这是indexloc提供的服务,不要输入任何密码
\copyyear

2023 \startpage1

\authormark

Ernesto et al. \titlemarkOutput Feedback Design for Parameter Varying Systems subject to Persistent Disturbances and Control Rate Constraints

\corres

Output Feedback Design for Parameter Varying Systems subject to Persistent Disturbances and Control Rate Constraints

Jackson G. Ernesto    Eugênio B. Castelan    Walter Lucia Graduate Program in Automation and Systems Engineering (PósAutomação/UFSC), 88040880408804088040-900900900900, Florianópolis, SC, Brazil. Department of Automation and Systems (EAS/CTC/UFSC), (EAS), Universidade Federal de Santa Catarina (UFSC) , 88040880408804088040-900900900900, Florianópolis, SC, Brazil. Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, QC, H3G-1M8, Canada jackson.ernesto@posgrad.ufsc.br eugenio.castelan@ufsc.br walter.lucia@concordia.ca
(Date Month Year; Date Month Year; Date Month Year)
Abstract

[Abstract] This paper presents a technique for designing output feedback controllers for constrained linear parameter-varying systems that are subject to persistent disturbances. Specifically, we develop an incremental parameter-varying output feedback control law to address control rate constraints, as well as state and control amplitude constraints. The proposal is based on the concept of robust positively invariant sets and applies the extended Farkas’ lemma to derive a set of algebraic conditions that define both the control gains and a robust positively invariant polyhedron that satisfies the control and state constraints. These algebraic conditions are formulated into a bilinear optimization problem aimed at determining the output feedback gains and the associated polyedral robust positively invariant region. The obtained controller ensures that any closed-loop trajectory originating from the polyhedron converges to another smaller inner polyhedral set around the origin in finite time, where the trajectory remains ultimately bounded regardless of the persistent disturbances and variations in system parameters. Furthermore, by including the sizes of the two polyhedral sets inside the objective function, the proposed optimization can also jointly enlarge the outer set while minimizing the inner one. Numerical examples are presented to demonstrate the effectiveness of our proposal in managing the specified constraints, disturbances, and parameter variations.

keywords:
LPV systems, Control rate constraints, Persistent disturbances, Discrete-time, Robust positive-invariance, Incremental output-feedback, Bilinear programming.
articletype: Article Typejournal: Journalvolume: 00

1 Introduction

A fundamental control challenge stems from designing stabilizing output-feedback control laws for constrained disturbed systems 1, 2. Such constraints often originate from physical or security bounds imposed on systems. Meanwhile, external disturbances may affect the system’s states or output measurement. Fortunately, such disturbances are often naturally bounded in amplitude, and they can be handled in controlled systems. Nevertheless, both constraints and disturbances must be considered during control law designs for stability and performance guarantees. Furthermore, it is usual that only a subset of the state variables is available for feedback, enforcing output feedback control laws. Moreover, linear systems influenced by time-varying parameters, known as Linear Parameter-Varying (LPV) systems, represents a particularly interesting and important class of systems that can also be used to model some classes of nonlinear systems 3. For example, LPV models can represent nonlinear systems through quasi-LPV or Takagi-Sugeno (T-S) fuzzy models which provides a comprehensive framework for analyzing and synthesizing parameter-varying control laws for unconstrained 4 and constrained nonlinear control systems, see e.g. 5.

Recent works used various techniques to design controllers for constrained LPV systems. For example, utilizing Model Predictive Control (MPC), or, when dealing with disturbances, its counterpart, Robust Model Predictive Control (RMPC) (see, for example, 6, 7, 8). Another popular technique stems from Linear Matrices Inequalities (LMIs), that uses either Lyapunov stability conditions or positive invariance conditions to guarantee the system’s stability (see, for instance, 9, 10, 11, 12, 13). Furthermore, in 14, the concept of polyhedral invariant sets is used to ensure stability through output feedback control of an LPV system, taking into consideration state and control amplitude constraints. In 15, the authors focus on state feedback control laws for Fuzzy T-S systems that are also subject to persistent disturbances; the observer-based output feedback control is considered in 16, but disregarding disturbances. The last two works leverage the concepts of (Robust) Positive Invariance and contractivity of polyhedral sets to form bilinear optimization problems for the design processes. However, the proposed methods do not address the limitations on the variation of the control rate, which is a primary concern of the current study. Additionally, regarding control rate constraints, 17 and 18 design dynamical output feedback controllers through LMI optimization problems for continuous and discrete-time systems, respectively, which are also subject to bounded disturbances and control amplitude limits. However, in these papers, only LTI systems are considered. Moreover, in 19 the authors used the concept of Robust Positive Invariant (RPI) polyhedral sets to propose a novel bilinear optimization technique to design output feedback controllers for assymetrical state and control constrained discrete LTI systems subject to persistent disturbances. Finally, in 20, 21, positive invariance of polyhedral sets and bilinear programming also allowed to propose control design techniques for discrete-time LPV systems subject to state and control amplitude, and control rate constraints, but in the absence of disturbances.

Inspired by the previous works that utilize polyhedral set-invariance properties and bilinear optimization design techniques, this paper proposes a method for designing output feedback controllers for constrained LPV systems subject to persistent disturbances and control rate constraints. To tackle the control rate constraints in the design process, we develop an incremental parameter-varying output feedback control law, which also allows for incorporating state and control amplitude constraints. A novel aspect of the proposed control law, when compared to previous works 20, 21, is the introduction of an important degree of freedom through the feedback from the actual measured outputs. Additionally, all control gain matrices considered are assumed to be parameter-dependent, distinguishing this method from the simpler strategy used in the previous study 22, which employed a constant gain matrix associated with the actual output. Overall, the controller design aims to ensure that any closed-loop trajectory originating from a large RPI polyhedron that meets the constraints converges to a smaller inner polyhedral set around the origin in finite time, where the trajectory remains ultimately bounded regardless of the persistent disturbances and variations in system parameters. As in 19, the proposed solution employs the extended Farkas’ lemma to derive sets of algebraic conditions that characterize the RPI property of a polyhedron along with an associated UB-set and constraints satisfaction. To address the challenges posed by the obtained augmented parameter-varying closed-loop system, we introduce a novel notation for matrix polytopes and propose an alternative closed-loop system formulation. This new approach, combined with Farkas’ lemma, facilitates the derivation of the necessary and sufficient algebraic conditions to characterize the RPI and UB properties of the considered polyhedral sets, as well as to algebraically determine the satisfaction of control rate constraints. These algebraic relations are framed into a bilinear optimization problem, which seeks to simultaneously determine the output feedback gains and the associated polyhedral RPI and UB sets. Notably, these sets do not necessarily have to be homothetic to each other, differently from previous works 19 and 22. Consequently, a newly tailored weighted objective function is proposed to enlarge the outer RPI set while minimizing the inner UB set.

The remainder of this paper is organized as follows. The next section introduces a novel notation for describing matrix polytopes and recalls the extended Farkas’ Lemma. Section 3 presents the constrained control problem and offers an alternative formulation of the augmented LPV closed-loop system using the matrix polytopes notation. In Section 4, we outline the main contributions of this work: i) the necessary and sufficient algebraic conditions that characterize the polyhedral set-invariance concept, along with the inclusions that ensure the state, control, and control rate constraints; and ii) the proposed bilinear optimization design technique. Section 5 features two numerical examples that demonstrate the application of the design technique, including a simulation involving a two-tank system. The paper concludes in Section 6 with some final thoughts. Additionally, an appendix provides proofs of the proposed results.

NOTATION: The sets of real numbers, real-valued column vectors of dimension n>0𝑛0n>0italic_n > 0 and real-valued matrices of dimension m×n,m,n>0𝑚𝑛𝑚𝑛0m\times n,\,m,n>0italic_m × italic_n , italic_m , italic_n > 0 are denoted with ,\Re,roman_ℜ , nsuperscript𝑛\Re^{n}roman_ℜ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and m×n,superscript𝑚𝑛\Re^{m\times n},roman_ℜ start_POSTSUPERSCRIPT italic_m × italic_n end_POSTSUPERSCRIPT , respectively. Given an invertible square matrix M,𝑀M,italic_M , M1superscript𝑀1M^{-1}italic_M start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT denotes its inverse. M𝑀Mitalic_M is a non-negative matrix if all its entries, namely Mij,subscript𝑀𝑖𝑗M_{ij},italic_M start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT , are non-negative, i.e. Mij0,i,jsubscript𝑀𝑖𝑗0for-all𝑖𝑗M_{ij}\geq 0,\forall i,jitalic_M start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ≥ 0 , ∀ italic_i , italic_j. The vectors 𝟎pn, 1pnformulae-sequencesubscript0𝑝superscript𝑛subscript1𝑝superscript𝑛{\bf{0}}_{p}\in\Re^{n},\,{\bf{1}}_{p}\in\Re^{n}bold_0 start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , bold_1 start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT denote columns vectors containing only zeros or ones in all the components. Given a vector vnv,𝑣superscriptsubscript𝑛𝑣v\in\Re^{n_{v}},italic_v ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , vksubscript𝑣𝑘v_{k}italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT represents the value of v𝑣vitalic_v at the discrete time instant kZ+{0,1,}.𝑘subscript𝑍01k\in Z_{+}\cong\{0,1,...\}.italic_k ∈ italic_Z start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ≅ { 0 , 1 , … } . Any closed convex polyhedral set 𝒫n𝒫superscript𝑛\mathcal{P}\in\Re^{n}caligraphic_P ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT, containing the origin in its interior, is represented by 𝒫={xn:Pxϕ}𝒫conditional-set𝑥superscript𝑛𝑃𝑥italic-ϕ\mathcal{P}=\{x\in\Re^{n}:Px\leq\phi\}caligraphic_P = { italic_x ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT : italic_P italic_x ≤ italic_ϕ }, with Plp×n𝑃superscriptsubscript𝑙𝑝𝑛P\in\Re^{l_{p}\times n}italic_P ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT × italic_n end_POSTSUPERSCRIPT and ϕlpitalic-ϕsuperscriptsubscript𝑙𝑝\phi\in\Re^{l_{p}}italic_ϕ ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT a positive vector.

2 Preliminaries

2.1 On matrix polytopes

Let M(β)=i=1nvβiMi,𝑀𝛽superscriptsubscript𝑖1subscript𝑛𝑣subscript𝛽𝑖subscript𝑀𝑖M(\beta)=\displaystyle{\sum_{i=1}^{n_{v}}}\beta_{i}M_{i},italic_M ( italic_β ) = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , with Mim×nsubscript𝑀𝑖superscript𝑚𝑛M_{i}\in\Re^{m\times n}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_m × italic_n end_POSTSUPERSCRIPT and β𝒮β:={βnv,βi0;i=1nvβi=1}.𝛽subscript𝒮𝛽assignformulae-sequence𝛽superscriptsubscript𝑛𝑣formulae-sequencesubscript𝛽𝑖0superscriptsubscript𝑖1subscript𝑛𝑣subscript𝛽𝑖1\beta\in\mathcal{S}_{\beta}:=\left\{\beta\in\Re^{n_{v}},\,\beta_{i}\geq 0\,;% \displaystyle{\sum_{i=1}^{n_{v}}}\beta_{i}=1\,\right\}.italic_β ∈ caligraphic_S start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT := { italic_β ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≥ 0 ; ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 1 } . Then, by defining

=[M1Mnv]m×nvn,c=[M1Mnv]nvm×nformulae-sequencematrixsubscript𝑀1subscript𝑀subscript𝑛𝑣superscript𝑚subscript𝑛𝑣𝑛superscript𝑐matrixsubscript𝑀1subscript𝑀𝑛𝑣superscriptsubscript𝑛𝑣𝑚𝑛\mathcal{M}=\begin{bmatrix}M_{1}&\ldots&M_{n_{v}}\end{bmatrix}\in\Re^{m\times n% _{v}n}\,,\,\mathcal{M}^{c}=\begin{bmatrix}M_{1}\\ \vdots\\ M_{nv}\end{bmatrix}\in\Re^{n_{v}m\times n}caligraphic_M = [ start_ARG start_ROW start_CELL italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL … end_CELL start_CELL italic_M start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] ∈ roman_ℜ start_POSTSUPERSCRIPT italic_m × italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n end_POSTSUPERSCRIPT , caligraphic_M start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT = [ start_ARG start_ROW start_CELL italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL italic_M start_POSTSUBSCRIPT italic_n italic_v end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_m × italic_n end_POSTSUPERSCRIPT

one has

M(β)=Γ(β)=Γ(β)c,𝑀𝛽Γ𝛽superscriptΓ𝛽superscript𝑐M(\beta)=\mathcal{M}\Gamma(\beta)=\Gamma^{\prime}(\beta)\mathcal{M}^{c},italic_M ( italic_β ) = caligraphic_M roman_Γ ( italic_β ) = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_β ) caligraphic_M start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT , (1)

where Γ(β)=[β1I,βnvI]m×nvmsuperscriptΓ𝛽matrixsubscript𝛽1𝐼subscript𝛽subscript𝑛𝑣𝐼superscript𝑚subscript𝑛𝑣𝑚\Gamma^{\prime}(\beta)=\begin{bmatrix}\beta_{1}I,\ldots\beta_{n_{v}}I\end{% bmatrix}\in\Re^{m\times n_{v}m}roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_β ) = [ start_ARG start_ROW start_CELL italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_I , … italic_β start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_I end_CELL end_ROW end_ARG ] ∈ roman_ℜ start_POSTSUPERSCRIPT italic_m × italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_m end_POSTSUPERSCRIPT and Γ(β)nvn×nΓ𝛽superscriptsubscript𝑛𝑣𝑛𝑛\Gamma(\beta)\in\Re^{n_{v}n\times n}roman_Γ ( italic_β ) ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT. Likewise, for N(θ)=i=1nvθjNj,𝑁𝜃superscriptsubscript𝑖1subscript𝑛𝑣subscript𝜃𝑗subscript𝑁𝑗N(\theta)=\displaystyle{\sum_{i=1}^{n_{v}}}\theta_{j}N_{j},italic_N ( italic_θ ) = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_θ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , with Njn×psubscript𝑁𝑗superscript𝑛𝑝N_{j}\in\Re^{n\times p}italic_N start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n × italic_p end_POSTSUPERSCRIPT and θ𝒮θ:={θnv,θj0;j=1nvθ1=1},𝜃subscript𝒮𝜃assignformulae-sequence𝜃superscriptsubscript𝑛𝑣formulae-sequencesubscript𝜃𝑗0superscriptsubscript𝑗1subscript𝑛𝑣subscript𝜃11\theta\in\mathcal{S}_{\theta}:=\left\{\theta\in\Re^{n_{v}},\,\theta_{j}\geq 0% \,;\displaystyle{\sum_{j=1}^{n_{v}}}\theta_{1}=1\,\right\},italic_θ ∈ caligraphic_S start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT := { italic_θ ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_θ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ≥ 0 ; ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_θ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 1 } , it follows

N(θ)=𝒩Γ(θ)=Γ(θ)𝒩c,𝑁𝜃𝒩Γ𝜃superscriptΓ𝜃superscript𝒩𝑐N(\theta)=\mathcal{N}\Gamma(\theta)=\Gamma^{\prime}(\theta)\mathcal{N}^{c},italic_N ( italic_θ ) = caligraphic_N roman_Γ ( italic_θ ) = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_θ ) caligraphic_N start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT , (2)

where 𝒩n×nvp𝒩superscript𝑛subscript𝑛𝑣𝑝\mathcal{N}\in\Re^{n\times n_{v}p}caligraphic_N ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n × italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_p end_POSTSUPERSCRIPT, 𝒩cnvn×psuperscript𝒩𝑐superscriptsubscript𝑛𝑣𝑛𝑝\mathcal{N}^{c}\in\Re^{n_{v}n\times p}caligraphic_N start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n × italic_p end_POSTSUPERSCRIPT, Γ(θ)nvp×pΓ𝜃superscriptsubscript𝑛𝑣𝑝𝑝\Gamma(\theta)\in\Re^{n_{v}p\times p}roman_Γ ( italic_θ ) ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_p × italic_p end_POSTSUPERSCRIPT, and Γc(θ)n×nvn.superscriptΓ𝑐𝜃superscript𝑛subscript𝑛𝑣𝑛\Gamma^{c}(\theta)\in\Re^{n\times n_{v}n}.roman_Γ start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT ( italic_θ ) ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n × italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n end_POSTSUPERSCRIPT . Using, the previous alternative LPV notation, we have:

\bullet Composed product of two matrix polytopes:

M(β)N(θ)=Γ(β)c𝒩Γ(θ),𝑀𝛽𝑁𝜃superscriptΓ𝛽superscript𝑐𝒩Γ𝜃M(\beta)N(\theta)=\Gamma^{\prime}(\beta)\mathcal{M}^{c}\mathcal{N}\Gamma(% \theta),italic_M ( italic_β ) italic_N ( italic_θ ) = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_β ) caligraphic_M start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT caligraphic_N roman_Γ ( italic_θ ) , (3)

where, by definition, c𝒩=[M1N1M1NnvMnvN1MnvNnv]superscript𝑐𝒩matrixsubscript𝑀1subscript𝑁1subscript𝑀1subscript𝑁subscript𝑛𝑣subscript𝑀subscript𝑛𝑣subscript𝑁1subscript𝑀subscript𝑛𝑣subscript𝑁subscript𝑛𝑣\mathcal{M}^{c}\mathcal{N}=\begin{bmatrix}M_{1}N_{1}&\ldots&M_{1}N_{n_{v}}\\ \vdots&\ddots&\vdots\\ M_{n_{v}}N_{1}&\ldots&M_{n_{v}}N_{n_{v}}\end{bmatrix}caligraphic_M start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT caligraphic_N = [ start_ARG start_ROW start_CELL italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL … end_CELL start_CELL italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL italic_M start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL … end_CELL start_CELL italic_M start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ].

\bullet Pre- and Post-multiplication of a matrix polytope by a constant one: If Mm×n𝑀superscript𝑚𝑛M\in\Re^{m\times n}italic_M ∈ roman_ℜ start_POSTSUPERSCRIPT italic_m × italic_n end_POSTSUPERSCRIPT, then

MN(θ)=Γ(θ)diag(M)𝒩c,𝑀𝑁𝜃superscriptΓ𝜃𝑑𝑖𝑎𝑔𝑀superscript𝒩𝑐MN(\theta)=\Gamma^{\prime}(\theta)diag(M)\mathcal{N}^{c},italic_M italic_N ( italic_θ ) = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_θ ) italic_d italic_i italic_a italic_g ( italic_M ) caligraphic_N start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT , (4)

where diag(M)nvm×nvn𝑑𝑖𝑎𝑔𝑀superscriptsubscript𝑛𝑣𝑚subscript𝑛𝑣𝑛diag(M)\in\Re^{n_{v}m\times n_{v}n}italic_d italic_i italic_a italic_g ( italic_M ) ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_m × italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n end_POSTSUPERSCRIPT. Likewise, if Nn×p𝑁superscript𝑛𝑝N\in\Re^{n\times p}italic_N ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n × italic_p end_POSTSUPERSCRIPT

M(β)N=diag(N)Γ(β),𝑀𝛽𝑁𝑑𝑖𝑎𝑔𝑁Γ𝛽M(\beta)N=\mathcal{M}diag(N)\Gamma(\beta),italic_M ( italic_β ) italic_N = caligraphic_M italic_d italic_i italic_a italic_g ( italic_N ) roman_Γ ( italic_β ) , (5)

where diag(N)nvn×nvp𝑑𝑖𝑎𝑔𝑁superscriptsubscript𝑛𝑣𝑛subscript𝑛𝑣𝑝diag(N)\in\Re^{n_{v}n\times n_{v}p}italic_d italic_i italic_a italic_g ( italic_N ) ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n × italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_p end_POSTSUPERSCRIPT.

\bullet Matrix polytope representation of constant matrices: For Mm×n𝑀superscript𝑚𝑛M\in\Re^{m\times n}italic_M ∈ roman_ℜ start_POSTSUPERSCRIPT italic_m × italic_n end_POSTSUPERSCRIPT, consider =[MM]n×nvmmatrix𝑀𝑀superscript𝑛subscript𝑛𝑣𝑚\mathcal{M}=\begin{bmatrix}M&\ldots&M\end{bmatrix}\in\Re^{n\times n_{v}m}caligraphic_M = [ start_ARG start_ROW start_CELL italic_M end_CELL start_CELL … end_CELL start_CELL italic_M end_CELL end_ROW end_ARG ] ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n × italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_m end_POSTSUPERSCRIPT. Then

M=Γ(β)=cΓ(θ),𝑀superscriptΓ𝛽superscript𝑐Γ𝜃M=\Gamma^{\prime}(\beta)\mathcal{M}=\mathcal{M}^{c}\Gamma(\theta),italic_M = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_β ) caligraphic_M = caligraphic_M start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT roman_Γ ( italic_θ ) , (6)

with compatible Γ(β)superscriptΓ𝛽\Gamma^{\prime}(\beta)roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_β ) and Γ(θ)Γ𝜃\Gamma(\theta)roman_Γ ( italic_θ ). In particular, the nlimit-from𝑛n-italic_n - dimensional identity matrix, In×n𝐼superscript𝑛𝑛I\in\Re^{n\times n}italic_I ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT may read a

I:=I(β)=Γ(β)c or I:=I(θ)=Γ(θ),assign𝐼𝐼𝛽superscriptΓ𝛽superscript𝑐 or 𝐼assign𝐼𝜃Γ𝜃I:=I(\beta)=\Gamma^{\prime}(\beta)\mathcal{I}^{c}\text{ or }I:=I(\theta)=% \mathcal{I}\Gamma(\theta),italic_I := italic_I ( italic_β ) = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_β ) caligraphic_I start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT or italic_I := italic_I ( italic_θ ) = caligraphic_I roman_Γ ( italic_θ ) ,

where =c=[II]n×nvnsuperscriptsuperscript𝑐matrix𝐼𝐼superscript𝑛subscript𝑛𝑣𝑛\mathcal{I}=\mathcal{I}^{c^{\prime}}=\begin{bmatrix}I&\ldots&I\end{bmatrix}\in% \Re^{n\times n_{v}n}caligraphic_I = caligraphic_I start_POSTSUPERSCRIPT italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT = [ start_ARG start_ROW start_CELL italic_I end_CELL start_CELL … end_CELL start_CELL italic_I end_CELL end_ROW end_ARG ] ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n × italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n end_POSTSUPERSCRIPT.

\bullet Sum ()direct-sum(\oplus)( ⊕ ) of a single matrix polytope with the composed product of two matrix polytopes:

Let F(θ)=j=1nvθjFj,𝐹𝜃superscriptsubscript𝑗1subscript𝑛𝑣subscript𝜃𝑗subscript𝐹𝑗F(\theta)=\displaystyle{\sum_{j=1}^{n_{v}}}\theta_{j}F_{j},italic_F ( italic_θ ) = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_θ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_F start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , with Fjm×psubscript𝐹𝑗superscript𝑚𝑝F_{j}\in\Re^{m\times p}italic_F start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_m × italic_p end_POSTSUPERSCRIPT and θ𝒮θ𝜃subscript𝒮𝜃\theta\in\mathcal{S}_{\theta}italic_θ ∈ caligraphic_S start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT. Then

S(β,θ)=F(θ)M(β)N(θ):=I(β)F(θ)+M(β)N(θ)=Γ(β)(c+c𝒩)Γ(θ)=Γ(β)𝒮Γ(θ),𝑆𝛽𝜃assigndirect-sum𝐹𝜃𝑀𝛽𝑁𝜃𝐼𝛽𝐹𝜃𝑀𝛽𝑁𝜃missing-subexpressionsuperscriptΓ𝛽superscript𝑐superscript𝑐𝒩Γ𝜃superscriptΓ𝛽𝒮Γ𝜃\begin{array}[]{rcl}S(\beta,\theta)&=&F(\theta)\oplus M(\beta)N(\theta):=I(% \beta)F(\theta)+M(\beta)N(\theta)\\ &=&\Gamma^{\prime}(\beta)(\mathcal{I}^{c}\mathcal{F}+\mathcal{M}^{c}\mathcal{N% })\Gamma(\theta)=\Gamma^{\prime}(\beta)\mathcal{S}\Gamma(\theta),\end{array}start_ARRAY start_ROW start_CELL italic_S ( italic_β , italic_θ ) end_CELL start_CELL = end_CELL start_CELL italic_F ( italic_θ ) ⊕ italic_M ( italic_β ) italic_N ( italic_θ ) := italic_I ( italic_β ) italic_F ( italic_θ ) + italic_M ( italic_β ) italic_N ( italic_θ ) end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = end_CELL start_CELL roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_β ) ( caligraphic_I start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT caligraphic_F + caligraphic_M start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT caligraphic_N ) roman_Γ ( italic_θ ) = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_β ) caligraphic_S roman_Γ ( italic_θ ) , end_CELL end_ROW end_ARRAY (7)

where 𝒮nvn×nvp𝒮superscriptsubscript𝑛𝑣𝑛subscript𝑛𝑣𝑝\mathcal{S}\in\Re^{n_{v}n\times n_{v}p}caligraphic_S ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n × italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_p end_POSTSUPERSCRIPT, with

𝒮=[F1+M1N1Fnv+M1NnvF1+MnvN1Fnv+MnvNnv]:=[𝒮ij].𝒮matrixsubscript𝐹1subscript𝑀1subscript𝑁1subscript𝐹subscript𝑛𝑣subscript𝑀1subscript𝑁subscript𝑛𝑣subscript𝐹1subscript𝑀subscript𝑛𝑣subscript𝑁1subscript𝐹subscript𝑛𝑣subscript𝑀subscript𝑛𝑣subscript𝑁subscript𝑛𝑣assignmatrixsubscript𝒮𝑖𝑗\mathcal{S}=\begin{bmatrix}F_{1}+M_{1}N_{1}&\ldots&F_{n_{v}}+M_{1}N_{n_{v}}\\ \vdots&\ddots&\vdots\\ F_{1}+M_{n_{v}}N_{1}&\ldots&F_{n_{v}}+M_{n_{v}}N_{n_{v}}\end{bmatrix}:=\begin{% bmatrix}\mathcal{S}_{ij}\end{bmatrix}.caligraphic_S = [ start_ARG start_ROW start_CELL italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL … end_CELL start_CELL italic_F start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT + italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_M start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL … end_CELL start_CELL italic_F start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT + italic_M start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] := [ start_ARG start_ROW start_CELL caligraphic_S start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] .

\bullet Pre- and Post-multiplication of a composed matrix polytope by a constant one:

If Mm×n𝑀superscript𝑚𝑛M\in\Re^{m\times n}italic_M ∈ roman_ℜ start_POSTSUPERSCRIPT italic_m × italic_n end_POSTSUPERSCRIPT, then

MS(β,θ)=Γ(β)diag(M)𝒮Γ(θ),𝑀𝑆𝛽𝜃superscriptΓ𝛽𝑑𝑖𝑎𝑔𝑀𝒮Γ𝜃MS(\beta,\theta)=\Gamma^{\prime}(\beta)diag(M)\mathcal{S}\Gamma(\theta),italic_M italic_S ( italic_β , italic_θ ) = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_β ) italic_d italic_i italic_a italic_g ( italic_M ) caligraphic_S roman_Γ ( italic_θ ) , (8)

where diag(M)nvm×nvn𝑑𝑖𝑎𝑔𝑀superscriptsubscript𝑛𝑣𝑚subscript𝑛𝑣𝑛diag(M)\in\Re^{n_{v}m\times n_{v}n}italic_d italic_i italic_a italic_g ( italic_M ) ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_m × italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n end_POSTSUPERSCRIPT. Likewise, if Nn×p𝑁superscript𝑛𝑝N\in\Re^{n\times p}italic_N ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n × italic_p end_POSTSUPERSCRIPT

S(β,θ)N=Γ(β)𝒮diag(N)Γ(θ),𝑆𝛽𝜃𝑁superscriptΓ𝛽𝒮𝑑𝑖𝑎𝑔𝑁Γ𝜃S(\beta,\theta)N=\Gamma^{\prime}(\beta)\mathcal{S}diag(N)\Gamma(\theta),italic_S ( italic_β , italic_θ ) italic_N = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_β ) caligraphic_S italic_d italic_i italic_a italic_g ( italic_N ) roman_Γ ( italic_θ ) , (9)

where diag(N)nvm×nvp𝑑𝑖𝑎𝑔𝑁superscriptsubscript𝑛𝑣𝑚subscript𝑛𝑣𝑝diag(N)\in\Re^{n_{v}m\times n_{v}p}italic_d italic_i italic_a italic_g ( italic_N ) ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_m × italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_p end_POSTSUPERSCRIPT.

2.2 Extended Farkas’ lemma (EFL)

Lemma 2.1.

23, 24 Consider two polyhedral sets of nsuperscript𝑛\Re^{n}roman_ℜ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT, defined by 𝒫i={xn:Pixϕi}subscript𝒫𝑖conditional-set𝑥superscript𝑛subscript𝑃𝑖𝑥subscriptitalic-ϕ𝑖\mathcal{P}_{i}=\{x\in\Re^{n}:P_{i}x\leq\phi_{i}\}caligraphic_P start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = { italic_x ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT : italic_P start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_x ≤ italic_ϕ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT }, for i=1,2𝑖12i=1,2italic_i = 1 , 2, with Pilpi×nusubscript𝑃𝑖superscriptsubscript𝑙subscript𝑝𝑖subscript𝑛𝑢P_{i}\in\Re^{l_{p_{i}}\times n_{u}}italic_P start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and positive vectors ϕilpisubscriptitalic-ϕ𝑖superscriptsubscript𝑙subscript𝑝𝑖\phi_{i}\in\Re^{l_{p_{i}}}italic_ϕ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_POSTSUPERSCRIPT. Then 𝒫1𝒫2subscript𝒫1subscript𝒫2\mathcal{P}_{1}\subseteq\mathcal{P}_{2}caligraphic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⊆ caligraphic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT or, equivalently, P2xϕ2subscript𝑃2𝑥subscriptitalic-ϕ2P_{2}x\leq\phi_{2}italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x ≤ italic_ϕ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, xfor-all𝑥\forall x∀ italic_x :::: P1xϕ1subscript𝑃1𝑥subscriptitalic-ϕ1P_{1}x\leq\phi_{1}italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x ≤ italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, if and only if there exists a non-negative matrix Qlp2×lp1𝑄superscriptsubscript𝑙subscript𝑝2subscript𝑙subscript𝑝1Q\in\Re^{l_{p_{2}}\times l_{p_{1}}}italic_Q ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT × italic_l start_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_POSTSUPERSCRIPT such that QP1=P2𝑄subscript𝑃1subscript𝑃2QP_{1}=P_{2}italic_Q italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and Qϕ1ϕ2.𝑄subscriptitalic-ϕ1subscriptitalic-ϕ2Q\phi_{1}\leq\phi_{2}.italic_Q italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ italic_ϕ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT .

3 Problem presentation

Consider a linear parameter-varying (LPV) discrete-time system given by

x+subscript𝑥\displaystyle x_{+}italic_x start_POSTSUBSCRIPT + end_POSTSUBSCRIPT =A(α)x+B(α)u+Bp(α)pabsent𝐴𝛼𝑥𝐵𝛼𝑢subscript𝐵𝑝𝛼𝑝\displaystyle=A(\alpha)x+B(\alpha)u+B_{p}(\alpha)p= italic_A ( italic_α ) italic_x + italic_B ( italic_α ) italic_u + italic_B start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_α ) italic_p (10a)
y𝑦\displaystyle yitalic_y =Cx+Dηηabsent𝐶𝑥subscript𝐷𝜂𝜂\displaystyle=Cx+D_{\eta}\eta= italic_C italic_x + italic_D start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_η (10b)

where, for k𝑘k\in\mathbb{N}italic_k ∈ blackboard_N, xxknx𝑥subscript𝑥𝑘superscriptsubscript𝑛𝑥x\cong x_{k}\in\Re^{n_{x}}italic_x ≅ italic_x start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_POSTSUPERSCRIPT is the state vector and x+xk+1subscript𝑥subscript𝑥𝑘1x_{+}\cong x_{k+1}italic_x start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ≅ italic_x start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT, uuknu𝑢subscript𝑢𝑘superscriptsubscript𝑛𝑢u\cong u_{k}\in\Re^{n_{u}}italic_u ≅ italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT is the control input, yykny𝑦subscript𝑦𝑘superscriptsubscript𝑛𝑦y\cong y_{k}\in\Re^{n_{y}}italic_y ≅ italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT is the measured output vector, and ppknp𝑝subscript𝑝𝑘superscriptsubscript𝑛𝑝p\cong p_{k}\in\Re^{n_{p}}italic_p ≅ italic_p start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and ηηknη𝜂subscript𝜂𝑘superscriptsubscript𝑛𝜂\eta\cong\eta_{k}\in\Re^{n_{\eta}}italic_η ≅ italic_η start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT end_POSTSUPERSCRIPT are exogenous and bounded process and measurement disturbance vectors, respectively. The matrices in system (10) are such that Cny×nx𝐶superscriptsubscript𝑛𝑦subscript𝑛𝑥C\in\Re^{n_{y}\times n_{x}}italic_C ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, Dηny×nηsubscript𝐷𝜂superscriptsubscript𝑛𝑦subscript𝑛𝜂D_{\eta}\in\Re^{n_{y}\times n_{\eta}}italic_D start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, and

[A(α)B(α)Bp(α)]=i=1nvαi,k[AiBiBpi],matrix𝐴𝛼𝐵𝛼subscript𝐵𝑝𝛼superscriptsubscript𝑖1subscript𝑛𝑣subscript𝛼𝑖𝑘matrixsubscript𝐴𝑖subscript𝐵𝑖subscript𝐵𝑝𝑖\begin{bmatrix}A(\alpha)&B(\alpha)&B_{p}(\alpha)\end{bmatrix}=\sum_{i=1}^{n_{v% }}\alpha_{i,k}\begin{bmatrix}A_{i}&B_{i}&B_{pi}\end{bmatrix},[ start_ARG start_ROW start_CELL italic_A ( italic_α ) end_CELL start_CELL italic_B ( italic_α ) end_CELL start_CELL italic_B start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_α ) end_CELL end_ROW end_ARG ] = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT italic_i , italic_k end_POSTSUBSCRIPT [ start_ARG start_ROW start_CELL italic_A start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL start_CELL italic_B start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL start_CELL italic_B start_POSTSUBSCRIPT italic_p italic_i end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] , (11)

with Ainx×nxsubscript𝐴𝑖superscriptsubscript𝑛𝑥subscript𝑛𝑥A_{i}\in\Re^{{n_{x}}\times{n_{x}}}italic_A start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, Binx×nusubscript𝐵𝑖superscriptsubscript𝑛𝑥subscript𝑛𝑢B_{i}\in\Re^{n_{x}\times n_{u}}italic_B start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and Bpinx×npsubscript𝐵𝑝𝑖superscriptsubscript𝑛𝑥subscript𝑛𝑝B_{pi}\in\Re^{n_{x}\times n_{p}}italic_B start_POSTSUBSCRIPT italic_p italic_i end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, for i=1,,nv𝑖1subscript𝑛𝑣i=1,\ldots,{n_{v}}italic_i = 1 , … , italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT, where the parameter-varying vector ααk𝒮={αnv:αi0,i=1nvαi=1}𝛼subscript𝛼𝑘𝒮conditional-set𝛼superscriptsubscript𝑛𝑣formulae-sequencesubscript𝛼𝑖0superscriptsubscript𝑖1subscript𝑛𝑣subscript𝛼𝑖1\alpha\cong\alpha_{k}\in\mathcal{S}=\{\alpha\in\Re^{n_{v}}:\alpha_{i}\geq 0,% \sum_{i=1}^{n_{v}}\alpha_{i}=1\}italic_α ≅ italic_α start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ caligraphic_S = { italic_α ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUPERSCRIPT : italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≥ 0 , ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 1 } is supposed to be available in real-time.

Moreover, the system is subject to state, control amplitude, and control rate variation constraints represented by the closed polyhedral sets:

𝒳=𝒳absent\displaystyle\mathcal{X}=caligraphic_X = {x:Xx1lx},Xlx×nx,conditional-set𝑥𝑋𝑥1lx𝑋superscriptsubscript𝑙𝑥subscript𝑛𝑥\displaystyle\{x:Xx\leq\textbf{1${}_{l_{x}}$}\},X\in\Re^{l_{x}\times n_{x}},{ italic_x : italic_X italic_x ≤ 1 start_FLOATSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_FLOATSUBSCRIPT } , italic_X ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , (12a)
𝒰=𝒰absent\displaystyle\mathcal{U}=caligraphic_U = {u:Uu1lu},Ulu×nu,conditional-set𝑢𝑈𝑢1lu𝑈superscriptsubscript𝑙𝑢subscript𝑛𝑢\displaystyle\{u:Uu\leq\textbf{1${}_{l_{u}}$}\},U\in\Re^{l_{u}\times n_{u}},{ italic_u : italic_U italic_u ≤ 1 start_FLOATSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_FLOATSUBSCRIPT } , italic_U ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , (12b)
𝒰δ=subscript𝒰𝛿absent\displaystyle\mathcal{U}_{\delta}=caligraphic_U start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT = {δu:Uδδu1ld},Uδluδ×nu,conditional-set𝛿𝑢subscript𝑈𝛿𝛿𝑢1ldsubscript𝑈𝛿superscriptsubscript𝑙subscript𝑢𝛿subscript𝑛𝑢\displaystyle\{\delta u:U_{\delta}\delta u\leq\textbf{1${}_{l_{d}}$}\},U_{% \delta}\in\Re^{l_{u_{\delta}}\times n_{u}},{ italic_δ italic_u : italic_U start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT italic_δ italic_u ≤ 1 start_FLOATSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_FLOATSUBSCRIPT } , italic_U start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , (12c)

where, by definition, δu=u+u𝛿𝑢subscript𝑢𝑢\delta u=u_{+}-uitalic_δ italic_u = italic_u start_POSTSUBSCRIPT + end_POSTSUBSCRIPT - italic_u, and the persistent bounded disturbances

𝒫=𝒫absent\displaystyle\mathcal{P}=caligraphic_P = {p:Pp1lp},Plp×np,conditional-set𝑝𝑃𝑝subscript1subscript𝑙𝑝𝑃superscriptsubscript𝑙𝑝subscript𝑛𝑝\displaystyle\{p:Pp\leq{\textbf{1}}_{l_{p}}\},P\in\Re^{l_{p}\times n_{p}},{ italic_p : italic_P italic_p ≤ 1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUBSCRIPT } , italic_P ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , (13a)
𝒩=𝒩absent\displaystyle\mathcal{N}=caligraphic_N = {η:Nη1ln},Nln×nη.conditional-set𝜂𝑁𝜂subscript1subscript𝑙𝑛𝑁superscriptsubscript𝑙𝑛subscript𝑛𝜂\displaystyle\{\eta:N\eta\leq{\textbf{1}}_{l_{n}}\},N\in\Re^{l_{n}\times n_{% \eta}}.{ italic_η : italic_N italic_η ≤ 1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT } , italic_N ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT end_POSTSUPERSCRIPT . (13b)

The desired control objective is as follows: Compute an incremental output feedback control law, possibly dependent of the varying parameters,

u+=u+f(u,y,y+,α,α+)δu,subscript𝑢𝑢superscript𝑓𝑢𝑦subscript𝑦𝛼subscript𝛼𝛿𝑢absentu_{+}=u+\overbrace{f(u,y,y_{+},\alpha,\alpha_{+})}^{\delta u\cong},italic_u start_POSTSUBSCRIPT + end_POSTSUBSCRIPT = italic_u + over⏞ start_ARG italic_f ( italic_u , italic_y , italic_y start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α , italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) end_ARG start_POSTSUPERSCRIPT italic_δ italic_u ≅ end_POSTSUPERSCRIPT , (14)

and an admissible set of initial conditions for the corresponding closed-loop system, denoted ΛΛ\Lambdaroman_Λ, such that for any closed-loop initial state belonging to ΛΛ\Lambdaroman_Λ, any persistent disturbances sequences p𝒫𝑝𝒫p\in\mathcal{P}italic_p ∈ caligraphic_P and η𝒩𝜂𝒩\eta\in\mathcal{N}italic_η ∈ caligraphic_N, and for any varying parameters (α,α+)𝒮×𝒮𝛼subscript𝛼𝒮𝒮(\alpha,\alpha_{+})\in\mathcal{S}\times\mathcal{S}( italic_α , italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) ∈ caligraphic_S × caligraphic_S, the corresponding closed-loop state trajectory obeys the state constraints, x𝒳𝑥𝒳x\in\mathcal{X}italic_x ∈ caligraphic_X, fulfills the control amplitude and the control rate variation constraints, u𝒰𝑢𝒰u\in\mathcal{U}italic_u ∈ caligraphic_U and δu𝒰δ𝛿𝑢subscript𝒰𝛿\delta u\in\mathcal{U}_{\delta}italic_δ italic_u ∈ caligraphic_U start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT, and is ultimately bounded in a small set Λ0ΛsubscriptΛ0Λ\Lambda_{0}\subseteq\Lambdaroman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ⊆ roman_Λ around the origin.

To pursue the control objective, which, in particular, considers rate-control limits and an incremental output-like feedback control law, we formulate the problem from the definition of augmented state and output vectors, respectively, given by

ξ=[xu]nξ,nξ=nx+nuformulae-sequence𝜉superscriptmatrixsuperscript𝑥superscript𝑢superscriptsubscript𝑛𝜉subscript𝑛𝜉subscript𝑛𝑥subscript𝑛𝑢\xi=\begin{bmatrix}x^{\prime}&u^{\prime}\end{bmatrix}^{\prime}\in\Re^{n_{\xi}}% ,\leavevmode\nobreak\ n_{\xi}=n_{x}+n_{u}italic_ξ = [ start_ARG start_ROW start_CELL italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_CELL start_CELL italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_n start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT = italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT + italic_n start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT (15)

and

υ=[yuy+]nυ,nυ=2ny+nu.formulae-sequence𝜐superscriptmatrixsuperscript𝑦superscript𝑢superscriptsubscript𝑦superscriptsubscript𝑛𝜐subscript𝑛𝜐2subscript𝑛𝑦subscript𝑛𝑢\upsilon=\begin{bmatrix}y^{\prime}&u^{\prime}&y_{+}^{\prime}\end{bmatrix}^{% \prime}\in\Re^{n_{\upsilon}},\leavevmode\nobreak\ n_{\upsilon}=2n_{y}+n_{u}.italic_υ = [ start_ARG start_ROW start_CELL italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_CELL start_CELL italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_CELL start_CELL italic_y start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_υ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_n start_POSTSUBSCRIPT italic_υ end_POSTSUBSCRIPT = 2 italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT + italic_n start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT . (16)

Thus, we can define the following augmented LPV system from (10) such that the control variation vector δu𝛿𝑢\delta uitalic_δ italic_u and the augmented output vector υ𝜐\upsilonitalic_υ, appear as virtual control input and output signals, respectively:

ξ+subscript𝜉\displaystyle\xi_{+}italic_ξ start_POSTSUBSCRIPT + end_POSTSUBSCRIPT =𝔸(α)ξ+𝔹δu+𝔹p(α)pabsent𝔸𝛼𝜉𝔹𝛿𝑢subscript𝔹𝑝𝛼𝑝\displaystyle=\mathbb{A}(\alpha)\xi+\mathbb{B}\delta u+\mathbb{B}_{p}(\alpha)p= blackboard_A ( italic_α ) italic_ξ + blackboard_B italic_δ italic_u + blackboard_B start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_α ) italic_p (17a)
υ𝜐\displaystyle\upsilonitalic_υ =[ξx+]+𝔻ηηabsentmatrix𝜉subscript𝑥subscript𝔻𝜂𝜂\displaystyle=\mathbb{C}\begin{bmatrix}\xi\\ x_{+}\end{bmatrix}+\mathbb{D}_{\eta}\eta= blackboard_C [ start_ARG start_ROW start_CELL italic_ξ end_CELL end_ROW start_ROW start_CELL italic_x start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] + blackboard_D start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_η (17b)

where 𝔸(α)=[A(α)B(α)0I],𝔹p(α)=[Bp(α)0],𝔹=[0I],=[C000I000C]formulae-sequence𝔸𝛼matrix𝐴𝛼𝐵𝛼0𝐼formulae-sequencesubscript𝔹𝑝𝛼matrixsubscript𝐵𝑝𝛼0formulae-sequence𝔹matrix0𝐼matrix𝐶000𝐼000𝐶\mathbb{A}(\alpha)=\begin{bmatrix}A(\alpha)&B(\alpha)\\ 0&I\end{bmatrix},\leavevmode\nobreak\ \leavevmode\nobreak\ \mathbb{B}_{p}(% \alpha)=\begin{bmatrix}{B}_{p}(\alpha)\\ 0\end{bmatrix},\leavevmode\nobreak\ \leavevmode\nobreak\ \mathbb{B}=\begin{% bmatrix}0\\ I\end{bmatrix},\leavevmode\nobreak\ \leavevmode\nobreak\ \mathbb{C}=\begin{% bmatrix}C&0&0\\ 0&I&0\\ 0&0&C\end{bmatrix}blackboard_A ( italic_α ) = [ start_ARG start_ROW start_CELL italic_A ( italic_α ) end_CELL start_CELL italic_B ( italic_α ) end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_I end_CELL end_ROW end_ARG ] , blackboard_B start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_α ) = [ start_ARG start_ROW start_CELL italic_B start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_α ) end_CELL end_ROW start_ROW start_CELL 0 end_CELL end_ROW end_ARG ] , blackboard_B = [ start_ARG start_ROW start_CELL 0 end_CELL end_ROW start_ROW start_CELL italic_I end_CELL end_ROW end_ARG ] , blackboard_C = [ start_ARG start_ROW start_CELL italic_C end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_I end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_C end_CELL end_ROW end_ARG ] and 𝔻η=[Dη00]subscript𝔻𝜂matrixsubscript𝐷𝜂00\mathbb{D}_{\eta}=\begin{bmatrix}D_{\eta}\\ 0\\ 0\end{bmatrix}blackboard_D start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT = [ start_ARG start_ROW start_CELL italic_D start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL end_ROW end_ARG ].

Next, we can consider the following parameter-varying control increment input vector, which is the virtual output feedback control input for the augmented system (17),

δu=[K(α)K¯(α)K^(α+)][yuy+]=𝕂(α+,α)υ,𝛿𝑢matrix𝐾𝛼¯𝐾𝛼^𝐾subscript𝛼matrix𝑦𝑢subscript𝑦𝕂subscript𝛼𝛼𝜐\delta u=\begin{bmatrix}K(\alpha)&\bar{K}(\alpha)&\hat{K}(\alpha_{+})\end{% bmatrix}\begin{bmatrix}y\\ u\\ y_{+}\end{bmatrix}=\mathbb{K}(\alpha_{+},\alpha)\upsilon,italic_δ italic_u = [ start_ARG start_ROW start_CELL italic_K ( italic_α ) end_CELL start_CELL over¯ start_ARG italic_K end_ARG ( italic_α ) end_CELL start_CELL over^ start_ARG italic_K end_ARG ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARG ] [ start_ARG start_ROW start_CELL italic_y end_CELL end_ROW start_ROW start_CELL italic_u end_CELL end_ROW start_ROW start_CELL italic_y start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] = blackboard_K ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) italic_υ , (18)

where, by definition,

𝕂(α+,α)=[(i=1nvαi[KiK¯i])(j=1nvα+,jK^j)]=i=1nvj=1nvαiα+,j[KiK¯iK^j],𝕂subscript𝛼𝛼matrixsuperscriptsubscript𝑖1subscript𝑛𝑣subscript𝛼𝑖matrixsubscript𝐾𝑖subscript¯𝐾𝑖superscriptsubscript𝑗1subscript𝑛𝑣subscript𝛼𝑗subscript^𝐾𝑗superscriptsubscript𝑖1subscript𝑛𝑣superscriptsubscript𝑗1subscript𝑛𝑣subscript𝛼𝑖subscript𝛼𝑗matrixsubscript𝐾𝑖subscript¯𝐾𝑖subscript^𝐾𝑗\displaystyle\mathbb{K}(\alpha_{+},\alpha)=\begin{bmatrix}\left(\displaystyle{% \sum_{i=1}^{n_{v}}}\alpha_{i}\begin{bmatrix}K_{i}&\bar{K}_{i}\end{bmatrix}% \right)&\left(\displaystyle{\sum_{j=1}^{n_{v}}}\alpha_{+,j}\leavevmode\nobreak% \ \hat{K}_{j}\right)\end{bmatrix}=\displaystyle{\sum_{i=1}^{n_{v}}}% \displaystyle{\sum_{j=1}^{n_{v}}}\alpha_{i}\,\alpha_{+,j}\leavevmode\nobreak\ % \begin{bmatrix}K_{i}&\bar{K}_{i}&\hat{K}_{j}\end{bmatrix},blackboard_K ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) = [ start_ARG start_ROW start_CELL ( ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT [ start_ARG start_ROW start_CELL italic_K start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL start_CELL over¯ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] ) end_CELL start_CELL ( ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT + , italic_j end_POSTSUBSCRIPT over^ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARG ] = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_α start_POSTSUBSCRIPT + , italic_j end_POSTSUBSCRIPT [ start_ARG start_ROW start_CELL italic_K start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL start_CELL over¯ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL start_CELL over^ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] ,

with Kinu×nysubscript𝐾𝑖superscriptsubscript𝑛𝑢subscript𝑛𝑦K_{i}\in\Re^{n_{u}\times n_{y}}italic_K start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, K¯inu×nusubscript¯𝐾𝑖superscriptsubscript𝑛𝑢subscript𝑛𝑢\bar{K}_{i}\in\Re^{n_{u}\times n_{u}}over¯ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, i=1,,nvfor-all𝑖1subscript𝑛𝑣\forall i=1,\ldots,{n_{v}}∀ italic_i = 1 , … , italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT, and K^jnu×nysubscript^𝐾𝑗superscriptsubscript𝑛𝑢subscript𝑛𝑦\hat{K}_{j}\in\Re^{n_{u}\times n_{y}}over^ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT end_POSTSUPERSCRIPT.

Remark 3.1.

Notice, from (18), that the actual parameter-varying incremental control input, (14), to be applied to the plant (10) at each new discrete-time instant k𝑘kitalic_k, reads

uk=(I+K¯(αk1))uk1+K(αk1)yk1+K^(αk)yk.subscript𝑢𝑘𝐼¯𝐾subscript𝛼𝑘1subscript𝑢𝑘1𝐾subscript𝛼𝑘1subscript𝑦𝑘1^𝐾subscript𝛼𝑘subscript𝑦𝑘u_{k}=\left(I+\bar{K}(\alpha_{k-1})\right)u_{k-1}+K(\alpha_{k-1})y_{k-1}+\hat{% K}(\alpha_{k})y_{k}.italic_u start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = ( italic_I + over¯ start_ARG italic_K end_ARG ( italic_α start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ) ) italic_u start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT + italic_K ( italic_α start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ) italic_y start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT + over^ start_ARG italic_K end_ARG ( italic_α start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) italic_y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT . (19)

In particular, in the initial instant k=0𝑘0k=0italic_k = 0, y0subscript𝑦0y_{0}italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is directly transferred to u0subscript𝑢0u_{0}italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, if K^(α0)0^𝐾subscript𝛼00\hat{K}(\alpha_{0})\neq 0over^ start_ARG italic_K end_ARG ( italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≠ 0.

From (17) and (18), the closed-loop system can be represented by

ξ+=𝔸cl(α+,α)ξ+𝔹dcl(α+,α)d+,subscript𝜉superscript𝔸𝑐𝑙subscript𝛼𝛼𝜉subscriptsuperscript𝔹𝑐𝑙𝑑subscript𝛼𝛼subscript𝑑\xi_{+}=\mathbb{A}^{cl}(\alpha_{+},\alpha)\xi+\mathbb{B}^{cl}_{d}(\alpha_{+},% \alpha)d_{+},italic_ξ start_POSTSUBSCRIPT + end_POSTSUBSCRIPT = blackboard_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) italic_ξ + blackboard_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) italic_d start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , (20)

where d+=[pηη+]nd,nd=2np+nηformulae-sequencesubscript𝑑superscriptmatrixsuperscript𝑝superscript𝜂subscriptsuperscript𝜂superscriptsubscript𝑛𝑑subscript𝑛𝑑2subscript𝑛𝑝subscript𝑛𝜂d_{+}=\begin{bmatrix}p^{\prime}&\eta^{\prime}&\eta^{\prime}_{+}\end{bmatrix}^{% \prime}\in\Re^{n_{d}},n_{d}=2n_{p}+n_{\eta}italic_d start_POSTSUBSCRIPT + end_POSTSUBSCRIPT = [ start_ARG start_ROW start_CELL italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_CELL start_CELL italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_CELL start_CELL italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_n start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT = 2 italic_n start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT + italic_n start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT, and

𝔸cl(α+,α)=[A(α)B(α)K(α)C+K^(α+)CA(α)I+K¯(α)+K^(α+)CB(α)],𝔹dcl(α+,α)=[Bp(α)00K^(α+)CBp(α)K(α)DηK^(α+)Dη].formulae-sequencesuperscript𝔸𝑐𝑙subscript𝛼𝛼matrix𝐴𝛼𝐵𝛼𝐾𝛼𝐶^𝐾subscript𝛼𝐶𝐴𝛼𝐼¯𝐾𝛼^𝐾subscript𝛼𝐶𝐵𝛼subscriptsuperscript𝔹𝑐𝑙𝑑subscript𝛼𝛼matrixsubscript𝐵𝑝𝛼00^𝐾subscript𝛼𝐶subscript𝐵𝑝𝛼𝐾𝛼subscript𝐷𝜂^𝐾subscript𝛼subscript𝐷𝜂\mathbb{A}^{cl}(\alpha_{+},\alpha)=\begin{bmatrix}A(\alpha)&B(\alpha)\\ K(\alpha)C+\hat{K}(\alpha_{+})CA(\alpha)&I+\bar{K}(\alpha)+\hat{K}(\alpha_{+})% CB(\alpha)\end{bmatrix},\ \mathbb{B}^{cl}_{d}(\alpha_{+},\alpha)=\begin{% bmatrix}B_{p}(\alpha)&0&0\\ \hat{K}(\alpha_{+})CB_{p}(\alpha)&K(\alpha)D_{\eta}&\hat{K}(\alpha_{+})D_{\eta% }\end{bmatrix}.blackboard_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) = [ start_ARG start_ROW start_CELL italic_A ( italic_α ) end_CELL start_CELL italic_B ( italic_α ) end_CELL end_ROW start_ROW start_CELL italic_K ( italic_α ) italic_C + over^ start_ARG italic_K end_ARG ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) italic_C italic_A ( italic_α ) end_CELL start_CELL italic_I + over¯ start_ARG italic_K end_ARG ( italic_α ) + over^ start_ARG italic_K end_ARG ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) italic_C italic_B ( italic_α ) end_CELL end_ROW end_ARG ] , blackboard_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) = [ start_ARG start_ROW start_CELL italic_B start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_α ) end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL over^ start_ARG italic_K end_ARG ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) italic_C italic_B start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_α ) end_CELL start_CELL italic_K ( italic_α ) italic_D start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT end_CELL start_CELL over^ start_ARG italic_K end_ARG ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) italic_D start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] .

Notice that, by definition, both sequences η𝜂\etaitalic_η and η+subscript𝜂\eta_{+}italic_η start_POSTSUBSCRIPT + end_POSTSUBSCRIPT are bounded within the same set 𝒩𝒩\mathcal{N}caligraphic_N, (13b). Thus, from (12)-(13), the closed-loop system (20) is subject to the control rate constraints represented by 𝒰δsubscript𝒰𝛿\mathcal{U}_{\delta}caligraphic_U start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT, as well as to the augmented state constraints represented by

Ξ={ξ:𝕏ξ1lξ},𝕃=[X00U]lξ×nξ,formulae-sequenceΞconditional-set𝜉𝕏𝜉subscript1subscript𝑙𝜉𝕃matrix𝑋00𝑈superscriptsubscript𝑙𝜉subscript𝑛𝜉\Xi=\{\xi:\mathbb{X}\xi\leq\textbf{1}_{l_{\xi}}\},\leavevmode\nobreak\ \mathbb% {L}=\begin{bmatrix}X&0\\ 0&U\end{bmatrix}\in\Re^{l_{\xi}\times n_{\xi}},roman_Ξ = { italic_ξ : blackboard_X italic_ξ ≤ 1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT end_POSTSUBSCRIPT } , blackboard_L = [ start_ARG start_ROW start_CELL italic_X end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_U end_CELL end_ROW end_ARG ] ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , (21)

where lξ=lx+lusubscript𝑙𝜉subscript𝑙𝑥subscript𝑙𝑢l_{\xi}=l_{x}+l_{u}italic_l start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT = italic_l start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT + italic_l start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT, and the augmented persistent disturbance bounds

Δ={d+:𝔻d+1lΔ},𝔻=[P000N000N]ld×nd,formulae-sequenceΔconditional-setsubscript𝑑𝔻subscript𝑑subscript1subscript𝑙Δ𝔻matrix𝑃000𝑁000𝑁superscriptsubscript𝑙𝑑subscript𝑛𝑑\Delta=\{d_{+}:\mathbb{D}d_{+}\leq\textbf{1}_{l_{\Delta}}\},\leavevmode% \nobreak\ \mathbb{D}=\begin{bmatrix}P&0&0\\ 0&N&0\\ 0&0&N\end{bmatrix}\in\Re^{l_{d}\times n_{d}},roman_Δ = { italic_d start_POSTSUBSCRIPT + end_POSTSUBSCRIPT : blackboard_D italic_d start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ≤ 1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT roman_Δ end_POSTSUBSCRIPT end_POSTSUBSCRIPT } , blackboard_D = [ start_ARG start_ROW start_CELL italic_P end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_N end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_N end_CELL end_ROW end_ARG ] ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , (22)

where ld=lp+2lηsubscript𝑙𝑑subscript𝑙𝑝2subscript𝑙𝜂l_{d}=l_{p}+2l_{\eta}italic_l start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT = italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT + 2 italic_l start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT.

Now, to determine the set of admissible initial augmented states such that the corresponding trajectories will respect the constraints irrespective the applied bounded persistent disturbances, we introduce the concept of contractive Robust Positively Invariant (RPI) set (also called ΔΔ\Deltaroman_Δ-invariant set), with a UB-set, extending to the parameter-varying augmented system (20) the Definition 1 in 19 p. 9746.

Definition 3.2.

A set ΛnξΛsuperscriptsubscript𝑛𝜉\Lambda\in\Re^{n_{\xi}}roman_Λ ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT is a contractive Robust Positive Invariant (RPI-) set of the system (20), with ultimately bounded (UB-)set Λ0ΛsuperscriptΛ0Λ\Lambda^{0}\subseteq\Lambdaroman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ⊆ roman_Λ, if for any initial condition ξ0=[x0u0]Λsubscript𝜉0superscriptmatrixsubscriptsuperscript𝑥0subscriptsuperscript𝑢0Λ\xi_{0}=\begin{bmatrix}x^{\prime}_{0}&u^{\prime}_{0}\end{bmatrix}^{\prime}\in\Lambdaitalic_ξ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = [ start_ARG start_ROW start_CELL italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_CELL start_CELL italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ roman_Λ and any disturbance sequence d+=[pηη+]Δsubscript𝑑superscriptmatrixsuperscript𝑝superscript𝜂subscriptsuperscript𝜂Δd_{+}=\begin{bmatrix}p^{\prime}&\eta^{\prime}&\eta^{\prime}_{+}\end{bmatrix}^{% \prime}\in\Deltaitalic_d start_POSTSUBSCRIPT + end_POSTSUBSCRIPT = [ start_ARG start_ROW start_CELL italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_CELL start_CELL italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_CELL start_CELL italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ roman_Δ, the corresponding state trajectory remains inside ΛΛ\Lambdaroman_Λ, converge to Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT in a finite number of steps, and remains ultimately bounded within for all (α,α+)𝒮×𝒮𝛼subscript𝛼𝒮𝒮(\alpha,\alpha_{+})\in\mathcal{S}\times\mathcal{S}( italic_α , italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) ∈ caligraphic_S × caligraphic_S.

Hence, the control objective tackled in this work can be formulated within the augmented state framework, utilizing the above concept of RPI-set, as follows.

Problem 3.3.

Find stabilizing control increment gains K(α)𝐾𝛼K(\alpha)italic_K ( italic_α ), K¯(α)¯𝐾𝛼\bar{K}(\alpha)over¯ start_ARG italic_K end_ARG ( italic_α ), and K^(α+)^𝐾subscript𝛼\hat{K}(\alpha_{+})over^ start_ARG italic_K end_ARG ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) in (18), a large contractive RPI set ΛΞlξΛΞsuperscriptsubscript𝑙𝜉\Lambda\subseteq\Xi\in\Re^{l_{\xi}}roman_Λ ⊆ roman_Ξ ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, thus verifying the augmented state constraints (21), with a small UB-set Λ0ΛsuperscriptΛ0Λ\Lambda^{0}\subseteq\Lambdaroman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ⊆ roman_Λ, such that, for any initial condition ξ0Λsubscript𝜉0Λ\xi_{0}\in\Lambdaitalic_ξ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ roman_Λ, dkΔsubscript𝑑𝑘Δd_{k}\in\Deltaitalic_d start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ roman_Δ, and for all (α,α+)𝒮×𝒮𝛼subscript𝛼𝒮𝒮(\alpha,\alpha_{+})\in\mathcal{S}\times\mathcal{S}( italic_α , italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) ∈ caligraphic_S × caligraphic_S, the control rate variation constraint (12c) is also fulfilled.

3.1 Alternative LPV formulation

In the next section, we use the following lemma and its corollary, which proofs appear in the Appendix, to establish the results that base our solution to Problem 3.3. They reformulate the closed-loop system and control increment dynamics using the LPV notation introduced in the Preliminaries, yielding to describe algebraically and prove the desired closed-loop properties.

Lemma 3.4.

The closed-loop system (20) can be equivalently re-written as

ξ+=Γ(α+)𝒜clΓ(α)ξ(k)+Γ(α+)clΓ(α)d+,subscript𝜉superscriptΓsubscript𝛼superscript𝒜𝑐𝑙Γ𝛼𝜉𝑘superscriptΓsubscript𝛼superscript𝑐𝑙Γ𝛼subscript𝑑\xi_{+}=\Gamma^{\prime}(\alpha_{+})\mathcal{A}^{cl}\Gamma(\alpha)\xi(k)+\Gamma% ^{\prime}(\alpha_{+})\mathcal{B}^{cl}\Gamma(\alpha)d_{+},italic_ξ start_POSTSUBSCRIPT + end_POSTSUBSCRIPT = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) caligraphic_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT roman_Γ ( italic_α ) italic_ξ ( italic_k ) + roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) caligraphic_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT roman_Γ ( italic_α ) italic_d start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , (23)

where

𝒜cl=[𝒜ijcl][𝒜11cl𝒜1nvcl𝒜nv1cl𝒜nvnvcl]R(nvnξ×nvnξ),cl=[ijcl][11cl1nvclnv1clnvnvcl]R(nvnξ×nvnd),formulae-sequencesuperscript𝒜𝑐𝑙matrixsubscriptsuperscript𝒜𝑐𝑙𝑖𝑗delimited-[]subscriptsuperscript𝒜𝑐𝑙11subscriptsuperscript𝒜𝑐𝑙1subscript𝑛𝑣subscriptsuperscript𝒜𝑐𝑙subscript𝑛𝑣1subscriptsuperscript𝒜𝑐𝑙subscript𝑛𝑣subscript𝑛𝑣superscript𝑅subscript𝑛𝑣subscript𝑛𝜉subscript𝑛𝑣subscript𝑛𝜉superscript𝑐𝑙matrixsubscriptsuperscript𝑐𝑙𝑖𝑗delimited-[]subscriptsuperscript𝑐𝑙11subscriptsuperscript𝑐𝑙1subscript𝑛𝑣subscriptsuperscript𝑐𝑙subscript𝑛𝑣1subscriptsuperscript𝑐𝑙subscript𝑛𝑣subscript𝑛𝑣superscript𝑅subscript𝑛𝑣subscript𝑛𝜉subscript𝑛𝑣subscript𝑛𝑑\mathcal{A}^{cl}=\begin{bmatrix}\mathcal{A}^{cl}_{ij}\end{bmatrix}\cong\left[% \begin{array}[]{ccc}\mathcal{A}^{cl}_{11}&\ldots&\mathcal{A}^{cl}_{1n_{v}}\\ \vdots&\ddots&\vdots\\ \mathcal{A}^{cl}_{n_{v}1}&\ldots&\mathcal{A}^{cl}_{n_{v}n_{v}}\end{array}% \right]\in R^{(n_{v}n_{\xi}\times n_{v}n_{\xi})},\leavevmode\nobreak\ % \leavevmode\nobreak\ \mathcal{B}^{cl}=\begin{bmatrix}\mathcal{B}^{cl}_{ij}\end% {bmatrix}\cong\left[\begin{array}[]{ccc}\mathcal{B}^{cl}_{11}&\ldots&\mathcal{% B}^{cl}_{1n_{v}}\\ \vdots&\ddots&\vdots\\ \mathcal{B}^{cl}_{n_{v}1}&\ldots&\mathcal{B}^{cl}_{n_{v}n_{v}}\end{array}% \right]\in R^{(n_{v}n_{\xi}\times n_{v}n_{d})},caligraphic_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT = [ start_ARG start_ROW start_CELL caligraphic_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] ≅ [ start_ARRAY start_ROW start_CELL caligraphic_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT end_CELL start_CELL … end_CELL start_CELL caligraphic_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL caligraphic_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL … end_CELL start_CELL caligraphic_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ] ∈ italic_R start_POSTSUPERSCRIPT ( italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT , caligraphic_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT = [ start_ARG start_ROW start_CELL caligraphic_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] ≅ [ start_ARRAY start_ROW start_CELL caligraphic_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT end_CELL start_CELL … end_CELL start_CELL caligraphic_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL caligraphic_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL … end_CELL start_CELL caligraphic_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ] ∈ italic_R start_POSTSUPERSCRIPT ( italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT ,

with, by definition,

𝒜i,jcl=[AiBi(KiC+K^jCAi)(I+K¯i+K^jCBi)] and i,jcl=[Bip00K^jCBipKiDηK^jDη],(i,j)=1,,nν.formulae-sequencesubscriptsuperscript𝒜𝑐𝑙𝑖𝑗matrixsubscript𝐴𝑖subscript𝐵𝑖subscript𝐾𝑖𝐶subscript^𝐾𝑗𝐶subscript𝐴𝑖𝐼subscript¯𝐾𝑖subscript^𝐾𝑗𝐶subscript𝐵𝑖 and subscriptsuperscript𝑐𝑙𝑖𝑗matrixsubscriptsuperscript𝐵𝑝𝑖00subscript^𝐾𝑗𝐶subscriptsuperscript𝐵𝑝𝑖subscript𝐾𝑖subscript𝐷𝜂subscript^𝐾𝑗subscript𝐷𝜂for-all𝑖𝑗1subscript𝑛𝜈\mathcal{A}^{cl}_{i,j}=\begin{bmatrix}A_{i}&B_{i}\\ (K_{i}C+\hat{K}_{j}CA_{i})&(I+\bar{K}_{i}+\hat{K}_{j}CB_{i})\end{bmatrix}\text% { and }\mathcal{B}^{cl}_{i,j}=\begin{bmatrix}B^{p}_{i}&0&0\\ \hat{K}_{j}CB^{p}_{i}&K_{i}D_{\eta}&\hat{K}_{j}D_{\eta}\end{bmatrix},\quad% \forall\,(i,j)=1,\ldots,n_{\nu}.caligraphic_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT = [ start_ARG start_ROW start_CELL italic_A start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL start_CELL italic_B start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ( italic_K start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_C + over^ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_C italic_A start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_CELL start_CELL ( italic_I + over¯ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + over^ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_C italic_B start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARG ] and caligraphic_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT = [ start_ARG start_ROW start_CELL italic_B start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL over^ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_C italic_B start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL start_CELL italic_K start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT end_CELL start_CELL over^ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] , ∀ ( italic_i , italic_j ) = 1 , … , italic_n start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT .

Proof: See the Appendix A. \leavevmode\nobreak\ \Box

Next, from (20), the control increment (18) reads

δu=𝔸δu(α,α+)ξ+𝔹δu(α,α+)d+,𝛿𝑢superscript𝔸subscript𝛿𝑢𝛼subscript𝛼𝜉superscript𝔹subscript𝛿𝑢𝛼subscript𝛼subscript𝑑\delta u=\mathbb{A}^{\delta_{u}}(\alpha,\alpha_{+})\xi+\mathbb{B}^{\delta_{u}}% (\alpha,\alpha_{+})d_{+},italic_δ italic_u = blackboard_A start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_α , italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) italic_ξ + blackboard_B start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_α , italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) italic_d start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , (24)

where 𝔸δu(α,α+)=[K(α)C+K^(α+)CA(α)K¯(α)+K^(α+)CB(α)],𝔹δu(α,α+)=[K^(α+)CBp(α)K(α)DηK^(α+)Dη].formulae-sequencesuperscript𝔸subscript𝛿𝑢𝛼subscript𝛼matrix𝐾𝛼𝐶^𝐾subscript𝛼𝐶𝐴𝛼¯𝐾𝛼^𝐾subscript𝛼𝐶𝐵𝛼superscript𝔹subscript𝛿𝑢𝛼subscript𝛼matrix^𝐾subscript𝛼𝐶subscript𝐵𝑝𝛼𝐾𝛼superscript𝐷𝜂^𝐾subscript𝛼superscript𝐷𝜂\mathbb{A}^{\delta_{u}}(\alpha,\alpha_{+})=\begin{bmatrix}K(\alpha)C+\hat{K}(% \alpha_{+})CA(\alpha)&\bar{K}(\alpha)+\hat{K}(\alpha_{+})CB(\alpha)\end{% bmatrix},\leavevmode\nobreak\ \leavevmode\nobreak\ \mathbb{B}^{\delta_{u}}(% \alpha,\alpha_{+})=\begin{bmatrix}\hat{K}(\alpha_{+})CB_{p}(\alpha)&K(\alpha)D% ^{\eta}&\hat{K}(\alpha_{+})D^{\eta}\end{bmatrix}.blackboard_A start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_α , italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) = [ start_ARG start_ROW start_CELL italic_K ( italic_α ) italic_C + over^ start_ARG italic_K end_ARG ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) italic_C italic_A ( italic_α ) end_CELL start_CELL over¯ start_ARG italic_K end_ARG ( italic_α ) + over^ start_ARG italic_K end_ARG ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) italic_C italic_B ( italic_α ) end_CELL end_ROW end_ARG ] , blackboard_B start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_α , italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) = [ start_ARG start_ROW start_CELL over^ start_ARG italic_K end_ARG ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) italic_C italic_B start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_α ) end_CELL start_CELL italic_K ( italic_α ) italic_D start_POSTSUPERSCRIPT italic_η end_POSTSUPERSCRIPT end_CELL start_CELL over^ start_ARG italic_K end_ARG ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) italic_D start_POSTSUPERSCRIPT italic_η end_POSTSUPERSCRIPT end_CELL end_ROW end_ARG ] .

It leads to the following corollary of Lemma 3.4.

Corollary 3.5.

The control increment (18) can be equivalently re-written as

δu=Γ(α+)𝒜δuΓ(α)ξ+Γ(α+)δuΓ(α)d+,𝛿𝑢superscriptΓsubscript𝛼superscript𝒜subscript𝛿𝑢Γ𝛼𝜉superscriptΓsubscript𝛼superscriptsubscript𝛿𝑢Γ𝛼subscript𝑑\delta u=\Gamma^{\prime}(\alpha_{+})\mathcal{A}^{\delta_{u}}\Gamma(\alpha)\xi+% \Gamma^{\prime}(\alpha_{+})\mathcal{B}^{\delta_{u}}\Gamma(\alpha)d_{+},italic_δ italic_u = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) caligraphic_A start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT roman_Γ ( italic_α ) italic_ξ + roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) caligraphic_B start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT roman_Γ ( italic_α ) italic_d start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , (25)

where 𝒜δu=[𝒜i,jδu]nvnu×nvnξsuperscript𝒜subscript𝛿𝑢matrixsubscriptsuperscript𝒜subscript𝛿𝑢𝑖𝑗superscriptsubscript𝑛𝑣subscript𝑛𝑢subscript𝑛𝑣subscript𝑛𝜉\mathcal{A}^{\delta_{u}}=\begin{bmatrix}\mathcal{A}^{\delta_{u}}_{i,j}\end{% bmatrix}\in\Re^{n_{v}n_{u}\times n_{v}n_{\xi}}caligraphic_A start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = [ start_ARG start_ROW start_CELL caligraphic_A start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and δu=[i,jδu]nvnu×nvndsuperscriptsubscript𝛿𝑢matrixsubscriptsuperscriptsubscript𝛿𝑢𝑖𝑗superscriptsubscript𝑛𝑣subscript𝑛𝑢subscript𝑛𝑣subscript𝑛𝑑\mathcal{B}^{\delta_{u}}=\begin{bmatrix}\mathcal{B}^{\delta_{u}}_{i,j}\end{% bmatrix}\in\Re^{n_{v}n_{u}\times n_{v}n_{d}}caligraphic_B start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = [ start_ARG start_ROW start_CELL caligraphic_B start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, with

𝒜i,jδu=[(KiC+K^jCAi)(K¯i+K^jCBi)] and i,jδu=[K^jCBipKiDηK^jDη],(i,j)=1,,nν.formulae-sequencesubscriptsuperscript𝒜subscript𝛿𝑢𝑖𝑗matrixsubscript𝐾𝑖𝐶subscript^𝐾𝑗𝐶subscript𝐴𝑖subscript¯𝐾𝑖subscript^𝐾𝑗𝐶subscript𝐵𝑖 and subscriptsuperscriptsubscript𝛿𝑢𝑖𝑗matrixsubscript^𝐾𝑗𝐶subscriptsuperscript𝐵𝑝𝑖subscript𝐾𝑖superscript𝐷𝜂subscript^𝐾𝑗superscript𝐷𝜂for-all𝑖𝑗1subscript𝑛𝜈\mathcal{A}^{\delta_{u}}_{i,j}=\begin{bmatrix}(K_{i}C+\hat{K}_{j}CA_{i})&(\bar% {K}_{i}+\hat{K}_{j}CB_{i})\end{bmatrix}\text{ and }\mathcal{B}^{\delta_{u}}_{i% ,j}=\begin{bmatrix}\hat{K}_{j}CB^{p}_{i}&K_{i}D^{\eta}&\hat{K}_{j}D^{\eta}\end% {bmatrix},\quad\forall\,(i,j)=1,\ldots,n_{\nu}.caligraphic_A start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT = [ start_ARG start_ROW start_CELL ( italic_K start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_C + over^ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_C italic_A start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_CELL start_CELL ( over¯ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + over^ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_C italic_B start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARG ] and caligraphic_B start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT = [ start_ARG start_ROW start_CELL over^ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_C italic_B start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL start_CELL italic_K start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT italic_η end_POSTSUPERSCRIPT end_CELL start_CELL over^ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT italic_η end_POSTSUPERSCRIPT end_CELL end_ROW end_ARG ] , ∀ ( italic_i , italic_j ) = 1 , … , italic_n start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT .

Proof: See the Appendix A. \leavevmode\nobreak\ \Box

4 Main results

To tackle Problem 1, we first define the polyhedral sets:

ΛΛ\displaystyle\Lambdaroman_Λ ={ξ:𝕃ξ1l},absentconditional-set𝜉𝕃𝜉subscript1𝑙\displaystyle=\{\xi:\mathbb{L}\xi\leq\textbf{1}_{l}\},= { italic_ξ : blackboard_L italic_ξ ≤ 1 start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT } , (26a)
Λ0superscriptΛ0\displaystyle\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ={ξ:𝕃ξ𝝆},absentconditional-set𝜉𝕃𝜉𝝆\displaystyle=\{\xi:\mathbb{L}\xi\leq\boldsymbol{\rho}\},= { italic_ξ : blackboard_L italic_ξ ≤ bold_italic_ρ } , (26b)

where 𝕃lr×nξ,lr>nξ,rank(𝕃)=nξ,formulae-sequence𝕃superscriptsubscript𝑙𝑟subscript𝑛𝜉formulae-sequencesubscript𝑙𝑟subscript𝑛𝜉𝑟𝑎𝑛𝑘𝕃subscript𝑛𝜉\mathbb{L}\in\Re^{l_{r}\times n_{\xi}},\leavevmode\nobreak\ l_{r}>n_{\xi},rank% (\mathbb{L})=n_{\xi},blackboard_L ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT > italic_n start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT , italic_r italic_a italic_n italic_k ( blackboard_L ) = italic_n start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT , and the non-negative vector 𝝆=[ρ1ρlr]lr𝝆superscriptmatrixsubscript𝜌1subscript𝜌subscript𝑙𝑟superscriptsubscript𝑙𝑟\boldsymbol{\rho}=\begin{bmatrix}\rho_{1}\ldots\rho_{l_{r}}\end{bmatrix}^{% \prime}\in\Re^{l_{r}}bold_italic_ρ = [ start_ARG start_ROW start_CELL italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT … italic_ρ start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUPERSCRIPT verifying 𝟎𝝆𝟏lr0𝝆subscript1subscript𝑙𝑟\mathbf{0}\leq\boldsymbol{\rho}\leq\mathbf{1}_{l_{r}}bold_0 ≤ bold_italic_ρ ≤ bold_1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT, which guarantees Λ0ΛsuperscriptΛ0Λ\Lambda^{0}\subseteq\Lambdaroman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ⊆ roman_Λ. Note that Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT is not necessarily a homotetic set of ΛΛ\Lambdaroman_Λ, since each face may be scaled by different values for ρi[0, 1]subscript𝜌𝑖01\rho_{i}\in[0\,,\,1]italic_ρ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ [ 0 , 1 ]. As in 19, lrsubscript𝑙𝑟l_{r}italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT defines the set complexity for both ΛΛ\Lambdaroman_Λ and Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT. Moreover, the matrix 𝕃=[LxLu]𝕃matrixsubscript𝐿𝑥subscript𝐿𝑢\mathbb{L}=\begin{bmatrix}L_{x}&L_{u}\end{bmatrix}blackboard_L = [ start_ARG start_ROW start_CELL italic_L start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_CELL start_CELL italic_L start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] can be composed by Lxlr×nxsubscript𝐿𝑥superscriptsubscript𝑙𝑟subscript𝑛𝑥L_{x}\in\Re^{l_{r}\times n_{x}}italic_L start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and Lulr×nusubscript𝐿𝑢superscriptsubscript𝑙𝑟subscript𝑛𝑢L_{u}\in\Re^{l_{r}\times n_{u}}italic_L start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT.

4.1 RPI algebraic conditions

From Definition 3.2, we propose the following necessary and sufficient algebraic characterization of the RPI property of the polyhedral set ΛΛ\Lambdaroman_Λ, with UB-set Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT. The proof is divided into three parts, and it is shown in the Appendix. In the two first parts, the EFL and the alternative notation used to represent the closed-loop system by (23), Lemma 3.4, play a key role to obtain the proposed finite-dimensional invariance relations from the infinite-dimensional characterization of the RPI property.

Theorem 4.1.

Consider the LPV system (10) and the incremental control (14), with δusubscript𝛿𝑢\delta_{u}italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT given by (18). Then, the polyhedron ΛΛ\Lambdaroman_Λ in (26a), is a contractive RPI set of the closed-loop system (20), with UB-set Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT given by (26b), if and only if there exist non-negative matrices nvlr×nvlrsuperscriptsubscript𝑛𝑣subscript𝑙𝑟subscript𝑛𝑣subscript𝑙𝑟\mathcal{H}\in\Re^{n_{v}l_{r}\times n_{v}l_{r}}caligraphic_H ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and 𝒱nvlr×nvld𝒱superscriptsubscript𝑛𝑣subscript𝑙𝑟subscript𝑛𝑣subscript𝑙𝑑\mathcal{V}\in\Re^{n_{v}l_{r}\times n_{v}l_{d}}caligraphic_V ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, a positive vector 𝛒𝟏lr𝛒subscript1subscript𝑙𝑟\boldsymbol{\rho}\leq\mathbf{1}_{l_{r}}bold_italic_ρ ≤ bold_1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT and a real scalar λ[0,1)𝜆01\lambda\in[0,1)italic_λ ∈ [ 0 , 1 ),, such that:

diag(𝕃)𝑑𝑖𝑎𝑔𝕃\displaystyle\mathcal{H}\,diag(\mathbb{L})caligraphic_H italic_d italic_i italic_a italic_g ( blackboard_L ) =diag(𝕃)𝒜cl,absent𝑑𝑖𝑎𝑔𝕃superscript𝒜𝑐𝑙\displaystyle=diag(\mathbb{L})\,\mathcal{A}^{cl},= italic_d italic_i italic_a italic_g ( blackboard_L ) caligraphic_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT , (27a)
𝒱diag(𝔻)𝒱𝑑𝑖𝑎𝑔𝔻\displaystyle\mathcal{V}\,diag(\mathbb{D})caligraphic_V italic_d italic_i italic_a italic_g ( blackboard_D ) =diag(𝕃)cl,absent𝑑𝑖𝑎𝑔𝕃superscript𝑐𝑙\displaystyle=diag(\mathbb{L})\,\mathcal{B}^{cl},= italic_d italic_i italic_a italic_g ( blackboard_L ) caligraphic_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT , (27b)
diag(𝟏lr)+𝒱diag(1ld)𝑑𝑖𝑎𝑔subscript1subscript𝑙𝑟𝒱𝑑𝑖𝑎𝑔subscript1subscript𝑙𝑑\displaystyle\mathcal{H}\,diag(\mathbf{1}_{l_{r}})+\mathcal{V}\,diag(\textbf{1% }_{l_{d}})caligraphic_H italic_d italic_i italic_a italic_g ( bold_1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + caligraphic_V italic_d italic_i italic_a italic_g ( 1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) λcdiag(1lr),absent𝜆superscript𝑐𝑑𝑖𝑎𝑔subscript1subscript𝑙𝑟\displaystyle\leq\lambda\,\mathcal{I}^{c}\mathcal{I}\,diag(\textbf{1}_{l_{r}}),≤ italic_λ caligraphic_I start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT caligraphic_I italic_d italic_i italic_a italic_g ( 1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) , (27c)
diag(𝝆)+𝒱diag(𝟏ld)𝑑𝑖𝑎𝑔𝝆𝒱𝑑𝑖𝑎𝑔subscript1subscript𝑙𝑑\displaystyle\mathcal{H}\,diag(\boldsymbol{\rho})+\mathcal{V}\,diag(\mathbf{1}% _{l_{d}})caligraphic_H italic_d italic_i italic_a italic_g ( bold_italic_ρ ) + caligraphic_V italic_d italic_i italic_a italic_g ( bold_1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ϵ1cdiag(𝝆),absentsubscriptitalic-ϵ1superscript𝑐𝑑𝑖𝑎𝑔𝝆\displaystyle\leq\epsilon_{1}\,\mathcal{I}^{c}\mathcal{I}\,diag(\boldsymbol{% \rho}),≤ italic_ϵ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT caligraphic_I start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT caligraphic_I italic_d italic_i italic_a italic_g ( bold_italic_ρ ) , (27d)

where the real positive scalar ϵ1<1subscriptitalic-ϵ11\epsilon_{1}<1italic_ϵ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < 1 is sufficiently close to one.

Proof: See the Appendix A. \leavevmode\nobreak\ \Box

4.2 Constraints fulfilment

Now, we resort the extended Farka’s Lemma (EFL) for describing algebraically the inclusion of the RPI polyhedron ΛΛ\Lambdaroman_Λ in the set of extended state constraints ΞΞ\Xiroman_Ξ, (21), and its admissibility with regard the control increment constraints represented by 𝒰δsubscript𝒰𝛿\mathcal{U}_{\delta}caligraphic_U start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT, (12c).

First, by following the results in Lemma 2.1, the inclusion ΛΞΛΞ\Lambda\subseteq\Xiroman_Λ ⊆ roman_Ξ is verified, or, equivalently, ξΞ𝜉Ξ\xi\in\Xiitalic_ξ ∈ roman_Ξ, for all ξΛ𝜉Λ\xi\in\Lambdaitalic_ξ ∈ roman_Λ, if and only if there exists a non-negative matrix 𝒢lξ×lr𝒢superscriptsubscript𝑙𝜉subscript𝑙𝑟\mathcal{G}\in\Re^{l_{\xi}\times l_{r}}caligraphic_G ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT × italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, such that:

𝒢𝕃𝒢𝕃\displaystyle\mathcal{G}\mathbb{L}caligraphic_G blackboard_L =𝕏,absent𝕏\displaystyle=\mathbb{X},= blackboard_X , (28a)
𝒢1lr𝒢subscript1subscript𝑙𝑟\displaystyle\mathcal{G}\textbf{1}_{l_{r}}caligraphic_G 1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT 1lξ.absentsubscript1subscript𝑙𝜉\displaystyle\leq\textbf{1}_{l_{\xi}}.≤ 1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT end_POSTSUBSCRIPT . (28b)

Next, by resorting to (24), the following admissibility condition must hold true to guarantee that any closed-loop trajectory starting from the RPI polyhedron ΛΛ\Lambdaroman_Λ fulfils the control increment constraint 𝒰δsubscript𝒰𝛿\mathcal{U}_{\delta}caligraphic_U start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT:

Uδδu:=Uδ[𝔸δu(α,α+)𝔹δu(α,α+)][ξdk]𝟏ld,ξ and η such that [𝕃00𝔻][ξdk][𝟏lr𝟏ld].assignsubscript𝑈𝛿𝛿𝑢subscript𝑈𝛿matrixsuperscript𝔸𝛿𝑢𝛼subscript𝛼superscript𝔹𝛿𝑢𝛼subscript𝛼delimited-[]𝜉subscript𝑑𝑘subscript1subscript𝑙𝑑for-all𝜉 and 𝜂 such that matrix𝕃00𝔻matrix𝜉subscript𝑑𝑘matrixsubscript1subscript𝑙𝑟subscript1subscript𝑙𝑑\begin{array}[]{r}U_{\delta}\delta u:=U_{\delta}\begin{bmatrix}\mathbb{A}^{% \delta u}(\alpha,\alpha_{+})&\mathbb{B}^{\delta u}(\alpha,\alpha_{+})\end{% bmatrix}\left[\begin{array}[]{l}\xi\\ d_{k}\end{array}\right]\leq\mathbf{1}_{l_{d}},\\ \forall\leavevmode\nobreak\ \xi\text{ and }\eta\text{ such that }\begin{% bmatrix}\mathbb{L}&0\\ 0&\mathbb{D}\end{bmatrix}\begin{bmatrix}\xi\\ d_{k}\end{bmatrix}\leq\begin{bmatrix}\mathbf{1}_{l_{r}}\\ \mathbf{1}_{l_{d}}\end{bmatrix}.\end{array}start_ARRAY start_ROW start_CELL italic_U start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT italic_δ italic_u := italic_U start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT [ start_ARG start_ROW start_CELL blackboard_A start_POSTSUPERSCRIPT italic_δ italic_u end_POSTSUPERSCRIPT ( italic_α , italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) end_CELL start_CELL blackboard_B start_POSTSUPERSCRIPT italic_δ italic_u end_POSTSUPERSCRIPT ( italic_α , italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARG ] [ start_ARRAY start_ROW start_CELL italic_ξ end_CELL end_ROW start_ROW start_CELL italic_d start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ] ≤ bold_1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_POSTSUBSCRIPT , end_CELL end_ROW start_ROW start_CELL ∀ italic_ξ and italic_η such that [ start_ARG start_ROW start_CELL blackboard_L end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL blackboard_D end_CELL end_ROW end_ARG ] [ start_ARG start_ROW start_CELL italic_ξ end_CELL end_ROW start_ROW start_CELL italic_d start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] ≤ [ start_ARG start_ROW start_CELL bold_1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL bold_1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] . end_CELL end_ROW end_ARRAY (29)
Lemma 4.2.

The admissibility condition (29) is equivalent to the existence of non-negative matrices 𝒬lδnv×lrnv𝒬superscriptsubscript𝑙𝛿subscript𝑛𝑣subscript𝑙𝑟subscript𝑛𝑣\mathcal{Q}\in\Re^{l_{\delta}n_{v}\times l_{r}n_{v}}caligraphic_Q ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT × italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and 𝒯lδnv×ldnv𝒯superscriptsubscript𝑙𝛿subscript𝑛𝑣subscript𝑙𝑑subscript𝑛𝑣\mathcal{T}\in\Re^{l_{\delta}n_{v}\times l_{d}n_{v}}caligraphic_T ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT × italic_l start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, such that:

𝒬diag(𝕃)𝒬𝑑𝑖𝑎𝑔𝕃\displaystyle\mathcal{Q}\,diag(\mathbb{L})caligraphic_Q italic_d italic_i italic_a italic_g ( blackboard_L ) =diag(Uδ)𝒜δu,absent𝑑𝑖𝑎𝑔subscript𝑈𝛿superscript𝒜subscript𝛿𝑢\displaystyle=diag(U_{\delta})\mathcal{A}^{\delta_{u}},= italic_d italic_i italic_a italic_g ( italic_U start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT ) caligraphic_A start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , (30a)
𝒯diag(𝔻)𝒯𝑑𝑖𝑎𝑔𝔻\displaystyle\mathcal{T}\,diag(\mathbb{D})caligraphic_T italic_d italic_i italic_a italic_g ( blackboard_D ) =diag(Uδ)δu,absent𝑑𝑖𝑎𝑔subscript𝑈𝛿superscriptsubscript𝛿𝑢\displaystyle=diag(U_{\delta})\mathcal{B}^{\delta_{u}},= italic_d italic_i italic_a italic_g ( italic_U start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT ) caligraphic_B start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , (30b)
𝒬diag(1lr)+𝒯diag(1ld)𝒬𝑑𝑖𝑎𝑔subscript1subscript𝑙𝑟𝒯𝑑𝑖𝑎𝑔subscript1subscript𝑙𝑑\displaystyle\mathcal{Q}\,diag(\textbf{1}_{l_{r}})+\mathcal{T}diag(\textbf{1}_% {l_{d}})caligraphic_Q italic_d italic_i italic_a italic_g ( 1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) + caligraphic_T italic_d italic_i italic_a italic_g ( 1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) cdiag(1luδ),absentsuperscript𝑐𝑑𝑖𝑎𝑔subscript1subscript𝑙subscript𝑢𝛿\displaystyle\leq\mathcal{I}^{c}\mathcal{I}\,diag(\textbf{1}_{l_{u_{\delta}}}),≤ caligraphic_I start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT caligraphic_I italic_d italic_i italic_a italic_g ( 1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) , (30c)

with 𝒜δusuperscript𝒜subscript𝛿𝑢\mathcal{A}^{\delta_{u}}caligraphic_A start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and δusuperscriptsubscript𝛿𝑢\mathcal{B}^{\delta_{u}}caligraphic_B start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT given by Corollary 3.5.

Proof: See the Appendix A. \leavevmode\nobreak\ \Box

4.3 Proposed solution

The following Proposition characterizes the considered solutions to Problem 3.3. Before, we recall that the matrix 𝕃lr×nξ𝕃superscriptsubscript𝑙𝑟subscript𝑛𝜉\mathbb{L}\in\Re^{l_{r}\times n_{\xi}}blackboard_L ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT × italic_n start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, with lr<nξsubscript𝑙𝑟subscript𝑛𝜉l_{r}<n_{\xi}italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT < italic_n start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT, which shapes the polyhedrons ΛΛ\Lambdaroman_Λ and Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT, has to be full column-rank. This occurs if and only if 𝕃𝕃\mathbb{L}blackboard_L admits a left pseudo-inverse 𝕁nξ×lr𝕁superscriptsubscript𝑛𝜉subscript𝑙𝑟\mathbb{J}\in\Re^{n_{\xi}\times l_{r}}blackboard_J ∈ roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT × italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUPERSCRIPT such that

𝕁𝕃=Inξ.𝕁𝕃subscript𝐼subscript𝑛𝜉\mathbb{J}\mathbb{L}=I_{n_{\xi}}.blackboard_J blackboard_L = italic_I start_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT end_POSTSUBSCRIPT . (31)
Proposition 4.3.

Consider a system represented by the LPV-system (10)-(11), with associated constraints and disturbance bounds (12)-(13), Then, for a pre-assigned set complexity lr>nξsubscript𝑙𝑟subscript𝑛𝜉l_{r}>n_{\xi}italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT > italic_n start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT, Problem 3.3 admits a solution composed by (𝕂(α+,α),Λ,Λ0)𝕂subscript𝛼𝛼ΛsuperscriptΛ0\left(\mathbb{K}(\alpha_{+},\alpha),\Lambda,\Lambda^{0}\right)( blackboard_K ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) , roman_Λ , roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ), if and only if there exist a real scalar λ[0, 1)𝜆01\lambda\in[0\,,\,1)italic_λ ∈ [ 0 , 1 ), a vector 𝛒[𝟎, 1lr]𝛒0subscript1subscript𝑙𝑟\boldsymbol{\rho}\in[\mathbf{0}\,,\,\mathbf{1}_{l_{r}}]bold_italic_ρ ∈ [ bold_0 , bold_1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT ], matrices 𝕃𝕃\mathbb{L}blackboard_L and 𝕁𝕁\mathbb{J}blackboard_J, and nonnegative matrices \mathcal{H}caligraphic_H, 𝒱𝒱\mathcal{V}caligraphic_V, 𝒬𝒬\mathcal{Q}caligraphic_Q, 𝒯𝒯\mathcal{T}caligraphic_T and 𝒢𝒢\mathcal{G}caligraphic_G such that the set of algebraic conditions (27), (28), (30) and (31) hold true.

Proof: It consists of combining the results stated in the present section. \Box

Remark 4.4 (Unconstrained control rate).

If the LPV system (10) is not subject to the control rate constraint (12c), Proposition 4.3 can be easily adapted to characterize admissible solutions for an instance of Problem 3.3 that considers only the state and control constraints (12a) and (12b). For that, it suffices to consider only the proposed relations (27), (28) and (31).

Remark 4.5 (Robust solution and LTI systems).

To characterize robust solutions for LPV or uncertain systems, it is possible to adapt Proposition 4.3 by considering the time-invariant control increment δu=𝕂υk𝛿𝑢𝕂subscript𝜐𝑘\delta u=\mathbb{K}\upsilon_{k}italic_δ italic_u = blackboard_K italic_υ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, with 𝕂=[KK¯K^]𝕂matrix𝐾¯𝐾^𝐾\mathbb{K}=\begin{bmatrix}K&\bar{K}&\hat{K}\end{bmatrix}blackboard_K = [ start_ARG start_ROW start_CELL italic_K end_CELL start_CELL over¯ start_ARG italic_K end_ARG end_CELL start_CELL over^ start_ARG italic_K end_ARG end_CELL end_ROW end_ARG ]. Such control increment also applies to LTI systems and enhances the solution suggested in Remark 3 of 19, which corresponds to 𝕂=[KK¯0]𝕂matrix𝐾¯𝐾0\mathbb{K}=\begin{bmatrix}K&\bar{K}&0\end{bmatrix}blackboard_K = [ start_ARG start_ROW start_CELL italic_K end_CELL start_CELL over¯ start_ARG italic_K end_ARG end_CELL start_CELL 0 end_CELL end_ROW end_ARG ].

4.4 Bilinear optimization-based design

To apply the results summarized by Proposition 4.3, it is worth to emphasize that the algebraic relations in (27), (28), (30) and (31) present bi-linear terms, meaning there are products between the elements of the set of decision variables Γ=Γabsent\Gamma=roman_Γ = {{\{{ 𝕃𝕃\mathbb{L}blackboard_L, 𝝆𝝆\boldsymbol{\rho}bold_italic_ρ, Kisubscript𝐾𝑖K_{i}italic_K start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, K¯isubscript¯𝐾𝑖\bar{K}_{i}over¯ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, K^jsubscript^𝐾𝑗\hat{K}_{j}over^ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT, \mathcal{H}caligraphic_H, 𝒱𝒱\mathcal{V}caligraphic_V, 𝒢𝒢\mathcal{G}caligraphic_G, 𝒬𝒬\mathcal{Q}caligraphic_Q, 𝒯𝒯\mathcal{T}caligraphic_T, 𝕁}\mathbb{J}\}blackboard_J }, where the control gains Kisubscript𝐾𝑖K_{i}italic_K start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, K¯isubscript¯𝐾𝑖\bar{K}_{i}over¯ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and K^jsubscript^𝐾𝑗\hat{K}_{j}over^ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT are the matrix variables embedded into 𝒜clsuperscript𝒜𝑐𝑙\mathcal{A}^{cl}caligraphic_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT, clsuperscript𝑐𝑙\mathcal{B}^{cl}caligraphic_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT, 𝒜δusuperscript𝒜subscript𝛿𝑢\mathcal{A}^{\delta_{u}}caligraphic_A start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and δusuperscriptsubscript𝛿𝑢\mathcal{B}^{\delta_{u}}caligraphic_B start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT. In fact, we notice such bilinear products in (27) involving {,𝕃}𝕃\{\mathcal{H},\mathbb{L}\}{ caligraphic_H , blackboard_L }, {𝕃,Ki,K¯i,K^j}𝕃subscript𝐾𝑖subscript¯𝐾𝑖subscript^𝐾𝑗\{\mathbb{L},K_{i},\bar{K}_{i},\hat{K}_{j}\}{ blackboard_L , italic_K start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , over¯ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , over^ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT } and {,𝝆}𝝆\{\mathcal{H},\boldsymbol{\rho}\}{ caligraphic_H , bold_italic_ρ }, in (28) between {𝒢,𝕃}𝒢𝕃\{\mathcal{G},\mathbb{L}\}{ caligraphic_G , blackboard_L }, in (30) between {𝒬,𝕃}𝒬𝕃\{\mathcal{Q},\mathbb{L}\}{ caligraphic_Q , blackboard_L }, and in (31) between {𝕁,𝕃}𝕁𝕃\{\mathbb{J},\mathbb{L}\}{ blackboard_J , blackboard_L }.

Moreover, the complementary objectives in seeking solutions to Problem 4.3 are to enlarge the outer RPI set, ΛΛ\Lambdaroman_Λ, and to shrink the inner UB set, Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT, as much as possible. In particular, to enlarge the size of ΛΛ\Lambdaroman_Λ in given directions, we introduce the following auxiliary inequalities

γt𝕃ψt1lr,γt>0,t=1,,t¯.formulae-sequencesubscript𝛾𝑡𝕃subscript𝜓𝑡subscript1subscript𝑙𝑟formulae-sequencesubscript𝛾𝑡0𝑡1¯𝑡\gamma_{t}\mathbb{L}\psi_{t}\leq\textbf{1}_{l_{r}},\gamma_{t}>0,t=1,\ldots,% \bar{t}.italic_γ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT blackboard_L italic_ψ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ≤ 1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_γ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT > 0 , italic_t = 1 , … , over¯ start_ARG italic_t end_ARG . (32)

where γtsubscript𝛾𝑡\gamma_{t}italic_γ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT are real positive scaling factors associated to a given set ΨΨ\Psiroman_Ψ of t¯>0¯𝑡0\bar{t}>0over¯ start_ARG italic_t end_ARG > 0 directions ψtnξ,subscript𝜓𝑡superscriptsubscript𝑛𝜉\psi_{t}\in\mathbb{R}^{n_{\xi}},italic_ψ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , where

Ψ={γtψt,t=1,,t¯}.\Psi=\{\gamma_{t}\psi_{t},t=1,\ldots,\bar{t}\}.roman_Ψ = { italic_γ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_t = 1 , … , over¯ start_ARG italic_t end_ARG } . (33)

with ψt=[ψx,tTψu,tT]Tsubscript𝜓𝑡superscriptmatrixsuperscriptsubscript𝜓𝑥𝑡𝑇superscriptsubscript𝜓𝑢𝑡𝑇𝑇\psi_{t}=\begin{bmatrix}\psi_{x,t}^{T}&\psi_{u,t}^{T}\end{bmatrix}^{T}italic_ψ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = [ start_ARG start_ROW start_CELL italic_ψ start_POSTSUBSCRIPT italic_x , italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT end_CELL start_CELL italic_ψ start_POSTSUBSCRIPT italic_u , italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT, ψx,tnxsubscript𝜓𝑥𝑡superscriptsubscript𝑛𝑥\psi_{x,t}\in\mathbb{R}^{n_{x}}italic_ψ start_POSTSUBSCRIPT italic_x , italic_t end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and ψu,tnusubscript𝜓𝑢𝑡superscriptsubscript𝑛𝑢\psi_{u,t}\in\mathbb{R}^{n_{u}}italic_ψ start_POSTSUBSCRIPT italic_u , italic_t end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT.

Thus, from Proposition 4.3 and discussion in the previous paragraphs, we propose the following bi-linear optimization problem to find solutions to the Problem 3.3:

maximizeΓ,γtΓsubscript𝛾𝑡maximize\displaystyle\underset{\Gamma,\gamma_{t}}{\text{maximize}}start_UNDERACCENT roman_Γ , italic_γ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_UNDERACCENT start_ARG maximize end_ARG 𝒥=(1θ)t=1t¯γtt¯θ=1lrρlr𝒥1𝜃superscriptsubscript𝑡1¯𝑡subscript𝛾𝑡¯𝑡𝜃superscriptsubscript1subscript𝑙𝑟subscript𝜌subscript𝑙𝑟\displaystyle\mathcal{J}=(1-\theta)\sum_{t=1}^{\bar{t}}\frac{\gamma_{t}}{\bar{% t}}-\theta\sum_{\ell=1}^{l_{r}}\frac{\rho_{\ell}}{l_{r}}caligraphic_J = ( 1 - italic_θ ) ∑ start_POSTSUBSCRIPT italic_t = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT over¯ start_ARG italic_t end_ARG end_POSTSUPERSCRIPT divide start_ARG italic_γ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_ARG start_ARG over¯ start_ARG italic_t end_ARG end_ARG - italic_θ ∑ start_POSTSUBSCRIPT roman_ℓ = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUPERSCRIPT divide start_ARG italic_ρ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT end_ARG start_ARG italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_ARG (34)
subject to (27),(28),(30),(31),(32),italic-(27italic-)italic-(28italic-)italic-(30italic-)italic-(31italic-)italic-(32italic-)\displaystyle\eqref{const},\eqref{stateset},\eqref{admissibleset},\eqref{eq:% pseudoinverse},\eqref{sol1:eq:gammaz_in_L},italic_( italic_) , italic_( italic_) , italic_( italic_) , italic_( italic_) , italic_( italic_) ,
and Γ¯ΓΓ¯,and ¯ΓΓ¯Γ\displaystyle\text{ and }\underline{\Gamma}\leq\Gamma\leq\overline{\Gamma},and under¯ start_ARG roman_Γ end_ARG ≤ roman_Γ ≤ over¯ start_ARG roman_Γ end_ARG ,

where

  • the parameters lrsubscript𝑙𝑟l_{r}italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT, t𝑡titalic_t, θ𝜃\thetaitalic_θ and ψtsubscript𝜓𝑡\psi_{t}italic_ψ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT are the designer choices;

  • the objective function weights, by choosing θ𝜃\thetaitalic_θ, the maximization of the robust positive invariant set in the given directions ψtsubscript𝜓𝑡\psi_{t}italic_ψ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, through its associated average scaling factors γtsubscript𝛾𝑡\gamma_{t}italic_γ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, and the minimization of the ultimately bounded set, through the minimization of the average scaling variables ρsubscript𝜌\rho_{\ell}italic_ρ start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT; and

  • the additional constraints on ΓΓ\Gammaroman_Γ impose lower and upper bounds, represented by (Γ¯¯Γ\underline{\Gamma}under¯ start_ARG roman_Γ end_ARG, Γ¯¯Γ\overline{\Gamma}over¯ start_ARG roman_Γ end_ARG), that limit the search space of solutions. See 19 Remark 4.

Optionally, in (34), ψu,tsubscript𝜓𝑢𝑡\psi_{u,t}italic_ψ start_POSTSUBSCRIPT italic_u , italic_t end_POSTSUBSCRIPT can also be considered as a supplementary decision variable. In such case, ψu,tsubscript𝜓𝑢𝑡\psi_{u,t}italic_ψ start_POSTSUBSCRIPT italic_u , italic_t end_POSTSUBSCRIPT appears as additional degrees of freedom to allow for the enlargement of the projection of the positive invariant sets ΛΛ\Lambdaroman_Λ and Λ0subscriptΛ0\Lambda_{0}roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT in the system state-subspace nxsuperscriptsubscript𝑛𝑥\Re^{n_{x}}roman_ℜ start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT end_POSTSUPERSCRIPT.

5 Numerical examples

To show the effectiveness of the proposed output feedback controller design strategy, this section shows numerical results obtained considering three different constrained systems. The examples were solved using the KNITRO solver 25, with the Interior/CG (barrier) algorithm, multi-start option, and the other solver’s default settings, with the following additional elementwise constraints: ,𝒱,𝒢,𝒬,𝒯,γt:[0,102]:𝒱𝒢𝒬𝒯subscript𝛾𝑡0superscript102\mathcal{H},\mathcal{V},\mathcal{G},\mathcal{Q},\mathcal{T},\gamma_{t}:[0,10^{% 2}]\leavevmode\nobreak\ caligraphic_H , caligraphic_V , caligraphic_G , caligraphic_Q , caligraphic_T , italic_γ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT : [ 0 , 10 start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] and Ki,K¯i,K^j,𝕃:[102,102],𝒥:[103,103].:subscript𝐾𝑖subscript¯𝐾𝑖subscript^𝐾𝑗𝕃superscript102superscript102𝒥:superscript103superscript103\leavevmode\nobreak\ K_{i},\bar{K}_{i},\hat{K}_{j},\mathbb{L}:[-10^{2},10^{2}]% ,\mathcal{J}:[-10^{3},10^{3}].italic_K start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , over¯ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , over^ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , blackboard_L : [ - 10 start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , 10 start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] , caligraphic_J : [ - 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ] . It should be noted that KNITRO does not guarantee to find globally optimal solutions, however local minima are found upon convergence 19.

5.1 Example 1

For the first example, we consider the same LTI system as in 19. To this end, consider system (10) and constraints (12)-(13) represented by the following data,

A=[1101],B=[b1],Bp=[11],C=[10],Dη=1,formulae-sequence𝐴delimited-[]1101formulae-sequence𝐵delimited-[]𝑏1formulae-sequencesubscript𝐵𝑝delimited-[]11formulae-sequence𝐶delimited-[]10subscript𝐷𝜂1A=\left[\begin{array}[]{*2r}1&1\\ 0&1\end{array}\right],\,B=\left[\begin{array}[]{c}b\\ 1\end{array}\right],B_{p}=\left[\begin{array}[]{c}1\\ 1\end{array}\right],C=\left[\begin{array}[]{cc}1&0\end{array}\right],D_{\eta}=1,italic_A = [ start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ] , italic_B = [ start_ARRAY start_ROW start_CELL italic_b end_CELL end_ROW start_ROW start_CELL 1 end_CELL end_ROW end_ARRAY ] , italic_B start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = [ start_ARRAY start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL end_ROW end_ARRAY ] , italic_C = [ start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ] , italic_D start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT = 1 ,

with state and control constraints 1x11.251subscript𝑥11.25-1\leq x_{1}\leq 1.25- 1 ≤ italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ 1.25, |x2|1subscript𝑥21|x_{2}|\leq 1| italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | ≤ 1 and 0.8u10.8𝑢1-0.8\leq u\leq 1- 0.8 ≤ italic_u ≤ 1, or equivalently X=[0.80100101]𝑋superscriptdelimited-[]0.80100101X=\left[\begin{array}[]{crrr}0.8\nobreak\leavevmode&0&-1&0\\ 0&1&0&-1\end{array}\right]^{\prime}italic_X = [ start_ARRAY start_ROW start_CELL 0.8 end_CELL start_CELL 0 end_CELL start_CELL - 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL - 1 end_CELL end_ROW end_ARRAY ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and U=[11.25]𝑈superscriptdelimited-[]11.25U=\left[\begin{array}[]{cc}1&-1.25\end{array}\right]^{\prime}italic_U = [ start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL - 1.25 end_CELL end_ROW end_ARRAY ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. The persistent disturbances are |p|0.1𝑝0.1|p|\leq 0.1| italic_p | ≤ 0.1 and |η|0.1𝜂0.1|\eta|\leq 0.1| italic_η | ≤ 0.1, or equivalently P=N=[1010]𝑃𝑁superscriptdelimited-[]1010P=N=\left[\begin{array}[]{cc}10&-10\end{array}\right]^{\prime}italic_P = italic_N = [ start_ARRAY start_ROW start_CELL 10 end_CELL start_CELL - 10 end_CELL end_ROW end_ARRAY ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT.

5.1.1 LTI system:

We choose b=2𝑏2b=2italic_b = 2, the set complexity lr=9subscript𝑙𝑟9l_{r}=9italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = 9, meaning that the polyhedral set can assume at most 9999 faces, as in 19 Section 5.1.3. Differently from 19, the pursued objective is enlarge the projection of the RPI set ΛΛ\Lambdaroman_Λ instead of the cut of this set in the system state-subspace. Thus, in the present design we consider t¯=8¯𝑡8\bar{t}=8over¯ start_ARG italic_t end_ARG = 8, the chosen ψx,tsubscript𝜓𝑥𝑡\psi_{x,t}italic_ψ start_POSTSUBSCRIPT italic_x , italic_t end_POSTSUBSCRIPT directions pointing to the state constraint vertices and gradient directions, and, to exploit new degrees of freedom, 1ψu,t11subscript𝜓𝑢𝑡1-1\leq\psi_{u,t}\leq 1- 1 ≤ italic_ψ start_POSTSUBSCRIPT italic_u , italic_t end_POSTSUBSCRIPT ≤ 1 as part of the decision variables.

Refer to caption
Figure 1: Example 1 - LTI, α=0.5𝛼0.5\alpha=0.5italic_α = 0.5

Table 1 shows some design results obtained for different weights in the objective function, without considering control rate constraints. As expected, the area of the ΛΛ\Lambdaroman_Λ projection increases with smaller values of the weight θ𝜃\thetaitalic_θ. Meanwhile, the Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT Volume decreases with bigger valus of θ𝜃\thetaitalic_θ. In Figure 1, we showcase the results for θ=0.5𝜃0.5\theta=0.5italic_θ = 0.5, whith the RPI outter morst set, and the inner UB-set. For comparative purposes, the biggest projection obtained in 19 Section 5.1.3 is 3.4023.4023.4023.402 vs 4.5004.5004.5004.500 using the technique proposed in this paper, demonstrating a 32%percent3232\%32 % increase in the projection area.

θ𝜃\thetaitalic_θ ΛΛ\Lambdaroman_Λ Volume ΛΛ\Lambdaroman_Λ Projection Area Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT Volume Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT Projection Area [KK¯K^]𝐾¯𝐾^𝐾[K\leavevmode\nobreak\ \leavevmode\nobreak\ \bar{K}\leavevmode\nobreak\ % \leavevmode\nobreak\ \hat{K}][ italic_K over¯ start_ARG italic_K end_ARG over^ start_ARG italic_K end_ARG ]
0 1.1063 4.5000 1.0955 4.4684 [0.49990.50000.6675]matrix0.49990.50000.6675\begin{bmatrix}0.4999&-0.5000&-0.6675\end{bmatrix}[ start_ARG start_ROW start_CELL 0.4999 end_CELL start_CELL - 0.5000 end_CELL start_CELL - 0.6675 end_CELL end_ROW end_ARG ]
0.1 1.8307 4.4999 0.3271 1.4166 [0.49990.50000.7765]matrix0.49990.50000.7765\begin{bmatrix}0.4999&-0.5000&-0.7765\end{bmatrix}[ start_ARG start_ROW start_CELL 0.4999 end_CELL start_CELL - 0.5000 end_CELL start_CELL - 0.7765 end_CELL end_ROW end_ARG ]
0.3 1.8307 4.4999 0.3271 1.4166 [0.49990.50000.7765]matrix0.49990.50000.7765\begin{bmatrix}0.4999&-0.5000&-0.7765\end{bmatrix}[ start_ARG start_ROW start_CELL 0.4999 end_CELL start_CELL - 0.5000 end_CELL start_CELL - 0.7765 end_CELL end_ROW end_ARG ]
0.5 1.3082 3.6966 0.0532 0.3832 [0.00001.01030.9747]matrix0.00001.01030.9747\begin{bmatrix}0.0000&-1.0103&-0.9747\end{bmatrix}[ start_ARG start_ROW start_CELL 0.0000 end_CELL start_CELL - 1.0103 end_CELL start_CELL - 0.9747 end_CELL end_ROW end_ARG ]
0.7 1.3349 3.2653 0.0429 0.3397 [0.00000.99990.7226]matrix0.00000.99990.7226\begin{bmatrix}0.0000&-0.9999&-0.7226\end{bmatrix}[ start_ARG start_ROW start_CELL 0.0000 end_CELL start_CELL - 0.9999 end_CELL start_CELL - 0.7226 end_CELL end_ROW end_ARG ]
0.9 0.8282 2.2886 0.0323 0.2421 [0.00001.00000.7500]matrix0.00001.00000.7500\begin{bmatrix}0.0000&-1.0000&-0.7500\end{bmatrix}[ start_ARG start_ROW start_CELL 0.0000 end_CELL start_CELL - 1.0000 end_CELL start_CELL - 0.7500 end_CELL end_ROW end_ARG ]
1 0.8282 2.2886 0.0323 0.2421 [0.00001.00000.7500]matrix0.00001.00000.7500\begin{bmatrix}0.0000&-1.0000&-0.7500\end{bmatrix}[ start_ARG start_ROW start_CELL 0.0000 end_CELL start_CELL - 1.0000 end_CELL start_CELL - 0.7500 end_CELL end_ROW end_ARG ]
Table 1: Example 1 - Designs using different weights, θ𝜃\thetaitalic_θ, for the constrained LTI system without control rate constraints

5.1.2 LPV system:

In this second example we still consider the previous double integrator model with a varying parameter in the input matrix. It allows us to exploit some features of the design technique regarding the LPV model and the presence of control rate constraints. Thus, we let the input matrix to be parameter varying, B(α)=[b1]𝐵𝛼superscriptmatrix𝑏1B(\alpha)=\begin{bmatrix}b&1\end{bmatrix}^{\prime}italic_B ( italic_α ) = [ start_ARG start_ROW start_CELL italic_b end_CELL start_CELL 1 end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, by admitting 2b2.252𝑏2.252\leq b\leq 2.252 ≤ italic_b ≤ 2.25, and add the control rate constraint 0.9δu0.60.9𝛿𝑢0.6-0.9\leq\delta u\leq 0.6- 0.9 ≤ italic_δ italic_u ≤ 0.6, or equivalently Ud=[1.66671.1111]subscript𝑈𝑑superscript1.66671.1111U_{d}=[1.6667\leavevmode\nobreak\ \leavevmode\nobreak\ -1.1111]^{\prime}italic_U start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT = [ 1.6667 - 1.1111 ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. As in the first example, we consider the same ψtsubscript𝜓𝑡\psi_{t}italic_ψ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT directions and the set complexity lr=9subscript𝑙𝑟9l_{r}=9italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = 9. The results are shown in Table 2 for different values of θ𝜃\thetaitalic_θ. Once more, with lower values of θ𝜃\thetaitalic_θ we obtain bigger ΛΛ\Lambdaroman_Λ Projection Area, and with higher values of α𝛼\alphaitalic_α we obtained smaller Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT Volume.

Refer to caption
Figure 2: Example 1 - LPV, α=0.5𝛼0.5\alpha=0.5italic_α = 0.5

Figure 2 depicts the results for θ=0.5𝜃0.5\theta=0.5italic_θ = 0.5, where we present the ΛΛ\Lambdaroman_Λ RPI set and the Λ0subscriptΛ0\Lambda_{0}roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT UB-set.

Moreover, to showcase the effects of different choices of directions, we compare three different sets of directions, with θ=0.5𝜃0.5\theta=0.5italic_θ = 0.5, in Table 3. First, we show the results of choosing t¯=4¯𝑡4\bar{t}=4over¯ start_ARG italic_t end_ARG = 4 directions pointing towards the state constraint vertices, which gives the best result in terms of projection area. Next, t¯=4¯𝑡4\bar{t}=4over¯ start_ARG italic_t end_ARG = 4 directions are chosen as the gradient vectors of the state-constraint polyhedron. Lastly, we combined both choices made before, with a total of t¯=8¯𝑡8\bar{t}=8over¯ start_ARG italic_t end_ARG = 8 directions, where the result shows a good compromise between the projection area of ΛΛ\Lambdaroman_Λ and the volume of the UB-set Λ0subscriptΛ0\Lambda_{0}roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT.

θ𝜃\thetaitalic_θ ΛΛ\Lambdaroman_Λ Volume Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT Volume ΛΛ\Lambdaroman_Λ Projection Area [KK¯K^]𝐾¯𝐾^𝐾[K\leavevmode\nobreak\ \leavevmode\nobreak\ \bar{K}\leavevmode\nobreak\ % \leavevmode\nobreak\ \hat{K}][ italic_K over¯ start_ARG italic_K end_ARG over^ start_ARG italic_K end_ARG ]
0 1.44531 1.39625 4.49999 [0.394950.520630.566210.382060.437010.56196]matrix0.394950.520630.566210.382060.437010.56196\begin{bmatrix}0.39495&-0.52063&-0.56621\\ 0.38206&-0.43701&-0.56196\end{bmatrix}[ start_ARG start_ROW start_CELL 0.39495 end_CELL start_CELL - 0.52063 end_CELL start_CELL - 0.56621 end_CELL end_ROW start_ROW start_CELL 0.38206 end_CELL start_CELL - 0.43701 end_CELL start_CELL - 0.56196 end_CELL end_ROW end_ARG ]
0.5 1.41657 0.48628 4.45545 [0.398460.534650.570080.397410.436150.56948]matrix0.398460.534650.570080.397410.436150.56948\begin{bmatrix}0.39846&-0.53465&-0.57008\\ 0.39741&-0.43615&-0.56948\end{bmatrix}[ start_ARG start_ROW start_CELL 0.39846 end_CELL start_CELL - 0.53465 end_CELL start_CELL - 0.57008 end_CELL end_ROW start_ROW start_CELL 0.39741 end_CELL start_CELL - 0.43615 end_CELL start_CELL - 0.56948 end_CELL end_ROW end_ARG ]
1 0.52573 0.08852 1.97315 [0.000001.072920.638760.000000.981230.63876]matrix0.000001.072920.638760.000000.981230.63876\begin{bmatrix}0.00000&-1.07292&-0.63876\\ 0.00000&-0.98123&-0.63876\end{bmatrix}[ start_ARG start_ROW start_CELL 0.00000 end_CELL start_CELL - 1.07292 end_CELL start_CELL - 0.63876 end_CELL end_ROW start_ROW start_CELL 0.00000 end_CELL start_CELL - 0.98123 end_CELL start_CELL - 0.63876 end_CELL end_ROW end_ARG ]
Table 2: Example 1 - Designs using different weights, θ𝜃\thetaitalic_θ, for the constrained LPV system
Directions ΛΛ\Lambdaroman_Λ Volume Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT Volume ΛΛ\Lambdaroman_Λ Projection Area [KK¯K^]𝐾¯𝐾^𝐾[K\leavevmode\nobreak\ \leavevmode\nobreak\ \bar{K}\leavevmode\nobreak\ % \leavevmode\nobreak\ \hat{K}][ italic_K over¯ start_ARG italic_K end_ARG over^ start_ARG italic_K end_ARG ]
Vertices of 𝒳𝒳\mathcal{X}caligraphic_X 1.43113 0.57721 4.49999 [0.398190.534470.569700.396540.436220.56538]matrix0.398190.534470.569700.396540.436220.56538\begin{bmatrix}0.39819&-0.53447&-0.56970\\ 0.39654&-0.43622&-0.56538\end{bmatrix}[ start_ARG start_ROW start_CELL 0.39819 end_CELL start_CELL - 0.53447 end_CELL start_CELL - 0.56970 end_CELL end_ROW start_ROW start_CELL 0.39654 end_CELL start_CELL - 0.43622 end_CELL start_CELL - 0.56538 end_CELL end_ROW end_ARG ]
Gradients of 𝒳𝒳\mathcal{X}caligraphic_X 0.79426 0.50686 2.82688 [0.445880.554410.643470.445470.442440.64347]matrix0.445880.554410.643470.445470.442440.64347\begin{bmatrix}0.44588&-0.55441&-0.64347\\ 0.44547&-0.44244&-0.64347\end{bmatrix}[ start_ARG start_ROW start_CELL 0.44588 end_CELL start_CELL - 0.55441 end_CELL start_CELL - 0.64347 end_CELL end_ROW start_ROW start_CELL 0.44547 end_CELL start_CELL - 0.44244 end_CELL start_CELL - 0.64347 end_CELL end_ROW end_ARG ]
Both 1.41657 0.48628 4.45545 [0.398460.534650.570080.397410.436150.56948]matrix0.398460.534650.570080.397410.436150.56948\begin{bmatrix}0.39846&-0.53465&-0.57008\\ 0.39741&-0.43615&-0.56948\end{bmatrix}[ start_ARG start_ROW start_CELL 0.39846 end_CELL start_CELL - 0.53465 end_CELL start_CELL - 0.57008 end_CELL end_ROW start_ROW start_CELL 0.39741 end_CELL start_CELL - 0.43615 end_CELL start_CELL - 0.56948 end_CELL end_ROW end_ARG ]
Table 3: Example 1 - Designs using different direction set choices, with fixed weight θ=0.5𝜃0.5\theta=0.5italic_θ = 0.5, for the constrained LPV system

5.2 Example 2 - Coupled tank

Next, we consider a two-tank system, specifically the digital twin (high fidelity simulator) provided by Quanser®. The system was modeled as a Quasi-LPV system subject to bounded disturbances, represents the nonlinear plant model inside a given polyhedral set 𝒳𝒳\mathcal{X}caligraphic_X. To showcase the potential of the proposed technique, we considered the shifted coupled tank system with an equilibrium point defined by x^eq=[15.25 14.87]subscript^𝑥𝑒𝑞superscriptdelimited-[]15.2514.87\hat{x}_{eq}=[15.25\leavevmode\nobreak\ 14.87]^{\prime}over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_e italic_q end_POSTSUBSCRIPT = [ 15.25 14.87 ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and u^eq=8.1subscript^𝑢𝑒𝑞8.1\hat{u}_{eq}=8.1over^ start_ARG italic_u end_ARG start_POSTSUBSCRIPT italic_e italic_q end_POSTSUBSCRIPT = 8.1, obtained experimentally, with the shifted states defined as x=x^x^eq𝑥^𝑥subscript^𝑥𝑒𝑞x=\hat{x}-\hat{x}_{eq}italic_x = over^ start_ARG italic_x end_ARG - over^ start_ARG italic_x end_ARG start_POSTSUBSCRIPT italic_e italic_q end_POSTSUBSCRIPT and the shifted control variable u=u^u^eq𝑢^𝑢subscript^𝑢𝑒𝑞u=\hat{u}-\hat{u}_{eq}italic_u = over^ start_ARG italic_u end_ARG - over^ start_ARG italic_u end_ARG start_POSTSUBSCRIPT italic_e italic_q end_POSTSUBSCRIPT, resulting in the system in the form of (10) with vertex matrices

A1=[0.98860.00000.01120.9886],A2=[0.98860.00000.01120.9840]formulae-sequencesubscript𝐴1matrix0.98860.00000.01120.9886subscript𝐴2matrix0.98860.00000.01120.9840\displaystyle A_{1}=\begin{bmatrix}0.9886&0.0000\\ 0.0112&0.9886\end{bmatrix},A_{2}=\begin{bmatrix}0.9886&0.0000\\ 0.0112&0.9840\end{bmatrix}italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = [ start_ARG start_ROW start_CELL 0.9886 end_CELL start_CELL 0.0000 end_CELL end_ROW start_ROW start_CELL 0.0112 end_CELL start_CELL 0.9886 end_CELL end_ROW end_ARG ] , italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = [ start_ARG start_ROW start_CELL 0.9886 end_CELL start_CELL 0.0000 end_CELL end_ROW start_ROW start_CELL 0.0112 end_CELL start_CELL 0.9840 end_CELL end_ROW end_ARG ]
A3=[0.98400.00000.01580.9886],A4=[0.98400.00000.01580.9840]formulae-sequencesubscript𝐴3matrix0.98400.00000.01580.9886subscript𝐴4matrix0.98400.00000.01580.9840\displaystyle A_{3}=\begin{bmatrix}0.9840&0.0000\\ 0.0158&0.9886\end{bmatrix},A_{4}=\begin{bmatrix}0.9840&0.0000\\ 0.0158&0.9840\end{bmatrix}italic_A start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = [ start_ARG start_ROW start_CELL 0.9840 end_CELL start_CELL 0.0000 end_CELL end_ROW start_ROW start_CELL 0.0158 end_CELL start_CELL 0.9886 end_CELL end_ROW end_ARG ] , italic_A start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT = [ start_ARG start_ROW start_CELL 0.9840 end_CELL start_CELL 0.0000 end_CELL end_ROW start_ROW start_CELL 0.0158 end_CELL start_CELL 0.9840 end_CELL end_ROW end_ARG ]

Additionally, the control input and to encompass control input uncertainties, originated from the pump gain variation, we considered B=Bp=[0.01790.0001]𝐵subscript𝐵𝑝matrix0.01790.0001B=B_{p}=\begin{bmatrix}0.0179\\ 0.0001\end{bmatrix}italic_B = italic_B start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = [ start_ARG start_ROW start_CELL 0.0179 end_CELL end_ROW start_ROW start_CELL 0.0001 end_CELL end_ROW end_ARG ], with the bounded disturbance 0.256p0.2560.256𝑝0.256-0.256\leq p\leq 0.256- 0.256 ≤ italic_p ≤ 0.256. Moreover, we considered the output matrices as C=Dη=[1001]=I𝐶subscript𝐷𝜂matrix1001𝐼C=D_{\eta}=\begin{bmatrix}1&0\\ 0&1\end{bmatrix}=Iitalic_C = italic_D start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT = [ start_ARG start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARG ] = italic_I. The systems constraints are 5xi55subscript𝑥𝑖5-5\leq x_{i}\leq 5- 5 ≤ italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≤ 5 for i=1,2𝑖12i=1,2italic_i = 1 , 2, 4u44𝑢4-4\leq u\leq 4- 4 ≤ italic_u ≤ 4, 2δu22𝛿𝑢2-2\leq\delta u\leq 2- 2 ≤ italic_δ italic_u ≤ 2, and 0.02ηi0.020.02subscript𝜂𝑖0.02-0.02\leq\eta_{i}\leq 0.02- 0.02 ≤ italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≤ 0.02 for i=1,2𝑖12i=1,2italic_i = 1 , 2, from which it is possible to define the constraint matrices X=[0.20.200000.20.2]𝑋superscriptmatrix0.20.200000.20.2X=\begin{bmatrix}-0.2&0.2&0&0\\ 0&0&-0.2&0.2\end{bmatrix}^{\prime}italic_X = [ start_ARG start_ROW start_CELL - 0.2 end_CELL start_CELL 0.2 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL - 0.2 end_CELL start_CELL 0.2 end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, U=[0.250.25]𝑈superscriptmatrix0.250.25U=\begin{bmatrix}-0.25&0.25\end{bmatrix}^{\prime}italic_U = [ start_ARG start_ROW start_CELL - 0.25 end_CELL start_CELL 0.25 end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, Ud=[0.50.5]subscript𝑈𝑑superscriptmatrix0.50.5U_{d}=\begin{bmatrix}-0.5&0.5\end{bmatrix}^{\prime}italic_U start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT = [ start_ARG start_ROW start_CELL - 0.5 end_CELL start_CELL 0.5 end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, and the disturbances matrices P=[3.93.9]𝑃superscriptmatrix3.93.9P=\begin{bmatrix}-3.9&3.9\end{bmatrix}^{\prime}italic_P = [ start_ARG start_ROW start_CELL - 3.9 end_CELL start_CELL 3.9 end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and N=[505000005050]𝑁superscriptmatrix505000005050N=\begin{bmatrix}-50&50&0&0\\ 0&0&-50&50\end{bmatrix}^{\prime}italic_N = [ start_ARG start_ROW start_CELL - 50 end_CELL start_CELL 50 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL - 50 end_CELL start_CELL 50 end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. Notice, in particular, that the state constraints correspond to the bounds considered in the fuzzification process of the original system, meaning that the corresponding sets 𝒳𝒳\mathcal{X}caligraphic_X and 𝒰𝒰\mathcal{U}caligraphic_U of state and control amplitude constraints defines the validity for the considered Fuzzy T-S model 5.

The resulting sets ΛΛ\Lambdaroman_Λ and Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT are obtained from the following 𝕃𝕃\mathbb{L}blackboard_L and 𝝆𝝆\boldsymbol{\rho}bold_italic_ρ,

𝕃=[ 0.03744 0.17477 0.002860.20000 0.00000 0.000000.037410.174770.00286 0.00000.20000 0.00000 0.00000 0.00000 0.25000 0.00000 0.20000 0.00000 0.20000 0.00000 0.000000.19202 0.000000.015220.020410.186740.00015 0.00000 0.000000.25000 0.19202 0.00000 0.01522 0.02041 0.18674 0.00015],𝝆=[0.050280.037750.050280.050270.042360.050270.037750.034150.050550.042360.034150.05055]formulae-sequence𝕃matrix0.037440.174770.002860.200000.000000.000000.037410.174770.002860.00000.200000.000000.000000.000000.250000.000000.200000.000000.200000.000000.000000.192020.000000.015220.020410.186740.000150.000000.000000.250000.192020.000000.015220.020410.186740.00015𝝆matrix0.050280.037750.050280.050270.042360.050270.037750.034150.050550.042360.034150.05055\mathbb{L}=\begin{bmatrix}\leavevmode\nobreak\ \leavevmode\nobreak\ 0.03744&% \leavevmode\nobreak\ 0.17477&\leavevmode\nobreak\ \leavevmode\nobreak\ 0.00286% \\ -0.20000&\leavevmode\nobreak\ \leavevmode\nobreak\ 0.00000&\leavevmode\nobreak% \ \leavevmode\nobreak\ 0.00000\\ -0.03741&-0.17477&-0.00286\\ \leavevmode\nobreak\ \leavevmode\nobreak\ 0.0000&-0.20000&\leavevmode\nobreak% \ \leavevmode\nobreak\ 0.00000\\ \leavevmode\nobreak\ \leavevmode\nobreak\ 0.00000&\leavevmode\nobreak\ % \leavevmode\nobreak\ 0.00000&\leavevmode\nobreak\ 0.25000\\ \leavevmode\nobreak\ \leavevmode\nobreak\ 0.00000&\leavevmode\nobreak\ 0.20000% &\leavevmode\nobreak\ \leavevmode\nobreak\ 0.00000\\ \leavevmode\nobreak\ 0.20000&\leavevmode\nobreak\ \leavevmode\nobreak\ 0.00000% &\leavevmode\nobreak\ \leavevmode\nobreak\ 0.00000\\ -0.19202&\leavevmode\nobreak\ \leavevmode\nobreak\ 0.00000&-0.01522\\ -0.02041&-0.18674&-0.00015\\ \leavevmode\nobreak\ \leavevmode\nobreak\ 0.00000&\leavevmode\nobreak\ % \leavevmode\nobreak\ 0.00000&-0.25000\\ \leavevmode\nobreak\ 0.19202&\leavevmode\nobreak\ \leavevmode\nobreak\ 0.00000% &\leavevmode\nobreak\ \leavevmode\nobreak\ 0.01522\\ \leavevmode\nobreak\ \leavevmode\nobreak\ 0.02041&\leavevmode\nobreak\ 0.18674% &\leavevmode\nobreak\ \leavevmode\nobreak\ 0.00015\end{bmatrix},\boldsymbol{% \rho}=\begin{bmatrix}0.05028\\ 0.03775\\ 0.05028\\ 0.05027\\ 0.04236\\ 0.05027\\ 0.03775\\ 0.03415\\ 0.05055\\ 0.04236\\ 0.03415\\ 0.05055\end{bmatrix}blackboard_L = [ start_ARG start_ROW start_CELL 0.03744 end_CELL start_CELL 0.17477 end_CELL start_CELL 0.00286 end_CELL end_ROW start_ROW start_CELL - 0.20000 end_CELL start_CELL 0.00000 end_CELL start_CELL 0.00000 end_CELL end_ROW start_ROW start_CELL - 0.03741 end_CELL start_CELL - 0.17477 end_CELL start_CELL - 0.00286 end_CELL end_ROW start_ROW start_CELL 0.0000 end_CELL start_CELL - 0.20000 end_CELL start_CELL 0.00000 end_CELL end_ROW start_ROW start_CELL 0.00000 end_CELL start_CELL 0.00000 end_CELL start_CELL 0.25000 end_CELL end_ROW start_ROW start_CELL 0.00000 end_CELL start_CELL 0.20000 end_CELL start_CELL 0.00000 end_CELL end_ROW start_ROW start_CELL 0.20000 end_CELL start_CELL 0.00000 end_CELL start_CELL 0.00000 end_CELL end_ROW start_ROW start_CELL - 0.19202 end_CELL start_CELL 0.00000 end_CELL start_CELL - 0.01522 end_CELL end_ROW start_ROW start_CELL - 0.02041 end_CELL start_CELL - 0.18674 end_CELL start_CELL - 0.00015 end_CELL end_ROW start_ROW start_CELL 0.00000 end_CELL start_CELL 0.00000 end_CELL start_CELL - 0.25000 end_CELL end_ROW start_ROW start_CELL 0.19202 end_CELL start_CELL 0.00000 end_CELL start_CELL 0.01522 end_CELL end_ROW start_ROW start_CELL 0.02041 end_CELL start_CELL 0.18674 end_CELL start_CELL 0.00015 end_CELL end_ROW end_ARG ] , bold_italic_ρ = [ start_ARG start_ROW start_CELL 0.05028 end_CELL end_ROW start_ROW start_CELL 0.03775 end_CELL end_ROW start_ROW start_CELL 0.05028 end_CELL end_ROW start_ROW start_CELL 0.05027 end_CELL end_ROW start_ROW start_CELL 0.04236 end_CELL end_ROW start_ROW start_CELL 0.05027 end_CELL end_ROW start_ROW start_CELL 0.03775 end_CELL end_ROW start_ROW start_CELL 0.03415 end_CELL end_ROW start_ROW start_CELL 0.05055 end_CELL end_ROW start_ROW start_CELL 0.04236 end_CELL end_ROW start_ROW start_CELL 0.03415 end_CELL end_ROW start_ROW start_CELL 0.05055 end_CELL end_ROW end_ARG ]

and the resulting control gains in the form of (19) are given in Table 4. Figure 3 illustrates the resulting sets, and their projections, where the blue * represent the initial conditions of the system; the black bold dots represents the system state evolutions through time, and its projections represented with a black line for vision clarity. Furthermore, Figure 4 represents the control variation overtime, associated with the system trajectory depicted in Figure 3, where the blue dashed line represent its bounds.

The ΛΛ\Lambdaroman_Λ set depicted in Figure 3 has a volume of 793.8872793.8872793.8872793.8872, meaning it occupies 99.24%percent99.2499.24\%99.24 % of total volume of 800800800800, with a projection area in x1subscript𝑥1x_{1}italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT x2subscript𝑥2x_{2}italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT of 99.590499.590499.590499.5904. Finally the inner set Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT has a volume of 0.06050.06050.06050.0605, meaning less than 0.01%percent0.010.01\%0.01 % of the total volume. All volumes were computed using the volume function of the MPT3 26 toolbox.

i𝑖iitalic_i Kisubscript𝐾𝑖K_{i}italic_K start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT K¯isubscript¯𝐾𝑖\bar{K}_{i}over¯ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT K^isubscript^𝐾𝑖\hat{K}_{i}over^ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT
1111 [1.02 0.08]×105matrix1.020.08superscript105\begin{bmatrix}-1.02&\leavevmode\nobreak\ \leavevmode\nobreak\ 0.08\end{% bmatrix}\times 10^{-5}[ start_ARG start_ROW start_CELL - 1.02 end_CELL start_CELL 0.08 end_CELL end_ROW end_ARG ] × 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT 0.24960.2496-0.2496- 0.2496 [0.20 0.00]matrix0.200.00\begin{bmatrix}-0.20&\leavevmode\nobreak\ 0.00\end{bmatrix}[ start_ARG start_ROW start_CELL - 0.20 end_CELL start_CELL 0.00 end_CELL end_ROW end_ARG ]
2222 [1.02 0.08]×105matrix1.020.08superscript105\begin{bmatrix}-1.02&\leavevmode\nobreak\ \leavevmode\nobreak\ 0.08\end{% bmatrix}\times 10^{-5}[ start_ARG start_ROW start_CELL - 1.02 end_CELL start_CELL 0.08 end_CELL end_ROW end_ARG ] × 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT 0.24960.2496-0.2496- 0.2496 [0.20 0.00]matrix0.200.00\begin{bmatrix}-0.20&\leavevmode\nobreak\ 0.00\end{bmatrix}[ start_ARG start_ROW start_CELL - 0.20 end_CELL start_CELL 0.00 end_CELL end_ROW end_ARG ]
3333 [9.380.20]×104matrix9.380.20superscript104\begin{bmatrix}-9.38&-0.20\end{bmatrix}\times 10^{-4}[ start_ARG start_ROW start_CELL - 9.38 end_CELL start_CELL - 0.20 end_CELL end_ROW end_ARG ] × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 0.24960.2496-0.2496- 0.2496 [0.20 0.00]matrix0.200.00\begin{bmatrix}-0.20&\leavevmode\nobreak\ 0.00\end{bmatrix}[ start_ARG start_ROW start_CELL - 0.20 end_CELL start_CELL 0.00 end_CELL end_ROW end_ARG ]
4444 [ 3.410.018]×102matrix3.410.018superscript102\begin{bmatrix}\leavevmode\nobreak\ 3.41&-0.018\end{bmatrix}\times 10^{-2}[ start_ARG start_ROW start_CELL 3.41 end_CELL start_CELL - 0.018 end_CELL end_ROW end_ARG ] × 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT 0.25260.2526-0.2526- 0.2526 [0.20 0.00]matrix0.200.00\begin{bmatrix}-0.20&\leavevmode\nobreak\ 0.00\end{bmatrix}[ start_ARG start_ROW start_CELL - 0.20 end_CELL start_CELL 0.00 end_CELL end_ROW end_ARG ]
Table 4: Example 2 - Control Gains
Refer to caption
Figure 3: Example 2 - ΛΛ\Lambdaroman_Λ and Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT sets, and system trajectory
Refer to caption
Figure 4: Example 2 - Coupled tank - Control rate

6 Conclusion

We have developed a new output feedback design technique that effectively manages constrained discrete-time Linear Parameter-Varying (LPV) systems subject to persistent disturbances. In addition to addressing state and control constraints, this technique also accommodates control rate constraints, which frequently arise in practical control scenarios. We formulated a bilinear optimization problem based on the proposed polyhedral robust positive invariance and set inclusion conditions. This design allows for the synthesis of an incremental LPV control law that explore certain degrees of freedom not previously addressed in the existing literature. Numerical examples illustrate the effectiveness of the proposed technique.

Appendix A

Proof of Lemma 3.4: We can re-write 𝔸cl(α+,α)=superscript𝔸𝑐𝑙subscript𝛼𝛼absent\mathbb{A}^{cl}(\alpha_{+},\alpha)=blackboard_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) =

[A(α)B(α)K(α)CI+K¯(α)]F1(α)[0K^(α+)]M1(α+)[CA(α)CB(α)]N1(α)direct-sumsubscriptdelimited-[]𝐴𝛼𝐵𝛼𝐾𝛼𝐶𝐼¯𝐾𝛼subscript𝐹1𝛼subscriptdelimited-[]0^𝐾subscript𝛼subscript𝑀1subscript𝛼subscriptdelimited-[]𝐶𝐴𝛼𝐶𝐵𝛼subscript𝑁1𝛼\underbrace{\left[\begin{array}[]{cc}A(\alpha)&B(\alpha)\\ K(\alpha)C&I+\bar{K}(\alpha)\end{array}\right]}_{F_{1}(\alpha)}\oplus% \underbrace{\left[\begin{array}[]{c}0\\ \hat{K}(\alpha_{+})\end{array}\right]}_{M_{1}(\alpha_{+})}\underbrace{\left[% \begin{array}[]{cc}CA(\alpha)&CB(\alpha)\end{array}\right]}_{N_{1}(\alpha)}under⏟ start_ARG [ start_ARRAY start_ROW start_CELL italic_A ( italic_α ) end_CELL start_CELL italic_B ( italic_α ) end_CELL end_ROW start_ROW start_CELL italic_K ( italic_α ) italic_C end_CELL start_CELL italic_I + over¯ start_ARG italic_K end_ARG ( italic_α ) end_CELL end_ROW end_ARRAY ] end_ARG start_POSTSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_α ) end_POSTSUBSCRIPT ⊕ under⏟ start_ARG [ start_ARRAY start_ROW start_CELL 0 end_CELL end_ROW start_ROW start_CELL over^ start_ARG italic_K end_ARG ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARRAY ] end_ARG start_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT under⏟ start_ARG [ start_ARRAY start_ROW start_CELL italic_C italic_A ( italic_α ) end_CELL start_CELL italic_C italic_B ( italic_α ) end_CELL end_ROW end_ARRAY ] end_ARG start_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_α ) end_POSTSUBSCRIPT

and 𝔹dcl(α+,α)=subscriptsuperscript𝔹𝑐𝑙𝑑subscript𝛼𝛼absent\mathbb{B}^{cl}_{d}(\alpha_{+},\alpha)=blackboard_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) =

[Bp(α)000K(α)Dη0]F2(α)[0K^(α+)]M2(α+)[CBp(α)0Dη]N2(α).direct-sumsubscriptdelimited-[]superscript𝐵𝑝𝛼000𝐾𝛼superscript𝐷𝜂0subscript𝐹2𝛼subscriptdelimited-[]0^𝐾subscript𝛼subscript𝑀2subscript𝛼subscriptdelimited-[]𝐶superscript𝐵𝑝𝛼0superscript𝐷𝜂subscript𝑁2𝛼\underbrace{\left[\begin{array}[]{ccc}B^{p}(\alpha)&0&0\\ 0&K(\alpha)D^{\eta}&0\end{array}\right]}_{F_{2}(\alpha)}\oplus\underbrace{% \left[\begin{array}[]{c}0\\ \hat{K}(\alpha_{+})\end{array}\right]}_{M_{2}(\alpha_{+})}\underbrace{\left[% \begin{array}[]{ccc}CB^{p}(\alpha)&0&D^{\eta}\end{array}\right]}_{N_{2}(\alpha% )}.under⏟ start_ARG [ start_ARRAY start_ROW start_CELL italic_B start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_α ) end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_K ( italic_α ) italic_D start_POSTSUPERSCRIPT italic_η end_POSTSUPERSCRIPT end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ] end_ARG start_POSTSUBSCRIPT italic_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_α ) end_POSTSUBSCRIPT ⊕ under⏟ start_ARG [ start_ARRAY start_ROW start_CELL 0 end_CELL end_ROW start_ROW start_CELL over^ start_ARG italic_K end_ARG ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARRAY ] end_ARG start_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT under⏟ start_ARG [ start_ARRAY start_ROW start_CELL italic_C italic_B start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_α ) end_CELL start_CELL 0 end_CELL start_CELL italic_D start_POSTSUPERSCRIPT italic_η end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ] end_ARG start_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_α ) end_POSTSUBSCRIPT .

Then, by referring to (7) with β=α+𝛽subscript𝛼\beta=\alpha_{+}italic_β = italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT and θ=α𝜃𝛼\theta=\alphaitalic_θ = italic_α, we have

𝔸cl(α+,α)=Γ(α+)(c1+1c𝒩1)𝒜clΓ(α),superscript𝔸𝑐𝑙subscript𝛼𝛼superscriptΓsubscript𝛼superscriptsuperscript𝑐subscript1superscriptsubscript1𝑐subscript𝒩1superscript𝒜𝑐𝑙Γ𝛼\mathbb{A}^{cl}(\alpha_{+},\alpha)=\Gamma^{\prime}(\alpha_{+})\overbrace{(% \mathcal{I}^{c}\mathcal{F}_{1}+\mathcal{M}_{1}^{c}\mathcal{N}_{1})}^{\mathcal{% A}^{cl}}\Gamma(\alpha),blackboard_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) over⏞ start_ARG ( caligraphic_I start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT caligraphic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + caligraphic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT caligraphic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_ARG start_POSTSUPERSCRIPT caligraphic_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT roman_Γ ( italic_α ) ,
𝔹cl(α+,α)=Γ(α+)(c2+2c𝒩2)clΓ(α).superscript𝔹𝑐𝑙subscript𝛼𝛼superscriptΓsubscript𝛼superscriptsuperscript𝑐subscript2superscriptsubscript2𝑐subscript𝒩2superscript𝑐𝑙Γ𝛼\mathbb{B}^{cl}(\alpha_{+},\alpha)=\Gamma^{\prime}(\alpha_{+})\overbrace{(% \mathcal{I}^{c}\mathcal{F}_{2}+\mathcal{M}_{2}^{c}\mathcal{N}_{2})}^{\mathcal{% B}^{cl}}\Gamma(\alpha).blackboard_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) over⏞ start_ARG ( caligraphic_I start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT caligraphic_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + caligraphic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT caligraphic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_ARG start_POSTSUPERSCRIPT caligraphic_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT roman_Γ ( italic_α ) .

\Box

Proof of Corollary 3.5: The parameter-varying matrices in (24) can be re-written as

𝔸δu(α+,α)=[K(α)CK¯(α)]F3(αk)K^(α+)M3(α+)[CA(α)CB(α)]N3(α),superscript𝔸subscript𝛿𝑢subscript𝛼𝛼direct-sumsubscriptdelimited-[]𝐾𝛼𝐶¯𝐾𝛼subscript𝐹3subscript𝛼𝑘subscript^𝐾subscript𝛼subscript𝑀3subscript𝛼subscriptdelimited-[]𝐶𝐴𝛼𝐶𝐵𝛼subscript𝑁3𝛼\mathbb{A}^{\delta_{u}}(\alpha_{+},\alpha)=\underbrace{\left[\begin{array}[]{% cc}K(\alpha)C&\bar{K}(\alpha)\end{array}\right]}_{F_{3}(\alpha_{k})}\oplus% \underbrace{\hat{K}(\alpha_{+})}_{M_{3}(\alpha_{+})}\underbrace{\left[\begin{% array}[]{cc}CA(\alpha)&CB(\alpha)\end{array}\right]}_{N_{3}(\alpha)},blackboard_A start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) = under⏟ start_ARG [ start_ARRAY start_ROW start_CELL italic_K ( italic_α ) italic_C end_CELL start_CELL over¯ start_ARG italic_K end_ARG ( italic_α ) end_CELL end_ROW end_ARRAY ] end_ARG start_POSTSUBSCRIPT italic_F start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_α start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ⊕ under⏟ start_ARG over^ start_ARG italic_K end_ARG ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) end_ARG start_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT under⏟ start_ARG [ start_ARRAY start_ROW start_CELL italic_C italic_A ( italic_α ) end_CELL start_CELL italic_C italic_B ( italic_α ) end_CELL end_ROW end_ARRAY ] end_ARG start_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_α ) end_POSTSUBSCRIPT ,
𝔹δu(α+,α)=[0K(α)Dη0]F4(α)K^(α+)M4(α+)[CBp(α)0Dη]N4(α).superscript𝔹subscript𝛿𝑢subscript𝛼𝛼direct-sumsubscriptdelimited-[]0𝐾𝛼superscript𝐷𝜂0subscript𝐹4𝛼subscript^𝐾subscript𝛼subscript𝑀4subscript𝛼subscriptdelimited-[]𝐶superscript𝐵𝑝𝛼0superscript𝐷𝜂subscript𝑁4𝛼\mathbb{B}^{\delta_{u}}(\alpha_{+},\alpha)=\underbrace{\left[\begin{array}[]{% ccc}0&K(\alpha)D^{\eta}&0\end{array}\right]}_{F_{4}(\alpha)}\oplus\underbrace{% \hat{K}(\alpha_{+})}_{M_{4}(\alpha_{+})}\underbrace{\left[\begin{array}[]{ccc}% CB^{p}(\alpha)&0&D^{\eta}\end{array}\right]}_{N_{4}(\alpha)}.blackboard_B start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) = under⏟ start_ARG [ start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL italic_K ( italic_α ) italic_D start_POSTSUPERSCRIPT italic_η end_POSTSUPERSCRIPT end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ] end_ARG start_POSTSUBSCRIPT italic_F start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_α ) end_POSTSUBSCRIPT ⊕ under⏟ start_ARG over^ start_ARG italic_K end_ARG ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) end_ARG start_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT under⏟ start_ARG [ start_ARRAY start_ROW start_CELL italic_C italic_B start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_α ) end_CELL start_CELL 0 end_CELL start_CELL italic_D start_POSTSUPERSCRIPT italic_η end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ] end_ARG start_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_α ) end_POSTSUBSCRIPT .

Then, by referring again to (7), we obtain

𝔸δu(α+,α)=Γ(α+)(c3+3c𝒩3)𝒜δuΓ(α),superscript𝔸subscript𝛿𝑢subscript𝛼𝛼superscriptΓsubscript𝛼superscriptsuperscript𝑐subscript3superscriptsubscript3𝑐subscript𝒩3superscript𝒜subscript𝛿𝑢Γ𝛼\mathbb{A}^{\delta_{u}}(\alpha_{+},\alpha)=\Gamma^{\prime}(\alpha_{+})% \overbrace{(\mathcal{I}^{c}\mathcal{F}_{3}+\mathcal{M}_{3}^{c}\mathcal{N}_{3})% }^{\mathcal{A}^{\delta_{u}}}\Gamma(\alpha),blackboard_A start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) over⏞ start_ARG ( caligraphic_I start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT caligraphic_F start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + caligraphic_M start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT caligraphic_N start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) end_ARG start_POSTSUPERSCRIPT caligraphic_A start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT roman_Γ ( italic_α ) ,
𝔹δu(α+,α)=Γ(α+)(c4+4c𝒩4)δuΓ(α).superscript𝔹subscript𝛿𝑢subscript𝛼𝛼superscriptΓsubscript𝛼superscriptsuperscript𝑐subscript4superscriptsubscript4𝑐subscript𝒩4superscriptsubscript𝛿𝑢Γ𝛼\mathbb{B}^{\delta_{u}}(\alpha_{+},\alpha)=\Gamma^{\prime}(\alpha_{+})% \overbrace{(\mathcal{I}^{c}\mathcal{F}_{4}+\mathcal{M}_{4}^{c}\mathcal{N}_{4})% }^{\mathcal{B}^{\delta_{u}}}\Gamma(\alpha).blackboard_B start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) over⏞ start_ARG ( caligraphic_I start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT caligraphic_F start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT + caligraphic_M start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT caligraphic_N start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ) end_ARG start_POSTSUPERSCRIPT caligraphic_B start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT roman_Γ ( italic_α ) .

\Box

Proof of Theorem 4.1: The proof is divided into three parts, as follows.
1st - RPI with λlimit-from𝜆\lambda-italic_λ -contractivity of ΛΛ\Lambdaroman_Λ: It consists in showing that the relations (27a)-(27d) are equivalent to the following one-step admissibility condition that characterizes the RPI, with λ𝜆\lambdaitalic_λ-contractivity, of 𝕃𝕃\mathbb{L}blackboard_L for the closed-loop system (20)

𝕃ξ+:=𝕃[𝔸cl(α+,α)𝔹cl(α+,α)][ξd]λ𝟏lr,ξ and d such that [𝕃00𝔻][ξd][𝟏lr𝟏ld].assign𝕃subscript𝜉𝕃matrixsuperscript𝔸𝑐𝑙subscript𝛼𝛼superscript𝔹𝑐𝑙subscript𝛼𝛼matrix𝜉𝑑𝜆subscript1subscript𝑙𝑟for-all𝜉 and 𝑑 such that matrix𝕃00𝔻matrix𝜉𝑑matrixsubscript1subscript𝑙𝑟subscript1subscript𝑙𝑑\begin{array}[]{c}\mathbb{L}\xi_{+}:=\mathbb{L}\begin{bmatrix}\mathbb{A}^{cl}(% \alpha_{+},\alpha)&\mathbb{B}^{cl}(\alpha_{+},\alpha)\end{bmatrix}\begin{% bmatrix}\xi\\ d\end{bmatrix}\leq\lambda\mathbf{1}_{l_{r}},\\ \forall\xi\text{ and }d\text{ such that }\begin{bmatrix}\mathbb{L}&0\\ 0&\mathbb{D}\end{bmatrix}\begin{bmatrix}\xi\\ d\end{bmatrix}\leq\begin{bmatrix}\mathbf{1}_{l_{r}}\\ \mathbf{1}_{l_{d}}\end{bmatrix}.\end{array}start_ARRAY start_ROW start_CELL blackboard_L italic_ξ start_POSTSUBSCRIPT + end_POSTSUBSCRIPT := blackboard_L [ start_ARG start_ROW start_CELL blackboard_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) end_CELL start_CELL blackboard_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) end_CELL end_ROW end_ARG ] [ start_ARG start_ROW start_CELL italic_ξ end_CELL end_ROW start_ROW start_CELL italic_d end_CELL end_ROW end_ARG ] ≤ italic_λ bold_1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT , end_CELL end_ROW start_ROW start_CELL ∀ italic_ξ and italic_d such that [ start_ARG start_ROW start_CELL blackboard_L end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL blackboard_D end_CELL end_ROW end_ARG ] [ start_ARG start_ROW start_CELL italic_ξ end_CELL end_ROW start_ROW start_CELL italic_d end_CELL end_ROW end_ARG ] ≤ [ start_ARG start_ROW start_CELL bold_1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL bold_1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] . end_CELL end_ROW end_ARRAY (35)

By resorting to the notation (8)-(9), the pre- and post-multiplication of each relation (27a)-(27c) by compatible Γ(α+)superscriptΓsubscript𝛼\Gamma^{\prime}(\alpha_{+})roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) and Γ(αk)Γsubscript𝛼𝑘\Gamma(\alpha_{k})roman_Γ ( italic_α start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ), yields

H(α+,α)𝕃𝐻subscript𝛼𝛼𝕃\displaystyle H(\alpha_{+},\alpha)\mathbb{L}italic_H ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) blackboard_L =𝕃𝔸cl(α+,α),absent𝕃superscript𝔸𝑐𝑙subscript𝛼𝛼\displaystyle=\mathbb{L}\,\mathbb{A}^{cl}(\alpha_{+},\alpha),= blackboard_L blackboard_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) , (36a)
V(α+,α)𝔻𝑉subscript𝛼𝛼𝔻\displaystyle V(\alpha_{+},\alpha)\mathbb{D}italic_V ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) blackboard_D =𝕃𝔹cl(α+,α),absent𝕃superscript𝔹𝑐𝑙subscript𝛼𝛼\displaystyle=\mathbb{L}\,\mathbb{B}^{cl}(\alpha_{+},\alpha),= blackboard_L blackboard_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) , (36b)
H(α+,α) 1lr+V(α+,α)1ld𝐻subscript𝛼𝛼subscript1subscript𝑙𝑟𝑉subscript𝛼𝛼subscript1subscript𝑙𝑑\displaystyle H(\alpha_{+},\alpha)\,\mathbf{1}_{l_{r}}+V(\alpha_{+},\alpha)\,% \textbf{1}_{l_{d}}italic_H ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) bold_1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT + italic_V ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) 1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_POSTSUBSCRIPT λ1lr,absent𝜆subscript1subscript𝑙𝑟\displaystyle\leq\lambda\,\textbf{1}_{l_{r}},≤ italic_λ 1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT , (36c)
H(α+,α)𝝆+V(α+,α) 1ld𝐻subscript𝛼𝛼𝝆𝑉subscript𝛼𝛼subscript1subscript𝑙𝑑\displaystyle H(\alpha_{+},\alpha)\boldsymbol{\rho}+V(\alpha_{+},\alpha)\,% \mathbf{1}_{l_{d}}italic_H ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) bold_italic_ρ + italic_V ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) bold_1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_POSTSUBSCRIPT ϵ1𝝆,absentsubscriptitalic-ϵ1𝝆\displaystyle\leq\epsilon_{1}\boldsymbol{\rho},≤ italic_ϵ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT bold_italic_ρ , (36d)

where the corresponding H(α+,α)=Γ(α+)Γ(α)lr×lr𝐻subscript𝛼𝛼superscriptΓsubscript𝛼Γ𝛼superscriptsubscript𝑙𝑟subscript𝑙𝑟H(\alpha_{+},\alpha)=\Gamma^{\prime}(\alpha_{+})\mathcal{H}\Gamma(\alpha)\in% \Re^{l_{r}\times l_{r}}italic_H ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) caligraphic_H roman_Γ ( italic_α ) ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT × italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and V(α+,α)=Γ(α+)𝒱Γ(α)lr×ld𝑉subscript𝛼𝛼superscriptΓsubscript𝛼𝒱Γ𝛼superscriptsubscript𝑙𝑟subscript𝑙𝑑V(\alpha_{+},\alpha)=\Gamma^{\prime}(\alpha_{+})\mathcal{V}\Gamma(\alpha)\in% \Re^{l_{r}\times l_{d}}italic_V ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) caligraphic_V roman_Γ ( italic_α ) ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT × italic_l start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_POSTSUPERSCRIPT are, by construction, nonnegative matrices for every (α+,α)𝒮×𝒮subscript𝛼𝛼𝒮𝒮(\alpha_{+},\alpha)\in\mathcal{S}\times\mathcal{S}( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) ∈ caligraphic_S × caligraphic_S. Conversely, we require the relations (27a)-(27d) hold true for the infinite dimensional relations (36a)-(36d) be verified for all (α+,α)𝒮×𝒮subscript𝛼𝛼𝒮𝒮(\alpha_{+},\alpha)\in\mathcal{S}\times\mathcal{S}( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) ∈ caligraphic_S × caligraphic_S.

Thus, (36a) and (36b), can be re-written as [H(α+,α)V(α+,α)][𝕃00𝔻]=𝕃[𝔸cl(α+,α)𝔹cl(α+,α)],matrix𝐻subscript𝛼𝛼𝑉subscript𝛼𝛼matrix𝕃00𝔻𝕃matrixsuperscript𝔸𝑐𝑙subscript𝛼𝛼superscript𝔹𝑐𝑙subscript𝛼𝛼\begin{bmatrix}H(\alpha_{+},\alpha)&V(\alpha_{+},\alpha)\end{bmatrix}\begin{% bmatrix}\mathbb{L}&0\\ 0&\mathbb{D}\end{bmatrix}=\mathbb{L}\begin{bmatrix}\mathbb{A}^{cl}(\alpha_{+},% \alpha)&\mathbb{B}^{cl}(\alpha_{+},\alpha)\end{bmatrix},[ start_ARG start_ROW start_CELL italic_H ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) end_CELL start_CELL italic_V ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) end_CELL end_ROW end_ARG ] [ start_ARG start_ROW start_CELL blackboard_L end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL blackboard_D end_CELL end_ROW end_ARG ] = blackboard_L [ start_ARG start_ROW start_CELL blackboard_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) end_CELL start_CELL blackboard_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) end_CELL end_ROW end_ARG ] , which, together with (36c) and by resorting to the EFL, allow us to conclude that the one-step admissibility condition (35) is verified for all (α+,α)𝒮×𝒮subscript𝛼𝛼𝒮𝒮(\alpha_{+},\alpha)\in\mathcal{S}\times\mathcal{S}( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) ∈ caligraphic_S × caligraphic_S.

2nd - UB of Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT: As in the previous step, we can show that the relations (27a), (27b) and (27d) are equivalent to the following one-step admissibility condition that proves the RPI of the inner set Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT for the closed-loop system (20),

𝕃[𝔸cl(α+,α)𝔹cl(α+,α)][ξdk]ϵ𝝆,ξ and dk such that [𝕃00𝔻][ξdk][𝟏lr𝟏ld].𝕃matrixsuperscript𝔸𝑐𝑙subscript𝛼𝛼superscript𝔹𝑐𝑙subscript𝛼𝛼matrix𝜉subscript𝑑𝑘italic-ϵ𝝆for-all𝜉 and subscript𝑑𝑘 such that matrix𝕃00𝔻matrix𝜉subscript𝑑𝑘matrixsubscript1subscript𝑙𝑟subscript1subscript𝑙𝑑\begin{array}[]{c}\mathbb{L}\begin{bmatrix}\mathbb{A}^{cl}(\alpha_{+},\alpha)&% \mathbb{B}^{cl}(\alpha_{+},\alpha)\end{bmatrix}\begin{bmatrix}\xi\\ d_{k}\end{bmatrix}\leq\epsilon\boldsymbol{\rho},\\ \forall\xi\text{ and }d_{k}\text{ such that }\begin{bmatrix}\mathbb{L}&0\\ 0&\mathbb{D}\end{bmatrix}\begin{bmatrix}\xi\\ d_{k}\end{bmatrix}\leq\begin{bmatrix}\mathbf{1}_{l_{r}}\\ \mathbf{1}_{l_{d}}\end{bmatrix}.\end{array}start_ARRAY start_ROW start_CELL blackboard_L [ start_ARG start_ROW start_CELL blackboard_A start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) end_CELL start_CELL blackboard_B start_POSTSUPERSCRIPT italic_c italic_l end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) end_CELL end_ROW end_ARG ] [ start_ARG start_ROW start_CELL italic_ξ end_CELL end_ROW start_ROW start_CELL italic_d start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] ≤ italic_ϵ bold_italic_ρ , end_CELL end_ROW start_ROW start_CELL ∀ italic_ξ and italic_d start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT such that [ start_ARG start_ROW start_CELL blackboard_L end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL blackboard_D end_CELL end_ROW end_ARG ] [ start_ARG start_ROW start_CELL italic_ξ end_CELL end_ROW start_ROW start_CELL italic_d start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] ≤ [ start_ARG start_ROW start_CELL bold_1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL bold_1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ] . end_CELL end_ROW end_ARRAY (37)

Hence, any closed-loop trajectory that reaches or emanates from Λ0superscriptΛ0\Lambda^{0}roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT will remain ultimately bounded inside it.

Finite-time convergence: Finally, to show the finite-time convergence of the closed-loop trajectories starting from ΛΛ\Lambdaroman_Λ to Λ0subscriptΛ0\Lambda_{0}roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, consider the set ηΛ0={ξ:𝕃ξη𝝆}𝜂subscriptΛ0conditional-set𝜉𝕃𝜉𝜂𝝆\eta\Lambda_{0}=\{\xi:\mathbb{L}\xi\leq\eta\boldsymbol{\rho}\}italic_η roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = { italic_ξ : blackboard_L italic_ξ ≤ italic_η bold_italic_ρ }, where 0<η0𝜂0<\eta\in\Re0 < italic_η ∈ roman_ℜ is the smallest scalar such that Λ0ΛηΛ0subscriptΛ0Λ𝜂subscriptΛ0\Lambda_{0}\in\Lambda\subseteq\eta\Lambda_{0}roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ roman_Λ ⊆ italic_η roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Notice that ηΛ0𝜂subscriptΛ0\eta\Lambda_{0}italic_η roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is also an RPI set of the system (10) and shares the guaranteed contractivity coefficient λ~=ϵ1<1~𝜆subscriptitalic-ϵ11\tilde{\lambda}=\epsilon_{1}<1over~ start_ARG italic_λ end_ARG = italic_ϵ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < 1 of Λ0subscriptΛ0\Lambda_{0}roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, with ϵ11subscriptitalic-ϵ11\epsilon_{1}\longrightarrow 1italic_ϵ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⟶ 1. Thus, proceeding as in 19, for any ξ0ΛηΛ0subscript𝜉0Λ𝜂subscriptΛ0\xi_{0}\in\Lambda\subseteq\eta\Lambda_{0}italic_ξ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ roman_Λ ⊆ italic_η roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and for kk~=logλ~η0ξkΛ0𝑘~𝑘subscript~𝜆subscript𝜂0subscript𝜉𝑘subscriptΛ0k\geq\tilde{k}=\log_{\tilde{\lambda}}\eta_{0}\Rightarrow\xi_{k}\in\Lambda_{0}italic_k ≥ over~ start_ARG italic_k end_ARG = roman_log start_POSTSUBSCRIPT over~ start_ARG italic_λ end_ARG end_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ⇒ italic_ξ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Thus, the number k~~𝑘\tilde{k}over~ start_ARG italic_k end_ARG can be seen as a worst-case upper bound for the finite number of steps to reach Λ0subscriptΛ0\Lambda_{0}roman_Λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT from ΛΛ\Lambdaroman_Λ. \Box

Proof of Lemma 4.2 It follows the same rationale as in the first step of the proof of Proposition 4.1. Thus, from pre- and post-multiplication of each relation (30a)-(30c) by compatible Γ(α+)superscriptΓsubscript𝛼\Gamma^{\prime}(\alpha_{+})roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) and Γ(α)Γ𝛼\Gamma(\alpha)roman_Γ ( italic_α ), we can obtain the following equivalent infinite-dimensional relations

Q(α+,α)𝕃𝑄subscript𝛼𝛼𝕃\displaystyle Q(\alpha_{+},\alpha)\mathbb{L}italic_Q ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) blackboard_L =Uδ𝔸δu(α+,α),absentsubscript𝑈𝛿superscript𝔸subscript𝛿𝑢subscript𝛼𝛼\displaystyle=U_{\delta}\,\mathbb{A}^{\delta_{u}}(\alpha_{+},\alpha),= italic_U start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT blackboard_A start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) , (38a)
T(α+,α)𝔻𝑇subscript𝛼𝛼𝔻\displaystyle T(\alpha_{+},\alpha)\mathbb{D}italic_T ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) blackboard_D =Uδ𝔹δu(α+,α),absentsubscript𝑈𝛿superscript𝔹subscript𝛿𝑢subscript𝛼𝛼\displaystyle=U_{\delta}\,\mathbb{B}^{\delta_{u}}(\alpha_{+},\alpha),= italic_U start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT blackboard_B start_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) , (38b)
Q(α+,α) 1lr+T(α+,α)1ld𝑄subscript𝛼𝛼subscript1subscript𝑙𝑟𝑇subscript𝛼𝛼subscript1subscript𝑙𝑑\displaystyle Q(\alpha_{+},\alpha)\,\mathbf{1}_{l_{r}}+T(\alpha_{+},\alpha)\,% \textbf{1}_{l_{d}}italic_Q ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) bold_1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT + italic_T ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) 1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_POSTSUBSCRIPT λ1lr,absent𝜆subscript1subscript𝑙𝑟\displaystyle\leq\lambda\,\textbf{1}_{l_{r}},≤ italic_λ 1 start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT , (38c)

where Q(α+,α)=Γ(α+)𝒬Γ(α)luδ×lr𝑄subscript𝛼𝛼superscriptΓsubscript𝛼𝒬Γ𝛼superscriptsubscript𝑙subscript𝑢𝛿subscript𝑙𝑟Q(\alpha_{+},\alpha)=\Gamma^{\prime}(\alpha_{+})\,\mathcal{Q}\,\Gamma(\alpha)% \in\Re^{l_{u_{\delta}}\times l_{r}}italic_Q ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) caligraphic_Q roman_Γ ( italic_α ) ∈ roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT end_POSTSUBSCRIPT × italic_l start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and T(α+,α)=Γ(α+)𝒯Γ(α)luδ×ld𝑇subscript𝛼𝛼superscriptΓsubscript𝛼𝒯Γ𝛼superscriptsubscript𝑙subscript𝑢𝛿subscript𝑙𝑑T(\alpha_{+},\alpha)=\Gamma^{\prime}(\alpha_{+})\,\mathcal{T}\Gamma(\alpha)\,% \Re^{l_{u_{\delta}}\times l_{d}}italic_T ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) = roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) caligraphic_T roman_Γ ( italic_α ) roman_ℜ start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT italic_δ end_POSTSUBSCRIPT end_POSTSUBSCRIPT × italic_l start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_POSTSUPERSCRIPT are, by construction, nonnegative matrices for all (α+,α)𝒮×𝒮subscript𝛼𝛼𝒮𝒮(\alpha_{+},\alpha)\in\mathcal{S}\times\mathcal{S}( italic_α start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_α ) ∈ caligraphic_S × caligraphic_S. Hence, by resorting to the EFL, the above relations (38) are equivalent to the admissibility condition (29), as required. \Box

References

  • 1 Tarbouriech S, Garcia G, da Silva Jr JMG, Queinnec I. Stability and stabilization of linear systems with saturating actuators. Springer Science & Business Media, 2011.
  • 2 Blanchini F, Miani S. Set-Theoretic Methods in Control. Boston: Birkhäuser, 2015.
  • 3 Mohammadpour J, Scherer CW. Control of linear parameter varying systems with applications. Springer Science & Business Media, 2012.
  • 4 Tanaka K, Wang HO. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. New York: John Wiley & Sons, Inc., 2002.
  • 5 Klug M, Castelan EB, Leite VJ, Silva LF. Fuzzy dynamic output feedback control through nonlinear Takagi–Sugeno models. Fuzzy Sets and Systems. 2015;263:92-111. doi: https://doi.org/10.1016/j.fss.2014.05.019
  • 6 Yang W, Gao J, Feng G, Zhang T. An optimal approach to output-feedback robust model predictive control of LPV systems with disturbances. International Journal of Robust and Nonlinear Control. 2016;26(15):3253–3273.
  • 7 Ping X, Yao J, Ding B, Li Z. Tube-based output feedback robust MPC for LPV systems with scaled terminal constraint sets. IEEE Transactions on Cybernetics. 2021;52(8):7563–7576.
  • 8 Ding B, Dong J, Hu J. Output feedback robust MPC using general polyhedral and ellipsoidal true state bounds for LPV model with bounded disturbance. International Journal of Systems Science. 2019;50(3):625–637.
  • 9 Sereni B, Assunção E, Teixeira MCM. Stabilization and disturbance rejection with decay rate bounding in discrete-time linear parameter-varying systems via subscript\mathscr{H}_{\infty}script_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT gain-scheduling static output feedback control. International Journal of Robust and Nonlinear Control. 2022;32(14):7920–7945.
  • 10 Peixoto ML, Coutinho PH, Palhares RM. Improved robust gain-scheduling static output-feedback control for discrete-time LPV systems. European Journal of Control. 2021;58:11–16.
  • 11 Oliveira LA, Barbosa MV, Silva LF, Leite VJ. Exponential stabilization of LPV systems under magnitude and rate saturating actuators. IEEE Control Systems Letters. 2021;6:1418–1423.
  • 12 Da Silva JG, Tarbouriech S, Garcia G. Local stabilization of linear systems under amplitude and rate saturating actuators. IEEE Transactions on Automatic Control. 2003;48(5):842–847.
  • 13 Köse IE, Jabbari F. Rate and magnitude-bounded actuators: Scheduled state feedback design. IFAC Proceedings Volumes. 2002;35(1):73–78.
  • 14 Hempel AB, Kominek AB, Werner H. Output-feedback controlled-invariant sets for systems with linear parameter-varying state transition matrix. In: IEEE Conference on Decision and Control and European Control Conference. IEEE. 2011:3422–3427.
  • 15 Dórea CE, Castelan EB, Ernesto JG. Robust positively invariant polyhedral sets and constrained control using fuzzy ts models: a bilinear optimization design strategy. IFAC-PapersOnLine. 2020;53(2):8013–8018.
  • 16 Isidório ID, Dórea CE, Castelan EB. Observer-based output feedback control using invariant polyhedral sets for fuzzy T–S models under constraints. Journal of Control, Automation and Electrical Systems. 2023;34(4):752–765.
  • 17 Bender FA, da Silva Jr JMG. Output feedback controller design for systems with amplitude and rate control constraints. Asian Journal of Control. 2012;14(4):1113–1117.
  • 18 Da Silva Jr JMG, Limón D, Alamo T, Camacho EF. Dynamic output feedback for discrete-time systems under amplitude and rate actuator constraints. IEEE Transactions on Automatic Control. 2008;53(10):2367–2372.
  • 19 Brião SL, Castelan EB, Camponogara E, Ernesto JG. Output feedback design for discrete-time constrained systems subject to persistent disturbances via bilinear programming. Journal of the Franklin Institute. 2021;358(18):9741–9770.
  • 20 Ernesto JG, Castelan EB, dos Santos GAF, Camponogara E. Incremental output feedback design approach for discrete-time parameter-varying systems with amplitude and rate control constraints. In: 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA). 2021:1-7
  • 21 Ernesto JG, Castelan EB, Lucia W, dos Santos GAF. Alternative implementation to an incremental output-feedback design approach for constrained discrete-time parameter-varying systems. IFAC-PapersOnLine. 2022;55(35):25–30.
  • 22 Ernesto JG, Castelan EB, Lucia W. Control-rate Constrained Output Feedback Design for LPV Systems subject to Bounded Disturbances. In: Congresso Brasileiro de Automática-CBA. SBA. 2024; Rio de Janeiro, Brazil.
  • 23 Hennet JC. Une extension du Lemme de Farkas et son application au probleme de régulation linéaire sous contraintes. CR Acad. Sci. Paris. 1989;308(I):415–419.
  • 24 Hennet JC. Discrete time constrained linear systems. Control and Dynamic Systems. 1995;71:157–214.
  • 25 Byrd RH, Nocedal J, Waltz RA. Knitro: An Integrated Package for Nonlinear Optimization. In: Large-Scale Nonlinear Optimization.Boston: Springer, 2006.
  • 26 Herceg M, Kvasnica M, Jones C, Morari M. Multi-Parametric Toolbox 3.0. In: Proc. of the European Control Conference. 2013; Zürich, Switzerland:502–510. http://control.ee.ethz.ch/~mpt.