Computer Science > Machine Learning
[Submitted on 5 Nov 2025]
Title:Gradient Projection onto Historical Descent Directions for Communication-Efficient Federated Learning
View PDFAbstract:Federated Learning (FL) enables decentralized model training across multiple clients while optionally preserving data privacy. However, communication efficiency remains a critical bottleneck, particularly for large-scale models. In this work, we introduce two complementary algorithms: ProjFL, designed for unbiased compressors, and ProjFL+EF, tailored for biased compressors through an Error Feedback mechanism. Both methods rely on projecting local gradients onto a shared client-server subspace spanned by historical descent directions, enabling efficient information exchange with minimal communication overhead. We establish convergence guarantees for both algorithms under strongly convex, convex, and non-convex settings. Empirical evaluations on standard FL classification benchmarks with deep neural networks show that ProjFL and ProjFL+EF achieve accuracy comparable to existing baselines while substantially reducing communication costs.
Submission history
From: Arnaud Descours [view email] [via CCSD proxy][v1] Wed, 5 Nov 2025 13:11:30 UTC (1,745 KB)
Current browse context:
math
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.