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Abstract

Deep neural network acoustic models pro-
duce substantial gains in large vocabu-
lary continuous speech recognition systems.
Emerging work with rectified linear (ReL)
hidden units demonstrates additional gains
in final system performance relative to more
commonly used sigmoidal nonlinearities. In
this work, we explore the use of deep rectifier
networks as acoustic models for the 300 hour
Switchboard conversational speech recogni-
tion task. Using simple training procedures
without pretraining, networks with rectifier
nonlinearities produce 2% absolute reduc-
tions in word error rates over their sigmoidal
counterparts. We analyze hidden layer repre-
sentations to quantify differences in how ReL
units encode inputs as compared to sigmoidal
units. Finally, we evaluate a variant of the
ReL unit with a gradient more amenable to
optimization in an attempt to further im-
prove deep rectifier networks.

1. Introduction

Deep neural networks are quickly becoming a funda-
mental component of high performance speech recog-
nition systems. Deep neural network (DNN) acoustic
models perform substantially better than the Gaus-
sian mixture models (GMMs) typically used in large
vocabulary continuous speech recognition (LVCSR).
DNN acoustic models were initially thought to perform
well because of unsupervised pretraining (Dahl et al.,
2011). However, DNNs with random initialization
and sufficient amounts of labeled training data per-
form equivalently. LVCSR systems with DNN acoustic
models have now expanded to use a variety of loss func-
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tions during DNN training, and claim state-of-the-art
results on many challenging tasks in speech recogni-
tion (Hinton et al., 2012; Kingsbury et al., 2012; Vesely
et al., 2013).

DNN acoustic models for speech use several sigmoidal
hidden layers along with a variety of initialization, reg-
ularization, and optimization strategies. There is in-
creasing evidence from non-speech deep learning re-
search that sigmoidal nonlinearities may not be opti-
mal for DNNs. Glorot et al. (2011) found that DNNs
with rectifier nonlinearities in place of traditional sig-
moids perform much better on image recognition and
text classification tasks. Indeed, the advantage of rec-
tifier networks was most obvious in tasks with an abun-
dance of supervised training data, which is certainly
the case for DNN acoustic model training in LVCSR.
DNNs with rectifier nonlinearities played an impor-
tant role in a top-performing system for the ImageNet
large scale image classification benchmark (Krizhevsky
et al., 2012). Further, the nonlinearity used in purely
unsupervised feature learning neural networks plays an
important role in final system performance (Coates &
Ng, 2011).

Recently, DNNs with rectifier nonlinearities were
shown to perform well as acoustic models for speech
recognition. Zeiler et al. (2013) train rectifier networks
with up to 12 hidden layers on a proprietary voice
search dataset containing hundreds of hours of training
data. After supervised training, rectifier DNNs per-
form substantially better than their sigmoidal coun-
terparts. Dahl et al. (2013) apply DNNs with rec-
tifier nonlinearities and dropout regularization to a
broadcast news LVCSR task with 50 hours of train-
ing data. Rectifier DNNs with dropout outperform
sigmoidal networks without dropout.

In this work, we evaluate rectifier DNNs as acous-
tic models for a 300-hour Switchboard conversational
LVCSR task. We focus on simple optimization tech-
niques with no pretraining or regularization in order
to directly assess the impact of nonlinearity choice on
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Figure 1. Nonlinearity functions used in neural network
hidden layers. The hyperbolic tangent (tanh) function is
a typical choice while some recent work has shown im-
proved performance with rectified linear (ReL) functions.
The leaky rectified linear function (LReL) has a non-zero
gradient over its entire domain, unlike the standard ReL
function.

final system performance. We evaluate multiple rec-
tifier variants as there are potential trade-offs in hid-
den representation quality and ease of optimization
when using rectifier nonlinearites. Further, we quanti-
tatively compare the hidden representations of rectifier
and sigmoidal networks. This analysis offers insight as
to why rectifier nonlinearities perform well. Relative
to previous work on rectifier DNNs for speech, this pa-
per offers 1) a first evaluation of rectifier DNNs for a
widely available LVCSR task with hundreds of hours of
training data, 2) a comparison of rectifier variants, and
3) a quantitative analysis of how different DNNs en-
code information to further understand why rectifier
DNNs perform well. Section 2 discusses motivations
for rectifier nonlinearities in DNNs. Section 3 presents
a comparison of several DNN acoustic models on the
Switchbaord LVCSR task along with analysis of hid-
den layer coding properties.

2. Rectifier Nonlinearities

Neural networks typically employ a sigmoidal nonlin-
earity function. Recently, however, there is increasing
evidence that other types of nonlinearites can improve
the performance of DNNs. Figure 1 shows a typical
sigmoidal activation function, the hyperboloic tangent
(tanh). This function serves as the point-wise nonlin-
earity applied to all hidden units of a DNN. A single
hidden unit’s activation h(i) is given by,

h(i) = σ(w(i)Tx), (1)

where σ(·) is the tanh function, w(i) is the weight vec-
tor for the ith hidden unit, and x is the input. The
input is speech features in the first hidden layer, and
hidden activations from the previous layer in deeper
layers of the DNN.

This activation function is anti-symmetric about 0 and

has a more gradual gradient than a logistic sigmoid.
As a result, it often leads to more robust optimiza-
tion during DNN training. However, sigmoidal DNNs
can suffer from the vanishing gradient problem (Ben-
gio et al., 1994). Vanishing gradients occur when lower
layers of a DNN have gradients of nearly 0 because
higher layer units are nearly saturated at -1 or 1, the
asymptotes of the tanh function. Such vanishing gradi-
ents cause slow optimization convergence, and in some
cases the final trained network converges to a poor
local minimum. Hidden unit weights in the network
must therefore be carefully initialized as to prevent
significant saturation during the early stages of train-
ing.

The resulting DNN does not produce a sparse repre-
sentation in the sense of hard zero sparsity when using
tanh hidden units. Many hidden units activate near
the -1 asymptote for a large fraction of input patterns,
indicating they are “off.” However, this behavior is
potentially less powerful when used with a classifier
than a representation where an exact 0 indicates the
unit is “off.”

The rectified linear (ReL) nonlinearity offers an alter-
native to sigmoidal nonlinearites which addresses the
problems mentioned thus far. Figure 1 shows the ReL
activation function. The ReL function is mathemati-
cally given by,

h(i) = max(w(i)Tx, 0) =

{
w(i)Tx w(i)Tx > 0

0 else
. (2)

When a ReL unit is activated above 0, its partial
derivative is 1. Thus vanishing gradients do not ex-
ist along paths of active hidden units in an arbitrarily
deep network. Additionally, ReL units saturate at ex-
actly 0, which is potentially helpful when using hidden
activations as input features for a classifier.

However, ReL units are at a potential disadvantage
during optimization because the gradient is 0 whenever
the unit is not active. This could lead to cases where a
unit never activates as a gradient-based optimization
algorithm will not adjust the weights of a unit that
never activates initially. Further, like the vanishing
gradients problem, we might expect learning to be slow
when training ReL networks with constant 0 gradients.

To alleviate potential problems caused by the hard 0
activation of ReL units, we additionally evaluate leaky
rectified linear (LReL) hidden units. The leaky recti-
fier allows for a small, non-zero gradient when the unit
is saturated and not active,
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h(i) = max(w(i)Tx, 0) =

{
w(i)Tx w(i)Tx > 0

0.01w(i)Tx else
.

(3)

Figure 1 shows the LReL function, which is nearly
identical to the standard ReL function. The LReL
sacrifices hard-zero sparsity for a gradient which is po-
tentially more robust during optimization. We experi-
ment on both types of rectifier, as well as the sigmoidal
tanh nonlinearity.

3. Experiments

We perform LVCSR experiments on the 300 hour
Switchboard conversational telephone speech corpus
(LDC97S62). The baseline GMM system and forced
alignments for DNN training are created using the
Kaldi open-source toolkit (Povey et al., 2011). We
use a system with 3,034 senones and train DNNs to
estimate senone likelihoods in a hybrid HMM speech
recognition system. The input features for DNNs are
MFCCs with a context window of +/- 3 frames. Per-
speaker CMVN is applied as well as fMLLR. The fea-
tures are dimension reduced with LDA to a final vec-
tor of 300 dimensions and globally normalized to have
0 mean and unit variance. Overall, the HMM/GMM
system training largely follows an existing Kaldi recipe
and we defer to that original work for details (Vesely
et al., 2013). For recognition evaluation, we use both
the Switchboard and CallHome subsets of the HUB5
2000 data (LDC2002S09).

We are most interested in the effect of nonlinearity
choice on DNN performance. For this reason, we use
simple initialization and training procedures for DNN
optimization. We randomly initialize all hidden layer
weights with a mean 0 uniform distribution. The scal-
ing of the uniform interval is set based on layer size
to prevent sigmoidal saturation in the initial network
(Glorot et al., 2011). The output layer is a standard
softmax classifier, and cross entropy with no regular-
ization serves as the loss function. We note that train-
ing and development set cross entropies are closely
matched throughout training, suggesting that regular-
ization is not necessary for the task. Networks are op-
timized using stochastic gradient descent (SGD) with
momentum and a mini-batch size of 256 examples.
The momentum term is initially given a weight of 0.5,
and increases to 0.9 after 40,000 SGD iterations. We
use a constant step size of 0.01. For each model we
initially searched over several values for the step size
parameter, [0.1, 0.05, 0.01, 0.005, 0.001]. For each non-
linearity type the value 0.01 led to fastest convergence

without diverging from taking overly large steps. Net-
work training stops after two complete passes through
the 300 hour training set. Hidden layers contain 2,048
hidden units, and we explore models with varying
numbers of hidden layers.

3.1. Impact of Nonlinearity

Our first experiment compares sigmoidal nonlinearity
DNNs against DNNs trained using the two rectifier
functions discussed in section 2. DNNs with 2, 3, and
4 hidden layers are trained for all nonlinearity types.
We reserved 25,000 examples from the training set
to obtain a held-out estimate of the frame-wise cross
entropy and accuracy of the neural network acoustic
models. Such a measurement is important because
recognizer word error rate (WER) is only loosely cor-
related with the cross entropy metric used in our DNN
acoustic model training. Table 1 shows the results for
both frame-wise metrics and WER.

DNNs with rectifier nonlinearities substantially out-
perform sigmoidal DNNs in all error metrics, and
across all DNN depths. Rectifier DNNs produce WER
reductions of up to 2% absolute on the full Eval2000
dataset as compared with sigmoidal DNNs – a substan-
tial improvement for this task. Furthermore, deeper 4
layer sigmoidal DNNs perform slightly worse than 2
layer rectifier DNNs despite having 1.76 times more
free parameters. The performance gains observed in
our sigmoidal DNNs relative to the GMM baseline
system are on par with other recent work with DNN
acoustic models on the Switchboard task (Yu et al.,
2013). We note that in preliminary experiments we
found tanh units to perform slightly better than logis-
tic sigmoids, another sigmoidal nonlinearity commonly
used in DNNs.

The choice of rectifier function used in the DNN ap-
pears unimportant for both frame-wise and WER met-
rics. Both the leaky and standard ReL networks per-
form similarly, suggesting the leaky rectifiers’ non-zero
gradient does not substantially impact training opti-
mization. During training we observed leaky rectifier
DNNs converge slightly faster, which is perhaps due
to the difference in gradient among the two rectifiers.

In addition to performing better overall, rectifier
DNNs benefit more from depth as compared with sig-
moidal DNNs. Each time we add a hidden layer, recti-
fier DNNs show a greater absolute reduction in WER
than sigmoidal DNNs. We believe this effect results
from the lack of vanishing gradients in rectifier net-
works. The largest models we train still underfit the
training set.
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Table 1. Results for DNN systems in terms of frame-wise error metrics on the development set as well as word error
rates (%) on the Hub5 2000 evaluation sets. The Hub5 set (EV) contains the Switcboard (SWBD) and CallHome (CH)
evaluation subsets. Frame-wise error metrics were evaluated on 25,000 frames held out from the training set.

Model Dev CrossEnt Dev Acc(%) SWBD WER CH WER EV WER

GMM Baseline N/A N/A 25.1 40.6 32.6

2 Layer Tanh 2.09 48.0 21.0 34.3 27.7
2 Layer ReLU 1.91 51.7 19.1 32.3 25.7
2 Layer LReLU 1.90 51.8 19.1 32.1 25.6

3 Layer Tanh 2.02 49.8 20.0 32.7 26.4
3 Layer ReLU 1.83 53.3 18.1 30.6 24.4
3 Layer LReLU 1.83 53.4 17.8 30.7 24.3

4 Layer Tanh 1.98 49.8 19.5 32.3 25.9
4 Layer ReLU 1.79 53.9 17.3 29.9 23.6
4 Layer LReLU 1.78 53.9 17.3 29.9 23.7

3.2. Analyzing Coding Properties

Previous work in DNNs for speech and with ReL net-
works suggest that sparsity of hidden layer represen-
tations plays an important role for both classifier per-
formance and invariance to input perturbations. Al-
though sparsity and invariance are not necessarily cou-
pled, we seek to better understand how ReL and tanh
networks differ. Further, one might hypothesize that
ReL networks exhibit “mostly linear” behavior where
units saturate at 0 rarely. We analyze the hidden rep-
resentations of our trained DNN acoustic models in
an attempt to explain the performance gains observed
when using ReL nonlinearities.

We compute the last hidden layer representations of 4-
layer DNNs trained with each nonlinearity type from
section 3.1 for 10,000 input samples from the held-
out set. For each hidden unit, we compute its em-
pirical activation probability – the fraction of exam-
ples for which the unit is not saturated. We con-
sider ReL and LReL units saturated when the acti-
vation is nonpositive, h(x) ≤ 0. Sigmoidal tanh units
have negative and positive saturation, measured by
an activation h(x) ≤ −0.95 and h(x) ≥ 0.95 respec-
tively. For the sigmoidal units we also measure the
fraction of units that saturate on the negative asymp-
tote (h(x) ≤ −0.95), as this corresponds to the “off”
position. Figure 2 shows the activation probabilities
for hidden units in the last hidden layer for each net-
work type. The units are sorted in decreasing order of
activation probability.

ReL DNNs contain substantially more sparse repre-
sentations than sigmoidal DNNs. We measure life-
time sparsity, the average empirical activation prob-
ability of all units in the layer for a large sample of
inputs (Willmore & Tolhurst, 2001). The average ac-
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Figure 2. Empirical activation probability of hidden units
in the final hidden layer layer of 4 hidden layer DNNs.
Hidden units (x axis) are sorted by their probability of ac-
tivation. In ReL networks, we consider any positive value
as active (h(x) > 0). In tanh networks we consider ac-
tivation in terms of not saturating in the “off” position
(h(x) > −0.95, “tanh neg”) as well as not saturating on
either asymptote (−0.95 < h(x) < 0.95, “tanh both”).

tivation probability for the ReL hidden layer is 0.11,
more than a factor of 6 less than the average proba-
bility for tanh units (considering tanh to be active or
“on” when h(x) > −0.95). If we believe sparse ac-
tivation of a hidden unit is important for invariance
to input stimuli, then rectifier networks have a clear
advantage. Notice that in terms of sparsity the two
types of rectifier evaluated are nearly identical.

Sparsity, however, is not a complete picture of code
quality. In a sparse code, only a few coding units rep-
resent any particular stimulus on average. However, it
is possible to use the same coding units for each stimu-
lus and still obtain a sparse code. For example, a layer
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with four coding units and hidden unit activation prob-
abilities [1, 0, 0, 0] has average lifetime sparsity 0.25.
Such a code is sparse on average, but not disperse.
Dispersion measures whether the set of active units is
different for each stimulus (Willmore et al., 2000). A
different four unit code with activation probabilities
[0.25, 0.25, 0.25, 0.25] again has lifetime sparsity 0.25
but is more disperse because units share input cod-
ing equally. We can informally compare dispersion by
comparing the slope of curves in figure 2. A flat curve
corresponds to a perfectly disperse code in this case.

We measure dispersion quantitatively for the hidden
layers presented in figure 2. We compute the stan-
dard deviation of empirical activation probabilities
across all units in the hidden layer 1. A perfectly
disperse code, where all units code equally, has stan-
dard deviation 0. Both types of ReL layer have stan-
dard deviation 0.04, significantly lower than the tanh
layer’s standard deviation of 0.14. This indicates that
ReL networks, as compared with tanh networks, pro-
duce sparse codes where information is distributed
more uniformly across hidden units. There are sev-
eral results from information theory, learning theory,
and computational neuroscience which suggest sparse-
disperse codes are important, and translate to im-
proved performance or invariance.

4. Conclusion

This work focuses on the impact of nonlinearity
choice in DNN acoustic models without sophisti-
cated pretraining or regularization techniques. DNNs
with rectifiers produce substantial gains on the 300-
hour Switchboard task compared to sigmoidal DNNs.
Leaky rectifiers, with non-zero gradient over the entire
domain, perform nearly identically to standard recti-
fier DNNs. This suggests gradient-based optimization
for model training is not adversely affected by the use
of rectifier nonlinearities. Further, ReL DNNs with-
out pretraining or advanced optimization strategies
perform on par with established benchmarks for the
Switchboard task. Our analysis of hidden layer rep-
resentations revealed substantial differences in both
sparsity and dispersion when using ReL units com-
pared with tanh units. The increased sparsity and dis-
persion of ReL hidden layers may help to explain their
improved performance in supervised acoustic model
training.

1This metric for dispersion differs from metrics in previ-
ous work. Previous work focuses on analyzing linear filters
with Gaussian-distribted inputs. Our metric captures the
idea of dispersion more suitably for non-linear coding units
and non-Gaussian inputs.
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