Com o lançamento do Gemini 2.0 no final de 2024, apresentamos um novo conjunto de bibliotecas chamado SDK do Google GenAI. Ela oferece uma experiência de desenvolvedor aprimorada com uma arquitetura de cliente atualizada e simplifica a transição entre fluxos de trabalho de desenvolvedores e empresariais.
O SDK de IA generativa do Google agora está em disponibilidade geral (GA) em todas as plataformas compatíveis. Se você estiver usando uma das nossas bibliotecas legadas, recomendamos migrar.
Este guia fornece exemplos de código antes e depois da migração para ajudar você a começar.
Instalação
Antes
Python
pip install -U -q "google-generativeai"
JavaScript
npm install @google/generative-ai
Go
go get github.com/google/generative-ai-go
Depois
Python
pip install -U -q "google-genai"
JavaScript
npm install @google/genai
Go
go get google.golang.org/genai
Acesso à API
O SDK antigo processava implicitamente o cliente da API nos bastidores usando vários métodos
ad hoc. Isso dificultava o gerenciamento do cliente e das credenciais.
Agora, você interage por um objeto Client
central. Esse objeto Client
funciona como um único ponto de entrada para vários serviços de API (por exemplo, models
, chats
,
files
, tunings
), promovendo a consistência e simplificando o gerenciamento de credenciais e
configurações em diferentes chamadas de API.
Antes (acesso à API menos centralizado)
Python
O SDK antigo não usava explicitamente um objeto cliente de nível superior para a maioria das chamadas de API. Você vai instanciar e interagir diretamente com objetos GenerativeModel
.
import google.generativeai as genai
# Directly create and use model objects
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(...)
chat = model.start_chat(...)
JavaScript
Embora GoogleGenerativeAI
fosse um ponto central para modelos e chat, outras funcionalidades, como gerenciamento de arquivos e cache, geralmente exigiam a importação e a instanciação de classes de cliente totalmente separadas.
import { GoogleGenerativeAI } from "@google/generative-ai";
import { GoogleAIFileManager, GoogleAICacheManager } from "@google/generative-ai/server"; // For files/caching
const genAI = new GoogleGenerativeAI("YOUR_API_KEY");
const fileManager = new GoogleAIFileManager("YOUR_API_KEY");
const cacheManager = new GoogleAICacheManager("YOUR_API_KEY");
// Get a model instance, then call methods on it
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const result = await model.generateContent(...);
const chat = model.startChat(...);
// Call methods on separate client objects for other services
const uploadedFile = await fileManager.uploadFile(...);
const cache = await cacheManager.create(...);
Go
A função genai.NewClient
criou um cliente, mas as operações do modelo generativo
eram normalmente chamadas em uma instância GenerativeModel
separada
obtida desse cliente. Outros serviços podem ter sido acessados por
pacotes ou padrões distintos.
import (
"github.com/google/generative-ai-go/genai"
"github.com/google/generative-ai-go/genai/fileman" // For files
"google.golang.org/api/option"
)
client, err := genai.NewClient(ctx, option.WithAPIKey("YOUR_API_KEY"))
fileClient, err := fileman.NewClient(ctx, option.WithAPIKey("YOUR_API_KEY"))
// Get a model instance, then call methods on it
model := client.GenerativeModel("gemini-1.5-flash")
resp, err := model.GenerateContent(...)
cs := model.StartChat()
// Call methods on separate client objects for other services
uploadedFile, err := fileClient.UploadFile(...)
Depois (objeto de cliente centralizado)
Python
from google import genai
# Create a single client object
client = genai.Client()
# Access API methods through services on the client object
response = client.models.generate_content(...)
chat = client.chats.create(...)
my_file = client.files.upload(...)
tuning_job = client.tunings.tune(...)
JavaScript
import { GoogleGenAI } from "@google/genai";
// Create a single client object
const ai = new GoogleGenAI({apiKey: "YOUR_API_KEY"});
// Access API methods through services on the client object
const response = await ai.models.generateContent(...);
const chat = ai.chats.create(...);
const uploadedFile = await ai.files.upload(...);
const cache = await ai.caches.create(...);
Go
import "google.golang.org/genai"
// Create a single client object
client, err := genai.NewClient(ctx, nil)
// Access API methods through services on the client object
result, err := client.Models.GenerateContent(...)
chat, err := client.Chats.Create(...)
uploadedFile, err := client.Files.Upload(...)
tuningJob, err := client.Tunings.Tune(...)
Autenticação
As bibliotecas legadas e novas fazem a autenticação usando chaves de API. Você pode criar sua chave de API no Google AI Studio.
Antes
Python
O SDK antigo processava o objeto cliente da API implicitamente.
import google.generativeai as genai
genai.configure(api_key=...)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
Go
Importe as bibliotecas do Google:
import (
"github.com/google/generative-ai-go/genai"
"google.golang.org/api/option"
)
Crie o cliente:
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
Depois
Python
Com o SDK da GenAI do Google, primeiro você cria um cliente de API, que é usado para chamar
a API.
O novo SDK vai buscar sua chave de API em uma das variáveis de ambiente GEMINI_API_KEY
ou GOOGLE_API_KEY
, se você não passar uma para o cliente.
export GEMINI_API_KEY="YOUR_API_KEY"
from google import genai
client = genai.Client() # Set the API key using the GEMINI_API_KEY env var.
# Alternatively, you could set the API key explicitly:
# client = genai.Client(api_key="your_api_key")
JavaScript
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({apiKey: "GEMINI_API_KEY"});
Go
Importe a biblioteca da IA generativa:
import "google.golang.org/genai"
Crie o cliente:
client, err := genai.NewClient(ctx, &genai.ClientConfig{
Backend: genai.BackendGeminiAPI,
})
Geração de conteúdo
Texto
Antes
Python
Antes, não havia objetos de cliente. Você acessava as APIs diretamente por objetos
GenerativeModel
.
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
'Tell me a story in 300 words'
)
print(response.text)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const prompt = "Tell me a story in 300 words";
const result = await model.generateContent(prompt);
console.log(result.response.text());
Go
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-1.5-flash")
resp, err := model.GenerateContent(ctx, genai.Text("Tell me a story in 300 words."))
if err != nil {
log.Fatal(err)
}
printResponse(resp) // utility for printing response parts
Depois
Python
O novo SDK da IA generativa do Google oferece acesso a todos os métodos de API pelo objeto
Client
. Com exceção de alguns casos especiais com estado (chat
e
APIs ativas session
s), todas são funções sem estado. Para utilidade e uniformidade, os objetos retornados são classes pydantic
.
from google import genai
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='Tell me a story in 300 words.'
)
print(response.text)
print(response.model_dump_json(
exclude_none=True, indent=4))
JavaScript
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: "Tell me a story in 300 words.",
});
console.log(response.text);
Go
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
result, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", genai.Text("Tell me a story in 300 words."), nil)
if err != nil {
log.Fatal(err)
}
debugPrint(result) // utility for printing result
Imagem
Antes
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content([
'Tell me a story based on this image',
Image.open(image_path)
])
print(response.text)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
function fileToGenerativePart(path, mimeType) {
return {
inlineData: {
data: Buffer.from(fs.readFileSync(path)).toString("base64"),
mimeType,
},
};
}
const prompt = "Tell me a story based on this image";
const imagePart = fileToGenerativePart(
`path/to/organ.jpg`,
"image/jpeg",
);
const result = await model.generateContent([prompt, imagePart]);
console.log(result.response.text());
Go
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-1.5-flash")
imgData, err := os.ReadFile("path/to/organ.jpg")
if err != nil {
log.Fatal(err)
}
resp, err := model.GenerateContent(ctx,
genai.Text("Tell me about this instrument"),
genai.ImageData("jpeg", imgData))
if err != nil {
log.Fatal(err)
}
printResponse(resp) // utility for printing response
Depois
Python
Muitos dos mesmos recursos de conveniência estão disponíveis no novo SDK. Por exemplo, objetos PIL.Image
são convertidos automaticamente.
from google import genai
from PIL import Image
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents=[
'Tell me a story based on this image',
Image.open(image_path)
]
)
print(response.text)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const organ = await ai.files.upload({
file: "path/to/organ.jpg",
});
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: [
createUserContent([
"Tell me a story based on this image",
createPartFromUri(organ.uri, organ.mimeType)
]),
],
});
console.log(response.text);
Go
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
imgData, err := os.ReadFile("path/to/organ.jpg")
if err != nil {
log.Fatal(err)
}
parts := []*genai.Part{
{Text: "Tell me a story based on this image"},
{InlineData: &genai.Blob{Data: imgData, MIMEType: "image/jpeg"}},
}
contents := []*genai.Content{
{Parts: parts},
}
result, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", contents, nil)
if err != nil {
log.Fatal(err)
}
debugPrint(result) // utility for printing result
Streaming
Antes
Python
import google.generativeai as genai
response = model.generate_content(
"Write a cute story about cats.",
stream=True)
for chunk in response:
print(chunk.text)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const prompt = "Write a story about a magic backpack.";
const result = await model.generateContentStream(prompt);
// Print text as it comes in.
for await (const chunk of result.stream) {
const chunkText = chunk.text();
process.stdout.write(chunkText);
}
Go
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-1.5-flash")
iter := model.GenerateContentStream(ctx, genai.Text("Write a story about a magic backpack."))
for {
resp, err := iter.Next()
if err == iterator.Done {
break
}
if err != nil {
log.Fatal(err)
}
printResponse(resp) // utility for printing the response
}
Depois
Python
from google import genai
client = genai.Client()
for chunk in client.models.generate_content_stream(
model='gemini-2.0-flash',
contents='Tell me a story in 300 words.'
):
print(chunk.text)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContentStream({
model: "gemini-2.0-flash",
contents: "Write a story about a magic backpack.",
});
let text = "";
for await (const chunk of response) {
console.log(chunk.text);
text += chunk.text;
}
Go
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
for result, err := range client.Models.GenerateContentStream(
ctx,
"gemini-2.0-flash",
genai.Text("Write a story about a magic backpack."),
nil,
) {
if err != nil {
log.Fatal(err)
}
fmt.Print(result.Candidates[0].Content.Parts[0].Text)
}
Configuração
Antes
Python
import google.generativeai as genai
model = genai.GenerativeModel(
'gemini-1.5-flash',
system_instruction='you are a story teller for kids under 5 years old',
generation_config=genai.GenerationConfig(
max_output_tokens=400,
top_k=2,
top_p=0.5,
temperature=0.5,
response_mime_type='application/json',
stop_sequences=['\n'],
)
)
response = model.generate_content('tell me a story in 100 words')
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
model: "gemini-1.5-flash",
generationConfig: {
candidateCount: 1,
stopSequences: ["x"],
maxOutputTokens: 20,
temperature: 1.0,
},
});
const result = await model.generateContent(
"Tell me a story about a magic backpack.",
);
console.log(result.response.text())
Go
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-1.5-flash")
model.SetTemperature(0.5)
model.SetTopP(0.5)
model.SetTopK(2.0)
model.SetMaxOutputTokens(100)
model.ResponseMIMEType = "application/json"
resp, err := model.GenerateContent(ctx, genai.Text("Tell me about New York"))
if err != nil {
log.Fatal(err)
}
printResponse(resp) // utility for printing response
Depois
Python
Para todos os métodos no novo SDK, os argumentos obrigatórios são fornecidos como argumentos de palavra-chave. Todas as entradas opcionais são fornecidas no argumento config
. Os argumentos de configuração podem ser especificados como dicionários Python ou
classes Config
no namespace google.genai.types
. Para utilidade e uniformidade, todas as definições no módulo types
são classes pydantic
.
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='Tell me a story in 100 words.',
config=types.GenerateContentConfig(
system_instruction='you are a story teller for kids under 5 years old',
max_output_tokens= 400,
top_k= 2,
top_p= 0.5,
temperature= 0.5,
response_mime_type= 'application/json',
stop_sequences= ['\n'],
seed=42,
),
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: "Tell me a story about a magic backpack.",
config: {
candidateCount: 1,
stopSequences: ["x"],
maxOutputTokens: 20,
temperature: 1.0,
},
});
console.log(response.text);
Go
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
result, err := client.Models.GenerateContent(ctx,
"gemini-2.0-flash",
genai.Text("Tell me about New York"),
&genai.GenerateContentConfig{
Temperature: genai.Ptr[float32](0.5),
TopP: genai.Ptr[float32](0.5),
TopK: genai.Ptr[float32](2.0),
ResponseMIMEType: "application/json",
StopSequences: []string{"Yankees"},
CandidateCount: 2,
Seed: genai.Ptr[int32](42),
MaxOutputTokens: 128,
PresencePenalty: genai.Ptr[float32](0.5),
FrequencyPenalty: genai.Ptr[float32](0.5),
},
)
if err != nil {
log.Fatal(err)
}
debugPrint(result) // utility for printing response
Configurações de segurança
Gerar uma resposta com as configurações de segurança:
Antes
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
'say something bad',
safety_settings={
'HATE': 'BLOCK_ONLY_HIGH',
'HARASSMENT': 'BLOCK_ONLY_HIGH',
}
)
JavaScript
import { GoogleGenerativeAI, HarmCategory, HarmBlockThreshold } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
model: "gemini-1.5-flash",
safetySettings: [
{
category: HarmCategory.HARM_CATEGORY_HARASSMENT,
threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
},
],
});
const unsafePrompt =
"I support Martians Soccer Club and I think " +
"Jupiterians Football Club sucks! Write an ironic phrase telling " +
"them how I feel about them.";
const result = await model.generateContent(unsafePrompt);
try {
result.response.text();
} catch (e) {
console.error(e);
console.log(result.response.candidates[0].safetyRatings);
}
Depois
Python
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='say something bad',
config=types.GenerateContentConfig(
safety_settings= [
types.SafetySetting(
category='HARM_CATEGORY_HATE_SPEECH',
threshold='BLOCK_ONLY_HIGH'
),
]
),
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const unsafePrompt =
"I support Martians Soccer Club and I think " +
"Jupiterians Football Club sucks! Write an ironic phrase telling " +
"them how I feel about them.";
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: unsafePrompt,
config: {
safetySettings: [
{
category: "HARM_CATEGORY_HARASSMENT",
threshold: "BLOCK_ONLY_HIGH",
},
],
},
});
console.log("Finish reason:", response.candidates[0].finishReason);
console.log("Safety ratings:", response.candidates[0].safetyRatings);
Assíncrona
Antes
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content_async(
'tell me a story in 100 words'
)
Depois
Python
Para usar o novo SDK com asyncio
, há uma implementação async
separada de cada método em client.aio
.
from google import genai
client = genai.Client()
response = await client.aio.models.generate_content(
model='gemini-2.0-flash',
contents='Tell me a story in 300 words.'
)
Chat
Inicie um chat e envie uma mensagem para o modelo:
Antes
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
chat = model.start_chat()
response = chat.send_message(
"Tell me a story in 100 words")
response = chat.send_message(
"What happened after that?")
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const chat = model.startChat({
history: [
{
role: "user",
parts: [{ text: "Hello" }],
},
{
role: "model",
parts: [{ text: "Great to meet you. What would you like to know?" }],
},
],
});
let result = await chat.sendMessage("I have 2 dogs in my house.");
console.log(result.response.text());
result = await chat.sendMessage("How many paws are in my house?");
console.log(result.response.text());
Go
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()
cs.History = []*genai.Content{
{
Parts: []genai.Part{
genai.Text("Hello, I have 2 dogs in my house."),
},
Role: "user",
},
{
Parts: []genai.Part{
genai.Text("Great to meet you. What would you like to know?"),
},
Role: "model",
},
}
res, err := cs.SendMessage(ctx, genai.Text("How many paws are in my house?"))
if err != nil {
log.Fatal(err)
}
printResponse(res) // utility for printing the response
Depois
Python
from google import genai
client = genai.Client()
chat = client.chats.create(model='gemini-2.0-flash')
response = chat.send_message(
message='Tell me a story in 100 words')
response = chat.send_message(
message='What happened after that?')
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const chat = ai.chats.create({
model: "gemini-2.0-flash",
history: [
{
role: "user",
parts: [{ text: "Hello" }],
},
{
role: "model",
parts: [{ text: "Great to meet you. What would you like to know?" }],
},
],
});
const response1 = await chat.sendMessage({
message: "I have 2 dogs in my house.",
});
console.log("Chat response 1:", response1.text);
const response2 = await chat.sendMessage({
message: "How many paws are in my house?",
});
console.log("Chat response 2:", response2.text);
Go
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
chat, err := client.Chats.Create(ctx, "gemini-2.0-flash", nil, nil)
if err != nil {
log.Fatal(err)
}
result, err := chat.SendMessage(ctx, genai.Part{Text: "Hello, I have 2 dogs in my house."})
if err != nil {
log.Fatal(err)
}
debugPrint(result) // utility for printing result
result, err = chat.SendMessage(ctx, genai.Part{Text: "How many paws are in my house?"})
if err != nil {
log.Fatal(err)
}
debugPrint(result) // utility for printing result
Chamadas de função
Antes
Python
import google.generativeai as genai
from enum import Enum
def get_current_weather(location: str) -> str:
"""Get the current whether in a given location.
Args:
location: required, The city and state, e.g. San Franciso, CA
unit: celsius or fahrenheit
"""
print(f'Called with: {location=}')
return "23C"
model = genai.GenerativeModel(
model_name="gemini-1.5-flash",
tools=[get_current_weather]
)
response = model.generate_content("What is the weather in San Francisco?")
function_call = response.candidates[0].parts[0].function_call
Depois
Python
No novo SDK, a chamada automática de função é o padrão. Desative a opção.
from google import genai
from google.genai import types
client = genai.Client()
def get_current_weather(location: str) -> str:
"""Get the current whether in a given location.
Args:
location: required, The city and state, e.g. San Franciso, CA
unit: celsius or fahrenheit
"""
print(f'Called with: {location=}')
return "23C"
response = client.models.generate_content(
model='gemini-2.0-flash',
contents="What is the weather like in Boston?",
config=types.GenerateContentConfig(
tools=[get_current_weather],
automatic_function_calling={'disable': True},
),
)
function_call = response.candidates[0].content.parts[0].function_call
Chamada automática de função
Antes
Python
O SDK antigo só é compatível com a chamada automática de função no chat. No novo SDK, esse é o comportamento padrão em generate_content
.
import google.generativeai as genai
def get_current_weather(city: str) -> str:
return "23C"
model = genai.GenerativeModel(
model_name="gemini-1.5-flash",
tools=[get_current_weather]
)
chat = model.start_chat(
enable_automatic_function_calling=True)
result = chat.send_message("What is the weather in San Francisco?")
Depois
Python
from google import genai
from google.genai import types
client = genai.Client()
def get_current_weather(city: str) -> str:
return "23C"
response = client.models.generate_content(
model='gemini-2.0-flash',
contents="What is the weather like in Boston?",
config=types.GenerateContentConfig(
tools=[get_current_weather]
),
)
Execução de código
A execução de código é uma ferramenta que permite ao modelo gerar código em Python, executá-lo e retornar o resultado.
Antes
Python
import google.generativeai as genai
model = genai.GenerativeModel(
model_name="gemini-1.5-flash",
tools="code_execution"
)
result = model.generate_content(
"What is the sum of the first 50 prime numbers? Generate and run code for "
"the calculation, and make sure you get all 50.")
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
model: "gemini-1.5-flash",
tools: [{ codeExecution: {} }],
});
const result = await model.generateContent(
"What is the sum of the first 50 prime numbers? " +
"Generate and run code for the calculation, and make sure you get " +
"all 50.",
);
console.log(result.response.text());
Depois
Python
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='What is the sum of the first 50 prime numbers? Generate and run '
'code for the calculation, and make sure you get all 50.',
config=types.GenerateContentConfig(
tools=[types.Tool(code_execution=types.ToolCodeExecution)],
),
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContent({
model: "gemini-2.0-pro-exp-02-05",
contents: `Write and execute code that calculates the sum of the first 50 prime numbers.
Ensure that only the executable code and its resulting output are generated.`,
});
// Each part may contain text, executable code, or an execution result.
for (const part of response.candidates[0].content.parts) {
console.log(part);
console.log("\n");
}
console.log("-".repeat(80));
// The `.text` accessor concatenates the parts into a markdown-formatted text.
console.log("\n", response.text);
Pesquise conteúdo de embasamento
GoogleSearch
(Gemini>=2.0) e GoogleSearchRetrieval
(Gemini < 2.0) são ferramentas que permitem ao modelo recuperar dados da Web públicos para embasamento, com tecnologia do Google.
Antes
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
contents="what is the Google stock price?",
tools='google_search_retrieval'
)
Depois
Python
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='What is the Google stock price?',
config=types.GenerateContentConfig(
tools=[
types.Tool(
google_search=types.GoogleSearch()
)
]
)
)
Resposta JSON
Gere respostas no formato JSON.
Antes
Python
Ao especificar um response_schema
e definir response_mime_type="application/json"
, os usuários podem restringir o modelo para produzir uma resposta JSON
seguindo uma determinada estrutura.
import google.generativeai as genai
import typing_extensions as typing
class CountryInfo(typing.TypedDict):
name: str
population: int
capital: str
continent: str
major_cities: list[str]
gdp: int
official_language: str
total_area_sq_mi: int
model = genai.GenerativeModel(model_name="gemini-1.5-flash")
result = model.generate_content(
"Give me information of the United States",
generation_config=genai.GenerationConfig(
response_mime_type="application/json",
response_schema = CountryInfo
),
)
JavaScript
import { GoogleGenerativeAI, SchemaType } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const schema = {
description: "List of recipes",
type: SchemaType.ARRAY,
items: {
type: SchemaType.OBJECT,
properties: {
recipeName: {
type: SchemaType.STRING,
description: "Name of the recipe",
nullable: false,
},
},
required: ["recipeName"],
},
};
const model = genAI.getGenerativeModel({
model: "gemini-1.5-pro",
generationConfig: {
responseMimeType: "application/json",
responseSchema: schema,
},
});
const result = await model.generateContent(
"List a few popular cookie recipes.",
);
console.log(result.response.text());
Depois
Python
O novo SDK usa classes
pydantic
para fornecer o esquema (embora seja possível transmitir um
genai.types.Schema
ou um dict
equivalente). Quando possível, o SDK
analisa o JSON retornado e retorna o resultado em response.parsed
. Se você
forneceu uma classe pydantic
como o esquema, o SDK vai converter esse JSON
em uma instância da classe.
from google import genai
from pydantic import BaseModel
client = genai.Client()
class CountryInfo(BaseModel):
name: str
population: int
capital: str
continent: str
major_cities: list[str]
gdp: int
official_language: str
total_area_sq_mi: int
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='Give me information of the United States.',
config={
'response_mime_type': 'application/json',
'response_schema': CountryInfo,
},
)
response.parsed
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: "List a few popular cookie recipes.",
config: {
responseMimeType: "application/json",
responseSchema: {
type: "array",
items: {
type: "object",
properties: {
recipeName: { type: "string" },
ingredients: { type: "array", items: { type: "string" } },
},
required: ["recipeName", "ingredients"],
},
},
},
});
console.log(response.text);
Arquivos
Fazer upload
Fazer upload de um arquivo:
Antes
Python
import requests
import pathlib
import google.generativeai as genai
# Download file
response = requests.get(
'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)
file = genai.upload_file(path='a11.txt')
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content([
'Can you summarize this file:',
my_file
])
print(response.text)
Depois
Python
import requests
import pathlib
from google import genai
client = genai.Client()
# Download file
response = requests.get(
'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)
my_file = client.files.upload(file='a11.txt')
response = client.models.generate_content(
model='gemini-2.0-flash',
contents=[
'Can you summarize this file:',
my_file
]
)
print(response.text)
Listar e receber
Listar arquivos enviados e receber um arquivo enviado com um nome de arquivo:
Antes
Python
import google.generativeai as genai
for file in genai.list_files():
print(file.name)
file = genai.get_file(name=file.name)
Depois
Python
from google import genai
client = genai.Client()
for file in client.files.list():
print(file.name)
file = client.files.get(name=file.name)
Excluir
Excluir um arquivo:
Antes
Python
import pathlib
import google.generativeai as genai
pathlib.Path('dummy.txt').write_text(dummy)
dummy_file = genai.upload_file(path='dummy.txt')
file = genai.delete_file(name=dummy_file.name)
Depois
Python
import pathlib
from google import genai
client = genai.Client()
pathlib.Path('dummy.txt').write_text(dummy)
dummy_file = client.files.upload(file='dummy.txt')
response = client.files.delete(name=dummy_file.name)
O armazenamento em cache de contexto
Com o armazenamento em cache de contexto, o usuário pode transmitir o conteúdo ao modelo uma vez, armazenar em cache os tokens de entrada e se referir aos tokens armazenados em cache em chamadas subsequentes para reduzir o custo.
Antes
Python
import requests
import pathlib
import google.generativeai as genai
from google.generativeai import caching
# Download file
response = requests.get(
'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)
# Upload file
document = genai.upload_file(path="a11.txt")
# Create cache
apollo_cache = caching.CachedContent.create(
model="gemini-1.5-flash-001",
system_instruction="You are an expert at analyzing transcripts.",
contents=[document],
)
# Generate response
apollo_model = genai.GenerativeModel.from_cached_content(
cached_content=apollo_cache
)
response = apollo_model.generate_content("Find a lighthearted moment from this transcript")
JavaScript
import { GoogleAICacheManager, GoogleAIFileManager } from "@google/generative-ai/server";
import { GoogleGenerativeAI } from "@google/generative-ai";
const cacheManager = new GoogleAICacheManager("GOOGLE_API_KEY");
const fileManager = new GoogleAIFileManager("GOOGLE_API_KEY");
const uploadResult = await fileManager.uploadFile("path/to/a11.txt", {
mimeType: "text/plain",
});
const cacheResult = await cacheManager.create({
model: "models/gemini-1.5-flash",
contents: [
{
role: "user",
parts: [
{
fileData: {
fileUri: uploadResult.file.uri,
mimeType: uploadResult.file.mimeType,
},
},
],
},
],
});
console.log(cacheResult);
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModelFromCachedContent(cacheResult);
const result = await model.generateContent(
"Please summarize this transcript.",
);
console.log(result.response.text());
Depois
Python
import requests
import pathlib
from google import genai
from google.genai import types
client = genai.Client()
# Check which models support caching.
for m in client.models.list():
for action in m.supported_actions:
if action == "createCachedContent":
print(m.name)
break
# Download file
response = requests.get(
'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)
# Upload file
document = client.files.upload(file='a11.txt')
# Create cache
model='gemini-1.5-flash-001'
apollo_cache = client.caches.create(
model=model,
config={
'contents': [document],
'system_instruction': 'You are an expert at analyzing transcripts.',
},
)
# Generate response
response = client.models.generate_content(
model=model,
contents='Find a lighthearted moment from this transcript',
config=types.GenerateContentConfig(
cached_content=apollo_cache.name,
)
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const filePath = path.join(media, "a11.txt");
const document = await ai.files.upload({
file: filePath,
config: { mimeType: "text/plain" },
});
console.log("Uploaded file name:", document.name);
const modelName = "gemini-1.5-flash";
const contents = [
createUserContent(createPartFromUri(document.uri, document.mimeType)),
];
const cache = await ai.caches.create({
model: modelName,
config: {
contents: contents,
systemInstruction: "You are an expert analyzing transcripts.",
},
});
console.log("Cache created:", cache);
const response = await ai.models.generateContent({
model: modelName,
contents: "Please summarize this transcript",
config: { cachedContent: cache.name },
});
console.log("Response text:", response.text);
Contar tokens
Conta o número de tokens em uma solicitação.
Antes
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.count_tokens(
'The quick brown fox jumps over the lazy dog.')
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY+);
const model = genAI.getGenerativeModel({
model: "gemini-1.5-flash",
});
// Count tokens in a prompt without calling text generation.
const countResult = await model.countTokens(
"The quick brown fox jumps over the lazy dog.",
);
console.log(countResult.totalTokens); // 11
const generateResult = await model.generateContent(
"The quick brown fox jumps over the lazy dog.",
);
// On the response for `generateContent`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the combined token count (`totalTokenCount`).
console.log(generateResult.response.usageMetadata);
// candidatesTokenCount and totalTokenCount depend on response, may vary
// { promptTokenCount: 11, candidatesTokenCount: 124, totalTokenCount: 135 }
Depois
Python
from google import genai
client = genai.Client()
response = client.models.count_tokens(
model='gemini-2.0-flash',
contents='The quick brown fox jumps over the lazy dog.',
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const prompt = "The quick brown fox jumps over the lazy dog.";
const countTokensResponse = await ai.models.countTokens({
model: "gemini-2.0-flash",
contents: prompt,
});
console.log(countTokensResponse.totalTokens);
const generateResponse = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: prompt,
});
console.log(generateResponse.usageMetadata);
Gerar imagens
Gerar imagens:
Antes
Python
#pip install https://github.com/google-gemini/generative-ai-python@imagen
import google.generativeai as genai
imagen = genai.ImageGenerationModel(
"imagen-3.0-generate-001")
gen_images = imagen.generate_images(
prompt="Robot holding a red skateboard",
number_of_images=1,
safety_filter_level="block_low_and_above",
person_generation="allow_adult",
aspect_ratio="3:4",
)
Depois
Python
from google import genai
client = genai.Client()
gen_images = client.models.generate_images(
model='imagen-3.0-generate-001',
prompt='Robot holding a red skateboard',
config=types.GenerateImagesConfig(
number_of_images= 1,
safety_filter_level= "BLOCK_LOW_AND_ABOVE",
person_generation= "ALLOW_ADULT",
aspect_ratio= "3:4",
)
)
for n, image in enumerate(gen_images.generated_images):
pathlib.Path(f'{n}.png').write_bytes(
image.image.image_bytes)
Incorporar conteúdo
Gerar embeddings de conteúdo.
Antes
Python
import google.generativeai as genai
response = genai.embed_content(
model='models/gemini-embedding-001',
content='Hello world'
)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
model: "gemini-embedding-001",
});
const result = await model.embedContent("Hello world!");
console.log(result.embedding);
Depois
Python
from google import genai
client = genai.Client()
response = client.models.embed_content(
model='gemini-embedding-001',
contents='Hello world',
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const text = "Hello World!";
const result = await ai.models.embedContent({
model: "gemini-embedding-001",
contents: text,
config: { outputDimensionality: 10 },
});
console.log(result.embeddings);
Ajustar um modelo
Crie e use um modelo ajustado.
O novo SDK simplifica o ajuste com client.tunings.tune
, que inicia o job de ajuste e faz pesquisas até que ele seja concluído.
Antes
Python
import google.generativeai as genai
import random
# create tuning model
train_data = {}
for i in range(1, 6):
key = f'input {i}'
value = f'output {i}'
train_data[key] = value
name = f'generate-num-{random.randint(0,10000)}'
operation = genai.create_tuned_model(
source_model='models/gemini-1.5-flash-001-tuning',
training_data=train_data,
id = name,
epoch_count = 5,
batch_size=4,
learning_rate=0.001,
)
# wait for tuning complete
tuningProgress = operation.result()
# generate content with the tuned model
model = genai.GenerativeModel(model_name=f'tunedModels/{name}')
response = model.generate_content('55')
Depois
Python
from google import genai
from google.genai import types
client = genai.Client()
# Check which models are available for tuning.
for m in client.models.list():
for action in m.supported_actions:
if action == "createTunedModel":
print(m.name)
break
# create tuning model
training_dataset=types.TuningDataset(
examples=[
types.TuningExample(
text_input=f'input {i}',
output=f'output {i}',
)
for i in range(5)
],
)
tuning_job = client.tunings.tune(
base_model='models/gemini-1.5-flash-001-tuning',
training_dataset=training_dataset,
config=types.CreateTuningJobConfig(
epoch_count= 5,
batch_size=4,
learning_rate=0.001,
tuned_model_display_name="test tuned model"
)
)
# generate content with the tuned model
response = client.models.generate_content(
model=tuning_job.tuned_model.model,
contents='55',
)