑛\delta\leftarrow\lambda_{N}-\lambda_{N-n}italic_δ ← italic_λ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT italic_N - italic_n end_POSTSUBSCRIPT. Accumulated performance loss
10:     nn+1𝑛𝑛1n\leftarrow n+1italic_n ← italic_n + 1
11:  end while
12:  Return: 𝐒=[𝐞𝒩(1),𝐞𝒩(2),,𝐞𝒩(L)]𝐒subscript𝐞𝒩1subscript𝐞𝒩2subscript𝐞𝒩𝐿\mathbf{S}=[\mathbf{e}_{\mathcal{N}(1)},\mathbf{e}_{\mathcal{N}(2)},\ldots,% \mathbf{e}_{\mathcal{N}(L)}]bold_S = [ bold_e start_POSTSUBSCRIPT caligraphic_N ( 1 ) end_POSTSUBSCRIPT , bold_e start_POSTSUBSCRIPT caligraphic_N ( 2 ) end_POSTSUBSCRIPT , … , bold_e start_POSTSUBSCRIPT caligraphic_N ( italic_L ) end_POSTSUBSCRIPT ], 𝐰=𝐯L𝐰subscript𝐯𝐿\mathbf{w}=\mathbf{v}_{L}bold_w = bold_v start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT

Recall that Lemma 1 considers the effect of removing the first port. As previously mentioned, the same idea can be repeated until the desired number of ports L𝐿Litalic_L is selected. Alternatively, ports can be deactivated to achieve a desired spectral efficiency value or until a predefined performance reduction is attained. In particular, we propose a criterion for building the matrix 𝐒𝐒\mathbf{S}bold_S based on the iterative application of the result in Lemma 1 for the determination of the set 𝒩𝒩\mathcal{N}caligraphic_N. Hence, for the n𝑛nitalic_n-th step in the iteration procedure, we have that

𝒩=𝒩{l}s.t.l=argminl|vNn,l|2,𝒩𝒩superscript𝑙s.t.superscript𝑙subscript𝑙superscriptsubscript𝑣𝑁𝑛𝑙2\mathcal{N}=\mathcal{N}\cup\{l^{*}\}\;\text{s.t.}\;l^{*}=\arg\min_{l}|v_{N-n,l% }|^{2},caligraphic_N = caligraphic_N ∪ { italic_l start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT } s.t. italic_l start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = roman_arg roman_min start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT | italic_v start_POSTSUBSCRIPT italic_N - italic_n , italic_l end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (11)

where 𝐯Nnsubscript𝐯𝑁𝑛\mathbf{v}_{N-n}bold_v start_POSTSUBSCRIPT italic_N - italic_n end_POSTSUBSCRIPT is the dominant generalized eigenvector for the matrix pair (𝐀~,𝐁~)~𝐀~𝐁(\tilde{\mathbf{A}},\tilde{\mathbf{B}})( over~ start_ARG bold_A end_ARG , over~ start_ARG bold_B end_ARG ), which are obtained by removing the n1𝑛1n-1italic_n - 1 rows and the columns with indices belonging to the set 𝒩𝒩\mathcal{N}caligraphic_N, and vNn,lsubscript𝑣𝑁𝑛𝑙v_{N-n,l}italic_v start_POSTSUBSCRIPT italic_N - italic_n , italic_l end_POSTSUBSCRIPT is the l𝑙litalic_l-th entry of such a vector. The procedure proposed to find the dominant generalized eigenvector 𝐯Nsubscript𝐯𝑁\mathbf{v}_{N}bold_v start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT is the so-called power method [16], which starts with an initial candidate for the eigenvector, 𝐭𝐭\mathbf{t}bold_t, and refines the current approximation using 𝐭=𝐁~1𝐀~𝐭𝐭superscript~𝐁1~𝐀𝐭\mathbf{t}=\tilde{\mathbf{B}}^{-1}\tilde{\mathbf{A}}\mathbf{t}bold_t = over~ start_ARG bold_B end_ARG start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT over~ start_ARG bold_A end_ARG bold_t. Once 𝐭𝐭\mathbf{t}bold_t converges, the corresponding eigenvalue λNnsubscript𝜆𝑁𝑛\lambda_{N-n}italic_λ start_POSTSUBSCRIPT italic_N - italic_n end_POSTSUBSCRIPT is calculated as follows

λNn=𝐭H𝐀~𝐭𝐭H𝐁~𝐭.subscript𝜆𝑁𝑛superscript𝐭𝐻~𝐀𝐭superscript𝐭𝐻~𝐁𝐭\lambda_{N-n}=\frac{\mathbf{t}^{H}\tilde{\mathbf{A}}\mathbf{t}}{\mathbf{t}^{H}% \tilde{\mathbf{B}}\mathbf{t}}.italic_λ start_POSTSUBSCRIPT italic_N - italic_n end_POSTSUBSCRIPT = divide start_ARG bold_t start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT over~ start_ARG bold_A end_ARG bold_t end_ARG start_ARG bold_t start_POSTSUPERSCRIPT italic_H end_POSTSUPERSCRIPT over~ start_ARG bold_B end_ARG bold_t end_ARG . (12)

This method is far more efficient than computing the full decomposition. The complete procedure for the GEPort algorithm to jointly select the L𝐿Litalic_L ports and design 𝐰𝐰\mathbf{w}bold_w is summarized in Alg. 1.

IV Numerical Results

In this section, we conduct some experiments to assess the performance of the proposed schemes for multiport FAMA. Baseline parameters for the comparison are: σS2=1superscriptsubscript𝜎𝑆21\sigma_{S}^{2}=1italic_σ start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 1, M=K=4𝑀𝐾4M=K=4italic_M = italic_K = 4 users/antennas at the BS side, a W=4𝑊4W=4italic_W = 4 normalized fluid antenna length (1D case) and W1×W2=4×1subscript𝑊1subscript𝑊241W_{1}\times W_{2}=4\times 1italic_W start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT × italic_W start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 4 × 1 (2D case), N=100𝑁100N=100italic_N = 100 FA ports, and L=2𝐿2L=2italic_L = 2 active ports. Monte Carlo simulations based on the channel model in (3) are used. For benchmarking purposes, we use the cases of conventional slow-FAMA [9] (single RF chain) and CUMA (2 RF chains)[7], and compare them with the DC and GEPort strategies here proposed.

In Fig. 1 we evaluate the improvements in terms of the achievable average SE of user k𝑘kitalic_k for the aforementioned schemes, as a function of the transmit SNR. Solid lines represent the case of users equipped with a 1D FA (N=100𝑁100N=100italic_N = 100, W=4𝑊4W=4italic_W = 4), while dotted lines correspond to a 2D FA (N=60×15𝑁6015N=60\times 15italic_N = 60 × 15, W=4×1𝑊41W=4\times 1italic_W = 4 × 1). We see that GEPort achieves the highest SINR across all SNR levels. More importantly, the performance improvement grows when the system operates in the interference-limited regime (i.e., high transmit SNR). Also, we see that in such a regime, DC behaves similarly as CUMA (even better for the 2D case). Note that while CUMA only operates with 2 RF chains, it requires an arbitrary number of ports to be activated for signal combination.

Refer to caption
Figure 1: Average spectral efficiency for user k𝑘kitalic_k vs. transmit SNR for the different schemes. Solid and dotted lines represent N=100𝑁100N=100italic_N = 100 with W=4𝑊4W=4italic_W = 4, and N1×N2=60×15subscript𝑁1subscript𝑁26015N_{1}\times N_{2}=60\times 15italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT × italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 60 × 15, with W1×W2=4×1subscript𝑊1subscript𝑊241W_{1}\times W_{2}=4\times 1italic_W start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT × italic_W start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 4 × 1, respectively.

Fig. 2 shows the relationship between the average SE and the number of active ports, L𝐿Litalic_L. The transmit SNR is fixed and set to 5555dB. As the number of active ports increases (number of RF chains in the proposed schemes), the performance of DC and GEPort substantially improves. The conventional slow FAMA scheme uses single port (i.e., L=1𝐿1L=1italic_L = 1); CUMA implementation used 2 RF chains (i.e., L=2𝐿2L=2italic_L = 2 in our comparison), although it effectively activates a much larger of FA ports as long as the SINR is improved under this combination scheme. Hence, the SE curves associated to these methods are constant. Interestingly, the simpler DC combining method performs better than CUMA beyond L=5𝐿5L=5italic_L = 5. Finally, the performance gap of GEPort compared to the reference schemes grows with the number of active ports for the ranges evaluated in our experiment333Since the number of selected ports in the proposed schemes equals the number of RF chains, a reasonably low value of L𝐿Litalic_L should be considered for the sake of complexity reduction in the receiver implementation..

Refer to caption
Figure 2: Average spectral efficiency for user k𝑘kitalic_k vs. number of active ports L𝐿Litalic_L. The number of ports is N=100𝑁100N=100italic_N = 100 for a size of W=4𝑊4W=4italic_W = 4. The transmit SNR is set to 5555dB.
Refer to caption
Figure 3: Average spectral efficiency vs. number of available ports N𝑁Nitalic_N. Parameter values are W=4𝑊4W=4italic_W = 4, L=2𝐿2L=2italic_L = 2 and SNR=15151515dB.

In Fig. 3 we evaluate the effect of densification in the performance, i.e., increasing N𝑁Nitalic_N for W=4𝑊4W=4italic_W = 4 fixed. The simplest case of L=2𝐿2L=2italic_L = 2 has been considered for benchmarking, with a transmit SNR=15151515 dB. We see that the effect of densification (i.e., increasing spatial correlation for the desired and interfering signals) affects the performance of the DC scheme: this confirms the rationale that the sequential design of the selection matrix 𝐒𝐒\mathbf{S}bold_S and the combining filter 𝐰𝐰\mathbf{w}bold_w (i.e., the multiport extension of slow-FAMA) does not optimally exploit the dependence structures between the matrices 𝐀𝐀\mathbf{A}bold_A and 𝐁𝐁\mathbf{B}bold_B. Conversely, GEPort scheme provides a substantial improvement over all competing schemes, although this effect tends to saturate under strong port densification.

V Conclusion

We showcased the potential of multiport reception in FA-assisted multiuser communications. The use of a reduced number of RF chains opens the potential to substantially improve performance under the open-loop slow-FAMA paradigm, as long as the design of the port selection matrix and combining vectors effectively incorporates the correlation structures of signals. This paves the way for the development of new signal processing schemes in FA-enabled multiport receivers.

Acknowledgment

The authors gratefully acknowledge Prof. Michael Joham for the insightful discussion that originally inspired the investigation of multiport reception in the context of FAMA, and Dr. Pablo Ramírez-Espinosa for his assistance in the slow-FAMA simulations.

Consider the Hermitian matrix 𝐂N×N𝐂superscript𝑁𝑁\mathbf{C}\in\mathbb{C}^{N\times N}bold_C ∈ blackboard_C start_POSTSUPERSCRIPT italic_N × italic_N end_POSTSUPERSCRIPT, defined as 𝐂=𝐁H/2𝐀𝐁1/2𝐂superscript𝐁𝐻2superscript𝐀𝐁12\mathbf{C}=\mathbf{B}^{-H/2}\mathbf{A}\mathbf{B}^{-1/2}bold_C = bold_B start_POSTSUPERSCRIPT - italic_H / 2 end_POSTSUPERSCRIPT bold_AB start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT, with eigenvalues λ1λ2λNsubscript𝜆1subscript𝜆2subscript𝜆𝑁\lambda_{1}\leq\lambda_{2}\leq\dots\lambda_{N}italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ italic_λ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≤ … italic_λ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT and corresponding eigenvectors 𝐯1,,𝐯Nsubscript𝐯1subscript𝐯𝑁\mathbf{v}_{1},\dots,\mathbf{v}_{N}bold_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , bold_v start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT. We denote the l𝑙litalic_l-th entry of the eigenvector 𝐯isubscript𝐯𝑖\mathbf{v}_{i}bold_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT as vi,lsubscript𝑣𝑖𝑙v_{i,l}italic_v start_POSTSUBSCRIPT italic_i , italic_l end_POSTSUBSCRIPT, and introduce 𝐀~lN1×N1subscript~𝐀𝑙superscript𝑁1𝑁1\tilde{\mathbf{A}}_{l}\in\mathbb{C}^{N-1\times N-1}over~ start_ARG bold_A end_ARG start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ∈ blackboard_C start_POSTSUPERSCRIPT italic_N - 1 × italic_N - 1 end_POSTSUPERSCRIPT and 𝐁~lN1×N1subscript~𝐁𝑙superscript𝑁1𝑁1\tilde{\mathbf{B}}_{l}\in\mathbb{C}^{N-1\times N-1}over~ start_ARG bold_B end_ARG start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ∈ blackboard_C start_POSTSUPERSCRIPT italic_N - 1 × italic_N - 1 end_POSTSUPERSCRIPT as the principal minors of 𝐀𝐀\mathbf{A}bold_A, and 𝐁𝐁\mathbf{B}bold_B, respectively, obtained by deleting the l𝑙litalic_l-th row and the l𝑙litalic_l-th column of 𝐀𝐀\mathbf{A}bold_A and 𝐁𝐁\mathbf{B}bold_B. Accordingly, 𝐂~l=𝐁~lH/2𝐀~l𝐁~l1/2subscript~𝐂𝑙superscriptsubscript~𝐁𝑙𝐻2subscript~𝐀𝑙superscriptsubscript~𝐁𝑙12\tilde{\mathbf{C}}_{l}=\tilde{\mathbf{B}}_{l}^{-H/2}\tilde{\mathbf{A}}_{l}% \tilde{\mathbf{B}}_{l}^{-1/2}over~ start_ARG bold_C end_ARG start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT = over~ start_ARG bold_B end_ARG start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - italic_H / 2 end_POSTSUPERSCRIPT over~ start_ARG bold_A end_ARG start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT over~ start_ARG bold_B end_ARG start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT and we introduce the eigenvalues of 𝐂~lsubscript~𝐂𝑙\tilde{\mathbf{C}}_{l}over~ start_ARG bold_C end_ARG start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT as αl,1αl,2αl,N1subscript𝛼𝑙1subscript𝛼𝑙2subscript𝛼𝑙𝑁1\alpha_{l,1}\leq\alpha_{l,2}\leq\ldots\alpha_{l,N-1}italic_α start_POSTSUBSCRIPT italic_l , 1 end_POSTSUBSCRIPT ≤ italic_α start_POSTSUBSCRIPT italic_l , 2 end_POSTSUBSCRIPT ≤ … italic_α start_POSTSUBSCRIPT italic_l , italic_N - 1 end_POSTSUBSCRIPT. Then the following eigenvector-eigenvalue identity holds [17]

|vi,l|2n=1,niN(λiλn)=n=1N1(λiαl,n)superscriptsubscript𝑣𝑖𝑙2superscriptsubscriptproductformulae-sequence𝑛1𝑛𝑖𝑁subscript𝜆𝑖subscript𝜆𝑛superscriptsubscriptproduct𝑛1𝑁1subscript𝜆𝑖subscript𝛼𝑙𝑛|v_{i,l}|^{2}\prod_{\begin{subarray}{c}n=1,n\neq i\end{subarray}}^{N}(\lambda_% {i}-\lambda_{n})=\prod_{n=1}^{N-1}(\lambda_{i}-\alpha_{l,n})| italic_v start_POSTSUBSCRIPT italic_i , italic_l end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∏ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL italic_n = 1 , italic_n ≠ italic_i end_CELL end_ROW end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) = ∏ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N - 1 end_POSTSUPERSCRIPT ( italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_α start_POSTSUBSCRIPT italic_l , italic_n end_POSTSUBSCRIPT ) (13)

for all i{1,,N}𝑖1𝑁i\in\{1,\ldots,N\}italic_i ∈ { 1 , … , italic_N }. Recall that the achievable SINR can be obtained by computing the eigenvalues derived from the Rayleigh quotient in (7). As such, we are interested in finding the indices l𝑙litalic_l and n𝑛nitalic_n such that αl,nsubscript𝛼𝑙𝑛\alpha_{l,n}italic_α start_POSTSUBSCRIPT italic_l , italic_n end_POSTSUBSCRIPT is maximum. Thus, under the assumption of eigenvalues ordered in ascending order, we get that n=N1𝑛𝑁1n=N-1italic_n = italic_N - 1 and l=maxlαl,N1superscript𝑙subscript𝑙subscript𝛼𝑙𝑁1l^{*}=\max_{l}\alpha_{l,N-1}italic_l start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = roman_max start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT italic_α start_POSTSUBSCRIPT italic_l , italic_N - 1 end_POSTSUBSCRIPT leads to the largest SINR value. As performing a search over l𝑙litalic_l to find lsuperscript𝑙l^{*}italic_l start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is impractical, we alternatively use the equality in (13) to define a performance metric. To that end, we employ the equality for the dominant eigenvalue λNsubscript𝜆𝑁\lambda_{N}italic_λ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT and the dominant eigenvector 𝐯Nsubscript𝐯𝑁\mathbf{v}_{N}bold_v start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT of 𝐂𝐂\mathbf{C}bold_C with i=N𝑖𝑁i=Nitalic_i = italic_N, and isolate the term corresponding to the SINR drop, that is

λNαl,N1=|vN,l|2n=1N1(λNλn)n=1N2(λNαl,n),subscript𝜆𝑁subscript𝛼𝑙𝑁1superscriptsubscript𝑣𝑁𝑙2superscriptsubscriptproduct𝑛1𝑁1subscript𝜆𝑁subscript𝜆𝑛superscriptsubscriptproduct𝑛1𝑁2subscript𝜆𝑁subscript𝛼𝑙𝑛\lambda_{N}-\alpha_{l,N-1}=|v_{N,l}|^{2}\frac{\prod_{\begin{subarray}{c}n=1% \end{subarray}}^{N-1}(\lambda_{N}-\lambda_{n})}{\prod_{n=1}^{N-2}(\lambda_{N}-% \alpha_{l,n})},italic_λ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT - italic_α start_POSTSUBSCRIPT italic_l , italic_N - 1 end_POSTSUBSCRIPT = | italic_v start_POSTSUBSCRIPT italic_N , italic_l end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG ∏ start_POSTSUBSCRIPT start_ARG start_ROW start_CELL italic_n = 1 end_CELL end_ROW end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N - 1 end_POSTSUPERSCRIPT ( italic_λ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT - italic_λ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) end_ARG start_ARG ∏ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N - 2 end_POSTSUPERSCRIPT ( italic_λ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT - italic_α start_POSTSUBSCRIPT italic_l , italic_n end_POSTSUBSCRIPT ) end_ARG , (14)

getting (8) after rearranging the terms and introducing δl=λRαl,N1subscript𝛿𝑙subscript𝜆𝑅subscript𝛼𝑙𝑁1\delta_{l}=\lambda_{R}-\alpha_{l,N-1}italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT = italic_λ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT - italic_α start_POSTSUBSCRIPT italic_l , italic_N - 1 end_POSTSUBSCRIPT.

References

  • [1] K.-K. Wong, A. Shojaeifard, K.-F. Tong, and Y. Zhang, “Fluid antenna systems,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1950–1962, 2021.
  • [2] W. K. New, K.-K. Wong, H. Xu, C. Wang, F. R. Ghadi, J. Zhang, J. Rao, R. Murch, P. Ramírez-Espinosa, D. Morales-Jimenez, C.-B. Chae, and K.-F. Tong, “A tutorial on fluid antenna system for 6g networks: Encompassing communication theory, optimization methods and hardware designs,” IEEE Commun. Surv. Tutor., pp. 1–1, 2024.
  • [3] W. Kiat New, K.-K. Wong, H. Xu, F. Rostami Ghadi, R. Murch, and C.-B. Chae, “Channel estimation and reconstruction in fluid antenna system: Oversampling is essential,” IEEE Trans. Wireless Commun., vol. 24, no. 1, pp. 309–322, 2025.
  • [4] K.-K. Wong, D. Morales-Jimenez, K.-F. Tong, and C.-B. Chae, “Slow Fluid Antenna Multiple Access,” IEEE Trans. Commun., vol. 71, no. 5, pp. 2831–2846, 2023.
  • [5] K.-K. Wong and K.-F. Tong, “Fluid Antenna Multiple Access,” IEEE Trans. Wireless Commun., vol. 21, no. 7, pp. 4801–4815, 2022.
  • [6] X. Lai, T. Wu, J. Yao, C. Pan, M. Elkashlan, and K.-K. Wong, “On Performance of Fluid Antenna System Using Maximum Ratio Combining,” IEEE Commun. Lett., vol. 28, no. 2, pp. 402–406, 2024.
  • [7] K.-K. Wong, C.-B. Chae, and K.-F. Tong, “Compact ultra massive antenna array: A simple open-loop massive connectivity scheme,” IEEE Trans. Wireless Commun., vol. 23, no. 6, pp. 6279–6294, 2024.
  • [8] K.-K. Wong, “Compact Ultra Massive Array (CUMA) with 4 RF Chains for Massive Connectivity,” in 2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2024, pp. 286–290.
  • [9] P. Ramírez-Espinosa, D. Morales-Jimenez, and K.-K. Wong, “A New Spatial Block-Correlation Model for Fluid Antenna Systems,” IEEE Trans. Wireless Commun., vol. 23, no. 11, pp. 15 829–15 843, 2024.
  • [10] D. Gore, R. Nabar, and A. Paulraj, “Selecting an optimal set of transmit antennas for a low rank matrix channel,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (ICASSP), vol. 5, 2000, pp. 2785–2788 vol.5.
  • [11] M. Gharavi-Alkhansari and A. Gershman, “Fast antenna subset selection in MIMO systems,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 339–347, 2004.
  • [12] A. Gorokhov, “Antenna selection algorithms for MEA transmission systems,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 3, 2002, pp. III–2857–III–2860.
  • [13] R. Méndez-Rial, C. Rusu, A. Alkhateeb, N. González-Prelcic, and R. W. Heath, “Channel estimation and hybrid combining for mmWave: Phase shifters or switches?” in Proc. Information Theory and Applications Workshop (ITA), 2015, pp. 90–97.
  • [14] B. Ghojogh, F. Karray, and M. Crowley, “Eigenvalue and Generalized Eigenvalue Problems: Tutorial,” 2023. [Online]. Available: https://arxiv.org/abs/1903.11240
  • [15] M. Schubert and H. Boche, “Solution of the Multiuser Downlink Beamforming Problem with Individual SINR Constraints,” IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 18–28, January 2004.
  • [16] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed.   Baltimore: Johns Hopkins University Press, 2013.
  • [17] P. B. Denton, S. J. Parke, T. Tao, and X. Zhang, “Eigenvectors from eigenvalues: A survey of a basic identity in linear algebra,” Bulletin of the American Mathematical Society, vol. 59, no. 1, p. 31–58, Feb. 2021. [Online]. Available: http://dx.doi.org/10.1090/bull/1722