Mathematics > Statistics Theory
[Submitted on 10 Nov 2025]
Title:Bernstein-von Mises for Adaptively Collected Data
View PDF HTML (experimental)Abstract:Uncertainty quantification (UQ) for adaptively collected data, such as that coming from adaptive experiments, bandits, or reinforcement learning, is necessary for critical elements of data collection such as ensuring safety and conducting after-study inference. The data's adaptivity creates significant challenges for frequentist UQ, yet Bayesian UQ remains the same as if the data were independent and identically distributed (i.i.d.), making it an appealing and commonly used approach. Bayesian UQ requires the (correct) specification of a prior distribution while frequentist UQ does not, but for i.i.d. data the celebrated Bernstein-von Mises theorem shows that as the sample size grows, the prior 'washes out' and Bayesian UQ becomes frequentist-valid, implying that the choice of prior need not be a major impediment to Bayesian UQ as it makes no difference asymptotically. This paper for the first time extends the Bernstein-von Mises theorem to adaptively collected data, proving asymptotic equivalence between Bayesian UQ and Wald-type frequentist UQ in this challenging setting. Our result showing this asymptotic agreement does not require the standard stability condition required by works studying validity of Wald-type frequentist UQ; in cases where stability is satisfied, our results combined with these prior studies of frequentist UQ imply frequentist validity of Bayesian UQ. Counterintuitively however, they also provide a negative result that Bayesian UQ is not asymptotically frequentist valid when stability fails, despite the fact that the prior washes out and Bayesian UQ asymptotically matches standard Wald-type frequentist UQ. We empirically validate our theory (positive and negative) via a range of simulations.
Current browse context:
stat.TH
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.