Mit der Veröffentlichung von Gemini 2.0 Ende 2024 haben wir eine neue Reihe von Bibliotheken eingeführt, die als Google GenAI SDK bezeichnet werden. Sie bietet eine verbesserte Entwicklererfahrung durch eine aktualisierte Clientarchitektur und vereinfacht den Übergang zwischen Entwickler- und Unternehmensworkflows.
Das Google GenAI SDK ist jetzt auf allen unterstützten Plattformen allgemein verfügbar. Wenn Sie eine unserer Legacy-Bibliotheken verwenden, empfehlen wir Ihnen dringend, zu migrieren.
Dieser Leitfaden enthält Vorher-Nachher-Beispiele für migrierten Code, die Ihnen den Einstieg erleichtern sollen.
Installation
Vorher
Python
pip install -U -q "google-generativeai"
JavaScript
npm install @google/generative-ai
Ok
go get github.com/google/generative-ai-go
Nachher
Python
pip install -U -q "google-genai"
JavaScript
npm install @google/genai
Ok
go get google.golang.org/genai
API-Zugriff
Im alten SDK wurde der API-Client im Hintergrund implizit mit verschiedenen Ad-hoc-Methoden verarbeitet. Das erschwerte die Verwaltung des Clients und der Anmeldedaten.
Sie interagieren jetzt über ein zentrales Client
-Objekt. Dieses Client
-Objekt dient als zentraler Einstiegspunkt für verschiedene API-Dienste (z.B. models
, chats
,
files
, tunings
), was die Konsistenz fördert und die Verwaltung von Anmeldedaten und Konfigurationen für verschiedene API-Aufrufe vereinfacht.
Vorher (weniger zentralisierter API-Zugriff)
Python
Im alten SDK wurde für die meisten API-Aufrufe kein Clientobjekt der obersten Ebene verwendet. Sie würden GenerativeModel
-Objekte direkt instanziieren und mit ihnen interagieren.
import google.generativeai as genai
# Directly create and use model objects
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(...)
chat = model.start_chat(...)
JavaScript
GoogleGenerativeAI
war zwar ein zentraler Punkt für Modelle und Chat, für andere Funktionen wie die Datei- und Cacheverwaltung mussten jedoch oft völlig separate Clientklassen importiert und instanziiert werden.
import { GoogleGenerativeAI } from "@google/generative-ai";
import { GoogleAIFileManager, GoogleAICacheManager } from "@google/generative-ai/server"; // For files/caching
const genAI = new GoogleGenerativeAI("YOUR_API_KEY");
const fileManager = new GoogleAIFileManager("YOUR_API_KEY");
const cacheManager = new GoogleAICacheManager("YOUR_API_KEY");
// Get a model instance, then call methods on it
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const result = await model.generateContent(...);
const chat = model.startChat(...);
// Call methods on separate client objects for other services
const uploadedFile = await fileManager.uploadFile(...);
const cache = await cacheManager.create(...);
Ok
Mit der Funktion genai.NewClient
wurde ein Client erstellt, generative Modellvorgänge wurden jedoch in der Regel für eine separate GenerativeModel
-Instanz aufgerufen, die von diesem Client abgerufen wurde. Auf andere Dienste wurde möglicherweise über separate Pakete oder Muster zugegriffen.
import (
"github.com/google/generative-ai-go/genai"
"github.com/google/generative-ai-go/genai/fileman" // For files
"google.golang.org/api/option"
)
client, err := genai.NewClient(ctx, option.WithAPIKey("YOUR_API_KEY"))
fileClient, err := fileman.NewClient(ctx, option.WithAPIKey("YOUR_API_KEY"))
// Get a model instance, then call methods on it
model := client.GenerativeModel("gemini-1.5-flash")
resp, err := model.GenerateContent(...)
cs := model.StartChat()
// Call methods on separate client objects for other services
uploadedFile, err := fileClient.UploadFile(...)
Nachher (zentralisiertes Client-Objekt)
Python
from google import genai
# Create a single client object
client = genai.Client()
# Access API methods through services on the client object
response = client.models.generate_content(...)
chat = client.chats.create(...)
my_file = client.files.upload(...)
tuning_job = client.tunings.tune(...)
JavaScript
import { GoogleGenAI } from "@google/genai";
// Create a single client object
const ai = new GoogleGenAI({apiKey: "YOUR_API_KEY"});
// Access API methods through services on the client object
const response = await ai.models.generateContent(...);
const chat = ai.chats.create(...);
const uploadedFile = await ai.files.upload(...);
const cache = await ai.caches.create(...);
Ok
import "google.golang.org/genai"
// Create a single client object
client, err := genai.NewClient(ctx, nil)
// Access API methods through services on the client object
result, err := client.Models.GenerateContent(...)
chat, err := client.Chats.Create(...)
uploadedFile, err := client.Files.Upload(...)
tuningJob, err := client.Tunings.Tune(...)
Authentifizierung
Sowohl die alten als auch die neuen Bibliotheken werden mit API-Schlüsseln authentifiziert. Sie können Ihren API-Schlüssel in Google AI Studio erstellen.
Vorher
Python
Im alten SDK wurde das API-Clientobjekt implizit verarbeitet.
import google.generativeai as genai
genai.configure(api_key=...)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
Ok
Google-Bibliotheken importieren:
import (
"github.com/google/generative-ai-go/genai"
"google.golang.org/api/option"
)
Erstellen Sie den Client:
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
Nachher
Python
Mit dem Google GenAI SDK erstellen Sie zuerst einen API-Client, mit dem die API aufgerufen wird.
Das neue SDK ruft Ihren API-Schlüssel entweder aus einer der Umgebungsvariablen GEMINI_API_KEY
oder GOOGLE_API_KEY
ab, wenn Sie keinen an den Client übergeben.
export GEMINI_API_KEY="YOUR_API_KEY"
from google import genai
client = genai.Client() # Set the API key using the GEMINI_API_KEY env var.
# Alternatively, you could set the API key explicitly:
# client = genai.Client(api_key="your_api_key")
JavaScript
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({apiKey: "GEMINI_API_KEY"});
Ok
GenAI-Bibliothek importieren:
import "google.golang.org/genai"
Erstellen Sie den Client:
client, err := genai.NewClient(ctx, &genai.ClientConfig{
Backend: genai.BackendGeminiAPI,
})
Inhaltserstellung
Text
Vorher
Python
Bisher gab es keine Client-Objekte. Sie haben direkt über GenerativeModel
-Objekte auf APIs zugegriffen.
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
'Tell me a story in 300 words'
)
print(response.text)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const prompt = "Tell me a story in 300 words";
const result = await model.generateContent(prompt);
console.log(result.response.text());
Ok
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-1.5-flash")
resp, err := model.GenerateContent(ctx, genai.Text("Tell me a story in 300 words."))
if err != nil {
log.Fatal(err)
}
printResponse(resp) // utility for printing response parts
Nachher
Python
Das neue Google GenAI SDK bietet über das Client
-Objekt Zugriff auf alle API-Methoden. Mit Ausnahme einiger zustandsbehafteter Sonderfälle (chat
und Live-API-session
s) sind dies alles zustandslose Funktionen. Aus Gründen der Nützlichkeit und Einheitlichkeit sind die zurückgegebenen Objekte pydantic
-Klassen.
from google import genai
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='Tell me a story in 300 words.'
)
print(response.text)
print(response.model_dump_json(
exclude_none=True, indent=4))
JavaScript
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: "Tell me a story in 300 words.",
});
console.log(response.text);
Ok
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
result, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", genai.Text("Tell me a story in 300 words."), nil)
if err != nil {
log.Fatal(err)
}
debugPrint(result) // utility for printing result
Bild
Vorher
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content([
'Tell me a story based on this image',
Image.open(image_path)
])
print(response.text)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
function fileToGenerativePart(path, mimeType) {
return {
inlineData: {
data: Buffer.from(fs.readFileSync(path)).toString("base64"),
mimeType,
},
};
}
const prompt = "Tell me a story based on this image";
const imagePart = fileToGenerativePart(
`path/to/organ.jpg`,
"image/jpeg",
);
const result = await model.generateContent([prompt, imagePart]);
console.log(result.response.text());
Ok
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-1.5-flash")
imgData, err := os.ReadFile("path/to/organ.jpg")
if err != nil {
log.Fatal(err)
}
resp, err := model.GenerateContent(ctx,
genai.Text("Tell me about this instrument"),
genai.ImageData("jpeg", imgData))
if err != nil {
log.Fatal(err)
}
printResponse(resp) // utility for printing response
Nachher
Python
Viele der praktischen Funktionen sind auch im neuen SDK verfügbar. PIL.Image
-Objekte werden beispielsweise automatisch konvertiert.
from google import genai
from PIL import Image
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents=[
'Tell me a story based on this image',
Image.open(image_path)
]
)
print(response.text)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const organ = await ai.files.upload({
file: "path/to/organ.jpg",
});
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: [
createUserContent([
"Tell me a story based on this image",
createPartFromUri(organ.uri, organ.mimeType)
]),
],
});
console.log(response.text);
Ok
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
imgData, err := os.ReadFile("path/to/organ.jpg")
if err != nil {
log.Fatal(err)
}
parts := []*genai.Part{
{Text: "Tell me a story based on this image"},
{InlineData: &genai.Blob{Data: imgData, MIMEType: "image/jpeg"}},
}
contents := []*genai.Content{
{Parts: parts},
}
result, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", contents, nil)
if err != nil {
log.Fatal(err)
}
debugPrint(result) // utility for printing result
Streaming
Vorher
Python
import google.generativeai as genai
response = model.generate_content(
"Write a cute story about cats.",
stream=True)
for chunk in response:
print(chunk.text)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const prompt = "Write a story about a magic backpack.";
const result = await model.generateContentStream(prompt);
// Print text as it comes in.
for await (const chunk of result.stream) {
const chunkText = chunk.text();
process.stdout.write(chunkText);
}
Ok
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-1.5-flash")
iter := model.GenerateContentStream(ctx, genai.Text("Write a story about a magic backpack."))
for {
resp, err := iter.Next()
if err == iterator.Done {
break
}
if err != nil {
log.Fatal(err)
}
printResponse(resp) // utility for printing the response
}
Nachher
Python
from google import genai
client = genai.Client()
for chunk in client.models.generate_content_stream(
model='gemini-2.0-flash',
contents='Tell me a story in 300 words.'
):
print(chunk.text)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContentStream({
model: "gemini-2.0-flash",
contents: "Write a story about a magic backpack.",
});
let text = "";
for await (const chunk of response) {
console.log(chunk.text);
text += chunk.text;
}
Ok
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
for result, err := range client.Models.GenerateContentStream(
ctx,
"gemini-2.0-flash",
genai.Text("Write a story about a magic backpack."),
nil,
) {
if err != nil {
log.Fatal(err)
}
fmt.Print(result.Candidates[0].Content.Parts[0].Text)
}
Konfiguration
Vorher
Python
import google.generativeai as genai
model = genai.GenerativeModel(
'gemini-1.5-flash',
system_instruction='you are a story teller for kids under 5 years old',
generation_config=genai.GenerationConfig(
max_output_tokens=400,
top_k=2,
top_p=0.5,
temperature=0.5,
response_mime_type='application/json',
stop_sequences=['\n'],
)
)
response = model.generate_content('tell me a story in 100 words')
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
model: "gemini-1.5-flash",
generationConfig: {
candidateCount: 1,
stopSequences: ["x"],
maxOutputTokens: 20,
temperature: 1.0,
},
});
const result = await model.generateContent(
"Tell me a story about a magic backpack.",
);
console.log(result.response.text())
Ok
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-1.5-flash")
model.SetTemperature(0.5)
model.SetTopP(0.5)
model.SetTopK(2.0)
model.SetMaxOutputTokens(100)
model.ResponseMIMEType = "application/json"
resp, err := model.GenerateContent(ctx, genai.Text("Tell me about New York"))
if err != nil {
log.Fatal(err)
}
printResponse(resp) // utility for printing response
Nachher
Python
Bei allen Methoden im neuen SDK werden die erforderlichen Argumente als Schlüsselwortargumente angegeben. Alle optionalen Eingaben werden im config
-Argument angegeben. Konfigurationsargumente können entweder als Python-Wörterbücher oder als Config
-Klassen im Namespace google.genai.types
angegeben werden. Aus Gründen der Nützlichkeit und Einheitlichkeit sind alle Definitionen im Modul types
pydantic
-Klassen.
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='Tell me a story in 100 words.',
config=types.GenerateContentConfig(
system_instruction='you are a story teller for kids under 5 years old',
max_output_tokens= 400,
top_k= 2,
top_p= 0.5,
temperature= 0.5,
response_mime_type= 'application/json',
stop_sequences= ['\n'],
seed=42,
),
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: "Tell me a story about a magic backpack.",
config: {
candidateCount: 1,
stopSequences: ["x"],
maxOutputTokens: 20,
temperature: 1.0,
},
});
console.log(response.text);
Ok
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
result, err := client.Models.GenerateContent(ctx,
"gemini-2.0-flash",
genai.Text("Tell me about New York"),
&genai.GenerateContentConfig{
Temperature: genai.Ptr[float32](0.5),
TopP: genai.Ptr[float32](0.5),
TopK: genai.Ptr[float32](2.0),
ResponseMIMEType: "application/json",
StopSequences: []string{"Yankees"},
CandidateCount: 2,
Seed: genai.Ptr[int32](42),
MaxOutputTokens: 128,
PresencePenalty: genai.Ptr[float32](0.5),
FrequencyPenalty: genai.Ptr[float32](0.5),
},
)
if err != nil {
log.Fatal(err)
}
debugPrint(result) // utility for printing response
Sicherheitseinstellungen
Antwort mit Sicherheitseinstellungen generieren:
Vorher
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
'say something bad',
safety_settings={
'HATE': 'BLOCK_ONLY_HIGH',
'HARASSMENT': 'BLOCK_ONLY_HIGH',
}
)
JavaScript
import { GoogleGenerativeAI, HarmCategory, HarmBlockThreshold } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
model: "gemini-1.5-flash",
safetySettings: [
{
category: HarmCategory.HARM_CATEGORY_HARASSMENT,
threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
},
],
});
const unsafePrompt =
"I support Martians Soccer Club and I think " +
"Jupiterians Football Club sucks! Write an ironic phrase telling " +
"them how I feel about them.";
const result = await model.generateContent(unsafePrompt);
try {
result.response.text();
} catch (e) {
console.error(e);
console.log(result.response.candidates[0].safetyRatings);
}
Nachher
Python
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='say something bad',
config=types.GenerateContentConfig(
safety_settings= [
types.SafetySetting(
category='HARM_CATEGORY_HATE_SPEECH',
threshold='BLOCK_ONLY_HIGH'
),
]
),
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const unsafePrompt =
"I support Martians Soccer Club and I think " +
"Jupiterians Football Club sucks! Write an ironic phrase telling " +
"them how I feel about them.";
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: unsafePrompt,
config: {
safetySettings: [
{
category: "HARM_CATEGORY_HARASSMENT",
threshold: "BLOCK_ONLY_HIGH",
},
],
},
});
console.log("Finish reason:", response.candidates[0].finishReason);
console.log("Safety ratings:", response.candidates[0].safetyRatings);
Asynchron
Vorher
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content_async(
'tell me a story in 100 words'
)
Nachher
Python
Wenn Sie das neue SDK mit asyncio
verwenden möchten, gibt es eine separate async
-Implementierung jeder Methode unter client.aio
.
from google import genai
client = genai.Client()
response = await client.aio.models.generate_content(
model='gemini-2.0-flash',
contents='Tell me a story in 300 words.'
)
Chat
So starten Sie einen Chat und senden eine Nachricht an das Modell:
Vorher
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
chat = model.start_chat()
response = chat.send_message(
"Tell me a story in 100 words")
response = chat.send_message(
"What happened after that?")
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const chat = model.startChat({
history: [
{
role: "user",
parts: [{ text: "Hello" }],
},
{
role: "model",
parts: [{ text: "Great to meet you. What would you like to know?" }],
},
],
});
let result = await chat.sendMessage("I have 2 dogs in my house.");
console.log(result.response.text());
result = await chat.sendMessage("How many paws are in my house?");
console.log(result.response.text());
Ok
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
log.Fatal(err)
}
defer client.Close()
model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()
cs.History = []*genai.Content{
{
Parts: []genai.Part{
genai.Text("Hello, I have 2 dogs in my house."),
},
Role: "user",
},
{
Parts: []genai.Part{
genai.Text("Great to meet you. What would you like to know?"),
},
Role: "model",
},
}
res, err := cs.SendMessage(ctx, genai.Text("How many paws are in my house?"))
if err != nil {
log.Fatal(err)
}
printResponse(res) // utility for printing the response
Nachher
Python
from google import genai
client = genai.Client()
chat = client.chats.create(model='gemini-2.0-flash')
response = chat.send_message(
message='Tell me a story in 100 words')
response = chat.send_message(
message='What happened after that?')
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const chat = ai.chats.create({
model: "gemini-2.0-flash",
history: [
{
role: "user",
parts: [{ text: "Hello" }],
},
{
role: "model",
parts: [{ text: "Great to meet you. What would you like to know?" }],
},
],
});
const response1 = await chat.sendMessage({
message: "I have 2 dogs in my house.",
});
console.log("Chat response 1:", response1.text);
const response2 = await chat.sendMessage({
message: "How many paws are in my house?",
});
console.log("Chat response 2:", response2.text);
Ok
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
chat, err := client.Chats.Create(ctx, "gemini-2.0-flash", nil, nil)
if err != nil {
log.Fatal(err)
}
result, err := chat.SendMessage(ctx, genai.Part{Text: "Hello, I have 2 dogs in my house."})
if err != nil {
log.Fatal(err)
}
debugPrint(result) // utility for printing result
result, err = chat.SendMessage(ctx, genai.Part{Text: "How many paws are in my house?"})
if err != nil {
log.Fatal(err)
}
debugPrint(result) // utility for printing result
Funktionsaufrufe
Vorher
Python
import google.generativeai as genai
from enum import Enum
def get_current_weather(location: str) -> str:
"""Get the current whether in a given location.
Args:
location: required, The city and state, e.g. San Franciso, CA
unit: celsius or fahrenheit
"""
print(f'Called with: {location=}')
return "23C"
model = genai.GenerativeModel(
model_name="gemini-1.5-flash",
tools=[get_current_weather]
)
response = model.generate_content("What is the weather in San Francisco?")
function_call = response.candidates[0].parts[0].function_call
Nachher
Python
Im neuen SDK ist der automatische Funktionsaufruf die Standardeinstellung. Hier können Sie die Funktion deaktivieren.
from google import genai
from google.genai import types
client = genai.Client()
def get_current_weather(location: str) -> str:
"""Get the current whether in a given location.
Args:
location: required, The city and state, e.g. San Franciso, CA
unit: celsius or fahrenheit
"""
print(f'Called with: {location=}')
return "23C"
response = client.models.generate_content(
model='gemini-2.0-flash',
contents="What is the weather like in Boston?",
config=types.GenerateContentConfig(
tools=[get_current_weather],
automatic_function_calling={'disable': True},
),
)
function_call = response.candidates[0].content.parts[0].function_call
Automatisches Aufrufen von Funktionen
Vorher
Python
Das alte SDK unterstützt nur automatische Funktionsaufrufe im Chat. Im neuen SDK ist dies das Standardverhalten in generate_content
.
import google.generativeai as genai
def get_current_weather(city: str) -> str:
return "23C"
model = genai.GenerativeModel(
model_name="gemini-1.5-flash",
tools=[get_current_weather]
)
chat = model.start_chat(
enable_automatic_function_calling=True)
result = chat.send_message("What is the weather in San Francisco?")
Nachher
Python
from google import genai
from google.genai import types
client = genai.Client()
def get_current_weather(city: str) -> str:
return "23C"
response = client.models.generate_content(
model='gemini-2.0-flash',
contents="What is the weather like in Boston?",
config=types.GenerateContentConfig(
tools=[get_current_weather]
),
)
Codeausführung
Die Codeausführung ist ein Tool, mit dem das Modell Python-Code generieren, ausführen und das Ergebnis zurückgeben kann.
Vorher
Python
import google.generativeai as genai
model = genai.GenerativeModel(
model_name="gemini-1.5-flash",
tools="code_execution"
)
result = model.generate_content(
"What is the sum of the first 50 prime numbers? Generate and run code for "
"the calculation, and make sure you get all 50.")
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
model: "gemini-1.5-flash",
tools: [{ codeExecution: {} }],
});
const result = await model.generateContent(
"What is the sum of the first 50 prime numbers? " +
"Generate and run code for the calculation, and make sure you get " +
"all 50.",
);
console.log(result.response.text());
Nachher
Python
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='What is the sum of the first 50 prime numbers? Generate and run '
'code for the calculation, and make sure you get all 50.',
config=types.GenerateContentConfig(
tools=[types.Tool(code_execution=types.ToolCodeExecution)],
),
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContent({
model: "gemini-2.0-pro-exp-02-05",
contents: `Write and execute code that calculates the sum of the first 50 prime numbers.
Ensure that only the executable code and its resulting output are generated.`,
});
// Each part may contain text, executable code, or an execution result.
for (const part of response.candidates[0].content.parts) {
console.log(part);
console.log("\n");
}
console.log("-".repeat(80));
// The `.text` accessor concatenates the parts into a markdown-formatted text.
console.log("\n", response.text);
Nach Fundierung suchen
GoogleSearch
(Gemini>=2.0) und GoogleSearchRetrieval
(Gemini < 2.0) sind Tools, mit denen das Modell öffentliche Webdaten zur Fundierung abrufen kann. Sie werden von Google bereitgestellt.
Vorher
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
contents="what is the Google stock price?",
tools='google_search_retrieval'
)
Nachher
Python
from google import genai
from google.genai import types
client = genai.Client()
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='What is the Google stock price?',
config=types.GenerateContentConfig(
tools=[
types.Tool(
google_search=types.GoogleSearch()
)
]
)
)
JSON-Antwort
Antworten im JSON-Format generieren.
Vorher
Python
Durch Angabe von response_schema
und Festlegen von response_mime_type="application/json"
können Nutzer das Modell so einschränken, dass es eine JSON
-Antwort in einer bestimmten Struktur generiert.
import google.generativeai as genai
import typing_extensions as typing
class CountryInfo(typing.TypedDict):
name: str
population: int
capital: str
continent: str
major_cities: list[str]
gdp: int
official_language: str
total_area_sq_mi: int
model = genai.GenerativeModel(model_name="gemini-1.5-flash")
result = model.generate_content(
"Give me information of the United States",
generation_config=genai.GenerationConfig(
response_mime_type="application/json",
response_schema = CountryInfo
),
)
JavaScript
import { GoogleGenerativeAI, SchemaType } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const schema = {
description: "List of recipes",
type: SchemaType.ARRAY,
items: {
type: SchemaType.OBJECT,
properties: {
recipeName: {
type: SchemaType.STRING,
description: "Name of the recipe",
nullable: false,
},
},
required: ["recipeName"],
},
};
const model = genAI.getGenerativeModel({
model: "gemini-1.5-pro",
generationConfig: {
responseMimeType: "application/json",
responseSchema: schema,
},
});
const result = await model.generateContent(
"List a few popular cookie recipes.",
);
console.log(result.response.text());
Nachher
Python
Das neue SDK verwendet pydantic
-Klassen, um das Schema bereitzustellen. Sie können aber auch ein genai.types.Schema
oder ein entsprechendes dict
übergeben. Wenn möglich, parst das SDK das zurückgegebene JSON und gibt das Ergebnis in response.parsed
zurück. Wenn Sie eine pydantic
-Klasse als Schema angegeben haben, konvertiert das SDK das JSON
in eine Instanz der Klasse.
from google import genai
from pydantic import BaseModel
client = genai.Client()
class CountryInfo(BaseModel):
name: str
population: int
capital: str
continent: str
major_cities: list[str]
gdp: int
official_language: str
total_area_sq_mi: int
response = client.models.generate_content(
model='gemini-2.0-flash',
contents='Give me information of the United States.',
config={
'response_mime_type': 'application/json',
'response_schema': CountryInfo,
},
)
response.parsed
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: "List a few popular cookie recipes.",
config: {
responseMimeType: "application/json",
responseSchema: {
type: "array",
items: {
type: "object",
properties: {
recipeName: { type: "string" },
ingredients: { type: "array", items: { type: "string" } },
},
required: ["recipeName", "ingredients"],
},
},
},
});
console.log(response.text);
Dateien
Hochladen
Datei hochladen:
Vorher
Python
import requests
import pathlib
import google.generativeai as genai
# Download file
response = requests.get(
'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)
file = genai.upload_file(path='a11.txt')
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content([
'Can you summarize this file:',
my_file
])
print(response.text)
Nachher
Python
import requests
import pathlib
from google import genai
client = genai.Client()
# Download file
response = requests.get(
'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)
my_file = client.files.upload(file='a11.txt')
response = client.models.generate_content(
model='gemini-2.0-flash',
contents=[
'Can you summarize this file:',
my_file
]
)
print(response.text)
Auflisten und abrufen
Hochgeladene Dateien auflisten und eine hochgeladene Datei mit einem Dateinamen abrufen:
Vorher
Python
import google.generativeai as genai
for file in genai.list_files():
print(file.name)
file = genai.get_file(name=file.name)
Nachher
Python
from google import genai
client = genai.Client()
for file in client.files.list():
print(file.name)
file = client.files.get(name=file.name)
Löschen
So löschen Sie eine Datei:
Vorher
Python
import pathlib
import google.generativeai as genai
pathlib.Path('dummy.txt').write_text(dummy)
dummy_file = genai.upload_file(path='dummy.txt')
file = genai.delete_file(name=dummy_file.name)
Nachher
Python
import pathlib
from google import genai
client = genai.Client()
pathlib.Path('dummy.txt').write_text(dummy)
dummy_file = client.files.upload(file='dummy.txt')
response = client.files.delete(name=dummy_file.name)
Kontext-Caching
Mit dem Kontext-Caching kann der Nutzer die Inhalte einmal an das Modell übergeben, die Eingabe-Tokens im Cache speichern und dann in nachfolgenden Aufrufen auf die im Cache gespeicherten Tokens verweisen, um die Kosten zu senken.
Vorher
Python
import requests
import pathlib
import google.generativeai as genai
from google.generativeai import caching
# Download file
response = requests.get(
'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)
# Upload file
document = genai.upload_file(path="a11.txt")
# Create cache
apollo_cache = caching.CachedContent.create(
model="gemini-1.5-flash-001",
system_instruction="You are an expert at analyzing transcripts.",
contents=[document],
)
# Generate response
apollo_model = genai.GenerativeModel.from_cached_content(
cached_content=apollo_cache
)
response = apollo_model.generate_content("Find a lighthearted moment from this transcript")
JavaScript
import { GoogleAICacheManager, GoogleAIFileManager } from "@google/generative-ai/server";
import { GoogleGenerativeAI } from "@google/generative-ai";
const cacheManager = new GoogleAICacheManager("GOOGLE_API_KEY");
const fileManager = new GoogleAIFileManager("GOOGLE_API_KEY");
const uploadResult = await fileManager.uploadFile("path/to/a11.txt", {
mimeType: "text/plain",
});
const cacheResult = await cacheManager.create({
model: "models/gemini-1.5-flash",
contents: [
{
role: "user",
parts: [
{
fileData: {
fileUri: uploadResult.file.uri,
mimeType: uploadResult.file.mimeType,
},
},
],
},
],
});
console.log(cacheResult);
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModelFromCachedContent(cacheResult);
const result = await model.generateContent(
"Please summarize this transcript.",
);
console.log(result.response.text());
Nachher
Python
import requests
import pathlib
from google import genai
from google.genai import types
client = genai.Client()
# Check which models support caching.
for m in client.models.list():
for action in m.supported_actions:
if action == "createCachedContent":
print(m.name)
break
# Download file
response = requests.get(
'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)
# Upload file
document = client.files.upload(file='a11.txt')
# Create cache
model='gemini-1.5-flash-001'
apollo_cache = client.caches.create(
model=model,
config={
'contents': [document],
'system_instruction': 'You are an expert at analyzing transcripts.',
},
)
# Generate response
response = client.models.generate_content(
model=model,
contents='Find a lighthearted moment from this transcript',
config=types.GenerateContentConfig(
cached_content=apollo_cache.name,
)
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const filePath = path.join(media, "a11.txt");
const document = await ai.files.upload({
file: filePath,
config: { mimeType: "text/plain" },
});
console.log("Uploaded file name:", document.name);
const modelName = "gemini-1.5-flash";
const contents = [
createUserContent(createPartFromUri(document.uri, document.mimeType)),
];
const cache = await ai.caches.create({
model: modelName,
config: {
contents: contents,
systemInstruction: "You are an expert analyzing transcripts.",
},
});
console.log("Cache created:", cache);
const response = await ai.models.generateContent({
model: modelName,
contents: "Please summarize this transcript",
config: { cachedContent: cache.name },
});
console.log("Response text:", response.text);
Tokens zählen
Anzahl der Tokens in einer Anfrage zählen
Vorher
Python
import google.generativeai as genai
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.count_tokens(
'The quick brown fox jumps over the lazy dog.')
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY+);
const model = genAI.getGenerativeModel({
model: "gemini-1.5-flash",
});
// Count tokens in a prompt without calling text generation.
const countResult = await model.countTokens(
"The quick brown fox jumps over the lazy dog.",
);
console.log(countResult.totalTokens); // 11
const generateResult = await model.generateContent(
"The quick brown fox jumps over the lazy dog.",
);
// On the response for `generateContent`, use `usageMetadata`
// to get separate input and output token counts
// (`promptTokenCount` and `candidatesTokenCount`, respectively),
// as well as the combined token count (`totalTokenCount`).
console.log(generateResult.response.usageMetadata);
// candidatesTokenCount and totalTokenCount depend on response, may vary
// { promptTokenCount: 11, candidatesTokenCount: 124, totalTokenCount: 135 }
Nachher
Python
from google import genai
client = genai.Client()
response = client.models.count_tokens(
model='gemini-2.0-flash',
contents='The quick brown fox jumps over the lazy dog.',
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const prompt = "The quick brown fox jumps over the lazy dog.";
const countTokensResponse = await ai.models.countTokens({
model: "gemini-2.0-flash",
contents: prompt,
});
console.log(countTokensResponse.totalTokens);
const generateResponse = await ai.models.generateContent({
model: "gemini-2.0-flash",
contents: prompt,
});
console.log(generateResponse.usageMetadata);
Bilder erstellen
Bilder erstellen:
Vorher
Python
#pip install https://github.com/google-gemini/generative-ai-python@imagen
import google.generativeai as genai
imagen = genai.ImageGenerationModel(
"imagen-3.0-generate-001")
gen_images = imagen.generate_images(
prompt="Robot holding a red skateboard",
number_of_images=1,
safety_filter_level="block_low_and_above",
person_generation="allow_adult",
aspect_ratio="3:4",
)
Nachher
Python
from google import genai
client = genai.Client()
gen_images = client.models.generate_images(
model='imagen-3.0-generate-001',
prompt='Robot holding a red skateboard',
config=types.GenerateImagesConfig(
number_of_images= 1,
safety_filter_level= "BLOCK_LOW_AND_ABOVE",
person_generation= "ALLOW_ADULT",
aspect_ratio= "3:4",
)
)
for n, image in enumerate(gen_images.generated_images):
pathlib.Path(f'{n}.png').write_bytes(
image.image.image_bytes)
Inhalte einbetten
Inhaltseinbettungen generieren
Vorher
Python
import google.generativeai as genai
response = genai.embed_content(
model='models/gemini-embedding-001',
content='Hello world'
)
JavaScript
import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
model: "gemini-embedding-001",
});
const result = await model.embedContent("Hello world!");
console.log(result.embedding);
Nachher
Python
from google import genai
client = genai.Client()
response = client.models.embed_content(
model='gemini-embedding-001',
contents='Hello world',
)
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const text = "Hello World!";
const result = await ai.models.embedContent({
model: "gemini-embedding-001",
contents: text,
config: { outputDimensionality: 10 },
});
console.log(result.embeddings);
Modell abstimmen
Abgestimmtes Modell erstellen und verwenden
Das neue SDK vereinfacht das Abstimmen mit client.tunings.tune
. Dadurch wird der Abstimmungsjob gestartet und es wird so lange abgefragt, bis der Job abgeschlossen ist.
Vorher
Python
import google.generativeai as genai
import random
# create tuning model
train_data = {}
for i in range(1, 6):
key = f'input {i}'
value = f'output {i}'
train_data[key] = value
name = f'generate-num-{random.randint(0,10000)}'
operation = genai.create_tuned_model(
source_model='models/gemini-1.5-flash-001-tuning',
training_data=train_data,
id = name,
epoch_count = 5,
batch_size=4,
learning_rate=0.001,
)
# wait for tuning complete
tuningProgress = operation.result()
# generate content with the tuned model
model = genai.GenerativeModel(model_name=f'tunedModels/{name}')
response = model.generate_content('55')
Nachher
Python
from google import genai
from google.genai import types
client = genai.Client()
# Check which models are available for tuning.
for m in client.models.list():
for action in m.supported_actions:
if action == "createTunedModel":
print(m.name)
break
# create tuning model
training_dataset=types.TuningDataset(
examples=[
types.TuningExample(
text_input=f'input {i}',
output=f'output {i}',
)
for i in range(5)
],
)
tuning_job = client.tunings.tune(
base_model='models/gemini-1.5-flash-001-tuning',
training_dataset=training_dataset,
config=types.CreateTuningJobConfig(
epoch_count= 5,
batch_size=4,
learning_rate=0.001,
tuned_model_display_name="test tuned model"
)
)
# generate content with the tuned model
response = client.models.generate_content(
model=tuning_job.tuned_model.model,
contents='55',
)