به Google GenAI SDK مهاجرت کنید، به Google GenAI SDK مهاجرت کنید

با شروع انتشار Gemini 2.0 در اواخر سال 2024، مجموعه جدیدی از کتابخانه ها به نام Google GenAI SDK را معرفی کردیم. این یک تجربه توسعه‌دهنده بهبود یافته را از طریق معماری مشتری به‌روز ارائه می‌دهد و انتقال بین گردش‌های کاری توسعه‌دهنده و سازمانی را ساده می‌کند .

Google GenAI SDK اکنون در همه پلتفرم‌های پشتیبانی شده در دسترس عمومی (GA) قرار دارد. اگر از یکی از کتابخانه های قدیمی ما استفاده می کنید، اکیداً به شما توصیه می کنیم که مهاجرت کنید.

این راهنما نمونه‌هایی از قبل و بعد از کدهای انتقال داده را ارائه می‌کند تا به شما در شروع کار کمک کند.

نصب و راه اندازی

قبل از

پایتون

pip install -U -q "google-generativeai"

جاوا اسکریپت

npm install @google/generative-ai

برو

go get github.com/google/generative-ai-go

بعد از

پایتون

pip install -U -q "google-genai"

جاوا اسکریپت

npm install @google/genai

برو

go get google.golang.org/genai

دسترسی به API

SDK قدیمی به طور ضمنی مشتری API را در پشت صحنه با استفاده از انواع روش‌های ad hoc مدیریت می‌کرد. این امر مدیریت مشتری و اعتبارنامه ها را دشوار می کرد. اکنون، شما از طریق یک شی Client مرکزی تعامل دارید. این شی Client به عنوان یک نقطه ورودی واحد برای سرویس‌های API مختلف (مانند models ، chats ، files ، tunings ) عمل می‌کند، که ثبات را ارتقا می‌دهد و مدیریت اعتبار و پیکربندی را در تماس‌های API مختلف ساده‌تر می‌کند.

قبل (دسترسی کمتر متمرکز API)

پایتون

SDK قدیمی به صراحت از یک شی کلاینت سطح بالا برای بیشتر تماس‌های API استفاده نمی‌کرد. شما می توانید مستقیماً اشیاء GenerativeModel را نمونه سازی کنید و با آنها تعامل داشته باشید.

import google.generativeai as genai

# Directly create and use model objects
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(...)
chat = model.start_chat(...)

جاوا اسکریپت

در حالی که GoogleGenerativeAI یک نقطه مرکزی برای مدل‌ها و چت بود، سایر عملکردها مانند مدیریت فایل و حافظه پنهان اغلب نیاز به وارد کردن و نمونه‌سازی کلاس‌های کلاینت کاملاً مجزا داشتند.

import { GoogleGenerativeAI } from "@google/generative-ai";
import { GoogleAIFileManager, GoogleAICacheManager } from "@google/generative-ai/server"; // For files/caching

const genAI = new GoogleGenerativeAI("YOUR_API_KEY");
const fileManager = new GoogleAIFileManager("YOUR_API_KEY");
const cacheManager = new GoogleAICacheManager("YOUR_API_KEY");

// Get a model instance, then call methods on it
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const result = await model.generateContent(...);
const chat = model.startChat(...);

// Call methods on separate client objects for other services
const uploadedFile = await fileManager.uploadFile(...);
const cache = await cacheManager.create(...);

برو

تابع genai.NewClient یک کلاینت ایجاد کرد، اما عملیات مدل مولد معمولاً در یک نمونه GenerativeModel جداگانه که از این کلاینت به دست می‌آمد فراخوانی می‌شد. سایر خدمات ممکن است از طریق بسته ها یا الگوهای مجزا قابل دسترسی بوده باشند.

import (
      "github.com/google/generative-ai-go/genai"
      "github.com/google/generative-ai-go/genai/fileman" // For files
      "google.golang.org/api/option"
)

client, err := genai.NewClient(ctx, option.WithAPIKey("YOUR_API_KEY"))
fileClient, err := fileman.NewClient(ctx, option.WithAPIKey("YOUR_API_KEY"))

// Get a model instance, then call methods on it
model := client.GenerativeModel("gemini-1.5-flash")
resp, err := model.GenerateContent(...)
cs := model.StartChat()

// Call methods on separate client objects for other services
uploadedFile, err := fileClient.UploadFile(...)

بعد از (Centralized Client Object)

پایتون

from google import genai

# Create a single client object
client = genai.Client()

# Access API methods through services on the client object
response = client.models.generate_content(...)
chat = client.chats.create(...)
my_file = client.files.upload(...)
tuning_job = client.tunings.tune(...)

جاوا اسکریپت

import { GoogleGenAI } from "@google/genai";

// Create a single client object
const ai = new GoogleGenAI({apiKey: "YOUR_API_KEY"});

// Access API methods through services on the client object
const response = await ai.models.generateContent(...);
const chat = ai.chats.create(...);
const uploadedFile = await ai.files.upload(...);
const cache = await ai.caches.create(...);

برو

import "google.golang.org/genai"

// Create a single client object
client, err := genai.NewClient(ctx, nil)

// Access API methods through services on the client object
result, err := client.Models.GenerateContent(...)
chat, err := client.Chats.Create(...)
uploadedFile, err := client.Files.Upload(...)
tuningJob, err := client.Tunings.Tune(...)

احراز هویت

هر دو کتابخانه قدیمی و جدید با استفاده از کلیدهای API احراز هویت می شوند. می توانید کلید API خود را در Google AI Studio ایجاد کنید .

قبل از

پایتون

SDK قدیمی شیء کلاینت API را بطور ضمنی مدیریت می کرد.

import google.generativeai as genai

genai.configure(api_key=...)

جاوا اسکریپت

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");

برو

وارد کردن کتابخانه های گوگل:

import (
      "github.com/google/generative-ai-go/genai"
      "google.golang.org/api/option"
)

ایجاد مشتری:

client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))

بعد از

پایتون

با Google GenAI SDK، ابتدا یک کلاینت API ایجاد می کنید که برای فراخوانی API استفاده می شود. SDK جدید کلید API شما را از یکی از متغیرهای محیطی GEMINI_API_KEY یا GOOGLE_API_KEY دریافت می‌کند، اگر یکی را به مشتری ارسال نکنید.

export GEMINI_API_KEY="YOUR_API_KEY"
from google import genai

client = genai.Client() # Set the API key using the GEMINI_API_KEY env var.
                        # Alternatively, you could set the API key explicitly:
                        # client = genai.Client(api_key="your_api_key")

جاوا اسکریپت

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({apiKey: "GEMINI_API_KEY"});

برو

وارد کردن کتابخانه GenAI:

import "google.golang.org/genai"

ایجاد مشتری:

client, err := genai.NewClient(ctx, &genai.ClientConfig{
        Backend:  genai.BackendGeminiAPI,
})

تولید محتوا

متن

قبل از

پایتون

قبلاً هیچ شیء مشتری وجود نداشت، شما مستقیماً از طریق اشیاء GenerativeModel به APIها دسترسی داشتید.

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
    'Tell me a story in 300 words'
)
print(response.text)

جاوا اسکریپت

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const prompt = "Tell me a story in 300 words";

const result = await model.generateContent(prompt);
console.log(result.response.text());

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
    log.Fatal(err)
}
defer client.Close()

model := client.GenerativeModel("gemini-1.5-flash")
resp, err := model.GenerateContent(ctx, genai.Text("Tell me a story in 300 words."))
if err != nil {
    log.Fatal(err)
}

printResponse(resp) // utility for printing response parts

بعد از

پایتون

Google GenAI SDK جدید دسترسی به تمام روش های API را از طریق شی Client فراهم می کند. به جز چند مورد خاص حالت دار ( chat و session Api زنده)، همه اینها توابع بدون حالت هستند. برای سودمندی و یکنواختی، اشیاء برگردانده شده طبقات pydantic هستند.

from google import genai
client = genai.Client()

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents='Tell me a story in 300 words.'
)
print(response.text)

print(response.model_dump_json(
    exclude_none=True, indent=4))

جاوا اسکریپت

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "Tell me a story in 300 words.",
});
console.log(response.text);

برو

ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
if err != nil {
    log.Fatal(err)
}

result, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", genai.Text("Tell me a story in 300 words."), nil)
if err != nil {
    log.Fatal(err)
}
debugPrint(result) // utility for printing result

تصویر

قبل از

پایتون

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content([
    'Tell me a story based on this image',
    Image.open(image_path)
])
print(response.text)

جاوا اسکریپت

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

function fileToGenerativePart(path, mimeType) {
  return {
    inlineData: {
      data: Buffer.from(fs.readFileSync(path)).toString("base64"),
      mimeType,
    },
  };
}

const prompt = "Tell me a story based on this image";

const imagePart = fileToGenerativePart(
  `path/to/organ.jpg`,
  "image/jpeg",
);

const result = await model.generateContent([prompt, imagePart]);
console.log(result.response.text());

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
    log.Fatal(err)
}
defer client.Close()

model := client.GenerativeModel("gemini-1.5-flash")

imgData, err := os.ReadFile("path/to/organ.jpg")
if err != nil {
    log.Fatal(err)
}

resp, err := model.GenerateContent(ctx,
    genai.Text("Tell me about this instrument"),
    genai.ImageData("jpeg", imgData))
if err != nil {
    log.Fatal(err)
}

printResponse(resp) // utility for printing response

بعد از

پایتون

بسیاری از ویژگی های راحتی مشابه در SDK جدید وجود دارد. به عنوان مثال، اشیاء PIL.Image به طور خودکار تبدیل می شوند.

from google import genai
from PIL import Image

client = genai.Client()

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents=[
        'Tell me a story based on this image',
        Image.open(image_path)
    ]
)
print(response.text)

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const organ = await ai.files.upload({
  file: "path/to/organ.jpg",
});

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: [
    createUserContent([
      "Tell me a story based on this image",
      createPartFromUri(organ.uri, organ.mimeType)
    ]),
  ],
});
console.log(response.text);

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
    log.Fatal(err)
}

imgData, err := os.ReadFile("path/to/organ.jpg")
if err != nil {
    log.Fatal(err)
}

parts := []*genai.Part{
    {Text: "Tell me a story based on this image"},
    {InlineData: &genai.Blob{Data: imgData, MIMEType: "image/jpeg"}},
}
contents := []*genai.Content{
    {Parts: parts},
}

result, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", contents, nil)
if err != nil {
    log.Fatal(err)
}
debugPrint(result) // utility for printing result

پخش جریانی

قبل از

پایتون

import google.generativeai as genai

response = model.generate_content(
    "Write a cute story about cats.",
    stream=True)
for chunk in response:
    print(chunk.text)

جاوا اسکریپت

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const prompt = "Write a story about a magic backpack.";

const result = await model.generateContentStream(prompt);

// Print text as it comes in.
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
    log.Fatal(err)
}
defer client.Close()

model := client.GenerativeModel("gemini-1.5-flash")
iter := model.GenerateContentStream(ctx, genai.Text("Write a story about a magic backpack."))
for {
    resp, err := iter.Next()
    if err == iterator.Done {
        break
    }
    if err != nil {
        log.Fatal(err)
    }
    printResponse(resp) // utility for printing the response
}

بعد از

پایتون

from google import genai

client = genai.Client()

for chunk in client.models.generate_content_stream(
  model='gemini-2.0-flash',
  contents='Tell me a story in 300 words.'
):
    print(chunk.text)

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const response = await ai.models.generateContentStream({
  model: "gemini-2.0-flash",
  contents: "Write a story about a magic backpack.",
});
let text = "";
for await (const chunk of response) {
  console.log(chunk.text);
  text += chunk.text;
}

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
    log.Fatal(err)
}

for result, err := range client.Models.GenerateContentStream(
    ctx,
    "gemini-2.0-flash",
    genai.Text("Write a story about a magic backpack."),
    nil,
) {
    if err != nil {
        log.Fatal(err)
    }
    fmt.Print(result.Candidates[0].Content.Parts[0].Text)
}

پیکربندی

قبل از

پایتون

import google.generativeai as genai

model = genai.GenerativeModel(
  'gemini-1.5-flash',
    system_instruction='you are a story teller for kids under 5 years old',
    generation_config=genai.GenerationConfig(
      max_output_tokens=400,
      top_k=2,
      top_p=0.5,
      temperature=0.5,
      response_mime_type='application/json',
      stop_sequences=['\n'],
    )
)
response = model.generate_content('tell me a story in 100 words')

جاوا اسکریپت

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  generationConfig: {
    candidateCount: 1,
    stopSequences: ["x"],
    maxOutputTokens: 20,
    temperature: 1.0,
  },
});

const result = await model.generateContent(
  "Tell me a story about a magic backpack.",
);
console.log(result.response.text())

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
    log.Fatal(err)
}
defer client.Close()

model := client.GenerativeModel("gemini-1.5-flash")
model.SetTemperature(0.5)
model.SetTopP(0.5)
model.SetTopK(2.0)
model.SetMaxOutputTokens(100)
model.ResponseMIMEType = "application/json"
resp, err := model.GenerateContent(ctx, genai.Text("Tell me about New York"))
if err != nil {
    log.Fatal(err)
}
printResponse(resp) // utility for printing response

بعد از

پایتون

برای همه روش‌ها در SDK جدید، آرگومان‌های مورد نیاز به عنوان آرگومان‌های کلیدواژه ارائه می‌شوند. تمام ورودی های اختیاری در آرگومان config ارائه می شوند. آرگومان های پیکربندی را می توان به عنوان دیکشنری پایتون یا کلاس های Config در فضای نام google.genai.types مشخص کرد. برای سودمندی و یکنواختی، تمام تعاریف درون ماژول types ، کلاس‌های pydantic هستند.

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
  model='gemini-2.0-flash',
  contents='Tell me a story in 100 words.',
  config=types.GenerateContentConfig(
      system_instruction='you are a story teller for kids under 5 years old',
      max_output_tokens= 400,
      top_k= 2,
      top_p= 0.5,
      temperature= 0.5,
      response_mime_type= 'application/json',
      stop_sequences= ['\n'],
      seed=42,
  ),
)

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "Tell me a story about a magic backpack.",
  config: {
    candidateCount: 1,
    stopSequences: ["x"],
    maxOutputTokens: 20,
    temperature: 1.0,
  },
});

console.log(response.text);

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
    log.Fatal(err)
}

result, err := client.Models.GenerateContent(ctx,
    "gemini-2.0-flash",
    genai.Text("Tell me about New York"),
    &genai.GenerateContentConfig{
        Temperature:      genai.Ptr[float32](0.5),
        TopP:             genai.Ptr[float32](0.5),
        TopK:             genai.Ptr[float32](2.0),
        ResponseMIMEType: "application/json",
        StopSequences:    []string{"Yankees"},
        CandidateCount:   2,
        Seed:             genai.Ptr[int32](42),
        MaxOutputTokens:  128,
        PresencePenalty:  genai.Ptr[float32](0.5),
        FrequencyPenalty: genai.Ptr[float32](0.5),
    },
)
if err != nil {
    log.Fatal(err)
}
debugPrint(result) // utility for printing response

تنظیمات ایمنی

ایجاد پاسخ با تنظیمات ایمنی:

قبل از

پایتون

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
    'say something bad',
    safety_settings={
        'HATE': 'BLOCK_ONLY_HIGH',
        'HARASSMENT': 'BLOCK_ONLY_HIGH',
  }
)

جاوا اسکریپت

import { GoogleGenerativeAI, HarmCategory, HarmBlockThreshold } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  safetySettings: [
    {
      category: HarmCategory.HARM_CATEGORY_HARASSMENT,
      threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    },
  ],
});

const unsafePrompt =
  "I support Martians Soccer Club and I think " +
  "Jupiterians Football Club sucks! Write an ironic phrase telling " +
  "them how I feel about them.";

const result = await model.generateContent(unsafePrompt);

try {
  result.response.text();
} catch (e) {
  console.error(e);
  console.log(result.response.candidates[0].safetyRatings);
}

بعد از

پایتون

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
  model='gemini-2.0-flash',
  contents='say something bad',
  config=types.GenerateContentConfig(
      safety_settings= [
          types.SafetySetting(
              category='HARM_CATEGORY_HATE_SPEECH',
              threshold='BLOCK_ONLY_HIGH'
          ),
      ]
  ),
)

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const unsafePrompt =
  "I support Martians Soccer Club and I think " +
  "Jupiterians Football Club sucks! Write an ironic phrase telling " +
  "them how I feel about them.";

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: unsafePrompt,
  config: {
    safetySettings: [
      {
        category: "HARM_CATEGORY_HARASSMENT",
        threshold: "BLOCK_ONLY_HIGH",
      },
    ],
  },
});

console.log("Finish reason:", response.candidates[0].finishReason);
console.log("Safety ratings:", response.candidates[0].safetyRatings);

همگام

قبل از

پایتون

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content_async(
    'tell me a story in 100 words'
)

بعد از

پایتون

برای استفاده از SDK جدید با asyncio , یک پیاده سازی async جداگانه برای هر روش تحت client.aio وجود دارد .

from google import genai

client = genai.Client()

response = await client.aio.models.generate_content(
    model='gemini-2.0-flash',
    contents='Tell me a story in 300 words.'
)

چت کنید

یک چت را شروع کنید و به مدل پیام دهید:

قبل از

پایتون

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
chat = model.start_chat()

response = chat.send_message(
    "Tell me a story in 100 words")
response = chat.send_message(
    "What happened after that?")

جاوا اسکریپت

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const chat = model.startChat({
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});
let result = await chat.sendMessage("I have 2 dogs in my house.");
console.log(result.response.text());
result = await chat.sendMessage("How many paws are in my house?");
console.log(result.response.text());

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
    log.Fatal(err)
}
defer client.Close()

model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()

cs.History = []*genai.Content{
    {
        Parts: []genai.Part{
            genai.Text("Hello, I have 2 dogs in my house."),
        },
        Role: "user",
    },
    {
        Parts: []genai.Part{
            genai.Text("Great to meet you. What would you like to know?"),
        },
        Role: "model",
    },
}

res, err := cs.SendMessage(ctx, genai.Text("How many paws are in my house?"))
if err != nil {
    log.Fatal(err)
}
printResponse(res) // utility for printing the response

بعد از

پایتون

from google import genai

client = genai.Client()

chat = client.chats.create(model='gemini-2.0-flash')

response = chat.send_message(
    message='Tell me a story in 100 words')
response = chat.send_message(
    message='What happened after that?')

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const chat = ai.chats.create({
  model: "gemini-2.0-flash",
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});

const response1 = await chat.sendMessage({
  message: "I have 2 dogs in my house.",
});
console.log("Chat response 1:", response1.text);

const response2 = await chat.sendMessage({
  message: "How many paws are in my house?",
});
console.log("Chat response 2:", response2.text);

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
    log.Fatal(err)
}

chat, err := client.Chats.Create(ctx, "gemini-2.0-flash", nil, nil)
if err != nil {
    log.Fatal(err)
}

result, err := chat.SendMessage(ctx, genai.Part{Text: "Hello, I have 2 dogs in my house."})
if err != nil {
    log.Fatal(err)
}
debugPrint(result) // utility for printing result

result, err = chat.SendMessage(ctx, genai.Part{Text: "How many paws are in my house?"})
if err != nil {
    log.Fatal(err)
}
debugPrint(result) // utility for printing result

فراخوانی تابع

قبل از

پایتون

import google.generativeai as genai
from enum import Enum

def get_current_weather(location: str) -> str:
    """Get the current whether in a given location.

    Args:
        location: required, The city and state, e.g. San Franciso, CA
        unit: celsius or fahrenheit
    """
    print(f'Called with: {location=}')
    return "23C"

model = genai.GenerativeModel(
    model_name="gemini-1.5-flash",
    tools=[get_current_weather]
)

response = model.generate_content("What is the weather in San Francisco?")
function_call = response.candidates[0].parts[0].function_call

بعد از

پایتون

در SDK جدید، فراخوانی خودکار عملکرد پیش‌فرض است. در اینجا، شما آن را غیرفعال کنید.

from google import genai
from google.genai import types

client = genai.Client()

def get_current_weather(location: str) -> str:
    """Get the current whether in a given location.

    Args:
        location: required, The city and state, e.g. San Franciso, CA
        unit: celsius or fahrenheit
    """
    print(f'Called with: {location=}')
    return "23C"

response = client.models.generate_content(
  model='gemini-2.0-flash',
  contents="What is the weather like in Boston?",
  config=types.GenerateContentConfig(
      tools=[get_current_weather],
      automatic_function_calling={'disable': True},
  ),
)

function_call = response.candidates[0].content.parts[0].function_call

فراخوانی خودکار عملکرد

قبل از

پایتون

SDK قدیمی فقط از تماس خودکار عملکرد در چت پشتیبانی می کند. در SDK جدید این رفتار پیش‌فرض در generate_content است.

import google.generativeai as genai

def get_current_weather(city: str) -> str:
    return "23C"

model = genai.GenerativeModel(
    model_name="gemini-1.5-flash",
    tools=[get_current_weather]
)

chat = model.start_chat(
    enable_automatic_function_calling=True)
result = chat.send_message("What is the weather in San Francisco?")

بعد از

پایتون

from google import genai
from google.genai import types
client = genai.Client()

def get_current_weather(city: str) -> str:
    return "23C"

response = client.models.generate_content(
  model='gemini-2.0-flash',
  contents="What is the weather like in Boston?",
  config=types.GenerateContentConfig(
      tools=[get_current_weather]
  ),
)

اجرای کد

اجرای کد ابزاری است که به مدل اجازه می دهد کد پایتون را تولید کند، آن را اجرا کند و نتیجه را برگرداند.

قبل از

پایتون

import google.generativeai as genai

model = genai.GenerativeModel(
    model_name="gemini-1.5-flash",
    tools="code_execution"
)

result = model.generate_content(
  "What is the sum of the first 50 prime numbers? Generate and run code for "
  "the calculation, and make sure you get all 50.")

جاوا اسکریپت

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  tools: [{ codeExecution: {} }],
});

const result = await model.generateContent(
  "What is the sum of the first 50 prime numbers? " +
    "Generate and run code for the calculation, and make sure you get " +
    "all 50.",
);

console.log(result.response.text());

بعد از

پایتون

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents='What is the sum of the first 50 prime numbers? Generate and run '
            'code for the calculation, and make sure you get all 50.',
    config=types.GenerateContentConfig(
        tools=[types.Tool(code_execution=types.ToolCodeExecution)],
    ),
)

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const response = await ai.models.generateContent({
  model: "gemini-2.0-pro-exp-02-05",
  contents: `Write and execute code that calculates the sum of the first 50 prime numbers.
            Ensure that only the executable code and its resulting output are generated.`,
});

// Each part may contain text, executable code, or an execution result.
for (const part of response.candidates[0].content.parts) {
  console.log(part);
  console.log("\n");
}

console.log("-".repeat(80));
// The `.text` accessor concatenates the parts into a markdown-formatted text.
console.log("\n", response.text);

جستجوی زمین

GoogleSearch (Gemini>=2.0) و GoogleSearchRetrieval (Gemini < 2.0) ابزارهایی هستند که به مدل اجازه می‌دهند تا داده‌های وب عمومی را برای اتصال به زمین، که توسط Google ارائه می‌شود، بازیابی کند.

قبل از

پایتون

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
    contents="what is the Google stock price?",
    tools='google_search_retrieval'
)

بعد از

پایتون

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents='What is the Google stock price?',
    config=types.GenerateContentConfig(
        tools=[
            types.Tool(
                google_search=types.GoogleSearch()
            )
        ]
    )
)

پاسخ JSON

پاسخ ها را در قالب JSON ایجاد کنید.

قبل از

پایتون

با مشخص کردن یک response_schema و تنظیم response_mime_type="application/json" کاربران می توانند مدل را محدود کنند تا پاسخ JSON را به دنبال یک ساختار داده شده تولید کند.

import google.generativeai as genai
import typing_extensions as typing

class CountryInfo(typing.TypedDict):
    name: str
    population: int
    capital: str
    continent: str
    major_cities: list[str]
    gdp: int
    official_language: str
    total_area_sq_mi: int

model = genai.GenerativeModel(model_name="gemini-1.5-flash")
result = model.generate_content(
    "Give me information of the United States",
    generation_config=genai.GenerationConfig(
        response_mime_type="application/json",
        response_schema = CountryInfo
    ),
)

جاوا اسکریپت

import { GoogleGenerativeAI, SchemaType } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");

const schema = {
  description: "List of recipes",
  type: SchemaType.ARRAY,
  items: {
    type: SchemaType.OBJECT,
    properties: {
      recipeName: {
        type: SchemaType.STRING,
        description: "Name of the recipe",
        nullable: false,
      },
    },
    required: ["recipeName"],
  },
};

const model = genAI.getGenerativeModel({
  model: "gemini-1.5-pro",
  generationConfig: {
    responseMimeType: "application/json",
    responseSchema: schema,
  },
});

const result = await model.generateContent(
  "List a few popular cookie recipes.",
);
console.log(result.response.text());

بعد از

پایتون

SDK جدید از کلاس‌های pydantic برای ارائه طرحواره استفاده می‌کند (اگرچه می‌توانید یک genai.types.Schema یا dict معادل آن را ارسال کنید). در صورت امکان، SDK JSON برگشتی را تجزیه می کند و نتیجه را در response.parsed برمی گرداند. اگر یک کلاس pydantic را به عنوان طرحواره ارائه کرده باشید، SDK آن JSON به نمونه ای از کلاس تبدیل می کند.

from google import genai
from pydantic import BaseModel

client = genai.Client()

class CountryInfo(BaseModel):
    name: str
    population: int
    capital: str
    continent: str
    major_cities: list[str]
    gdp: int
    official_language: str
    total_area_sq_mi: int

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents='Give me information of the United States.',
    config={
        'response_mime_type': 'application/json',
        'response_schema': CountryInfo,
    },
)

response.parsed

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "List a few popular cookie recipes.",
  config: {
    responseMimeType: "application/json",
    responseSchema: {
      type: "array",
      items: {
        type: "object",
        properties: {
          recipeName: { type: "string" },
          ingredients: { type: "array", items: { type: "string" } },
        },
        required: ["recipeName", "ingredients"],
      },
    },
  },
});
console.log(response.text);

فایل ها

آپلود کنید

آپلود فایل:

قبل از

پایتون

import requests
import pathlib
import google.generativeai as genai

# Download file
response = requests.get(
    'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)

file = genai.upload_file(path='a11.txt')

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content([
    'Can you summarize this file:',
    my_file
])
print(response.text)

بعد از

پایتون

import requests
import pathlib
from google import genai

client = genai.Client()

# Download file
response = requests.get(
    'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)

my_file = client.files.upload(file='a11.txt')

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents=[
        'Can you summarize this file:',
        my_file
    ]
)
print(response.text)

لیست کنید و دریافت کنید

فایل های آپلود شده را فهرست کنید و یک فایل آپلود شده با نام فایل دریافت کنید:

قبل از

پایتون

import google.generativeai as genai

for file in genai.list_files():
  print(file.name)

file = genai.get_file(name=file.name)

بعد از

پایتون

from google import genai
client = genai.Client()

for file in client.files.list():
    print(file.name)

file = client.files.get(name=file.name)

حذف کنید

حذف یک فایل:

قبل از

پایتون

import pathlib
import google.generativeai as genai

pathlib.Path('dummy.txt').write_text(dummy)
dummy_file = genai.upload_file(path='dummy.txt')

file = genai.delete_file(name=dummy_file.name)

بعد از

پایتون

import pathlib
from google import genai

client = genai.Client()

pathlib.Path('dummy.txt').write_text(dummy)
dummy_file = client.files.upload(file='dummy.txt')

response = client.files.delete(name=dummy_file.name)

ذخیره سازی متن

ذخیره سازی متن به کاربر امکان می دهد یک بار محتوا را به مدل منتقل کند، نشانه های ورودی را در حافظه پنهان نگه دارد و سپس در تماس های بعدی به نشانه های کش شده مراجعه کند تا هزینه را کاهش دهد.

قبل از

پایتون

import requests
import pathlib
import google.generativeai as genai
from google.generativeai import caching

# Download file
response = requests.get(
    'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)

# Upload file
document = genai.upload_file(path="a11.txt")

# Create cache
apollo_cache = caching.CachedContent.create(
    model="gemini-1.5-flash-001",
    system_instruction="You are an expert at analyzing transcripts.",
    contents=[document],
)

# Generate response
apollo_model = genai.GenerativeModel.from_cached_content(
    cached_content=apollo_cache
)
response = apollo_model.generate_content("Find a lighthearted moment from this transcript")

جاوا اسکریپت

import { GoogleAICacheManager, GoogleAIFileManager } from "@google/generative-ai/server";
import { GoogleGenerativeAI } from "@google/generative-ai";

const cacheManager = new GoogleAICacheManager("GOOGLE_API_KEY");
const fileManager = new GoogleAIFileManager("GOOGLE_API_KEY");

const uploadResult = await fileManager.uploadFile("path/to/a11.txt", {
  mimeType: "text/plain",
});

const cacheResult = await cacheManager.create({
  model: "models/gemini-1.5-flash",
  contents: [
    {
      role: "user",
      parts: [
        {
          fileData: {
            fileUri: uploadResult.file.uri,
            mimeType: uploadResult.file.mimeType,
          },
        },
      ],
    },
  ],
});

console.log(cacheResult);

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModelFromCachedContent(cacheResult);
const result = await model.generateContent(
  "Please summarize this transcript.",
);
console.log(result.response.text());

بعد از

پایتون

import requests
import pathlib
from google import genai
from google.genai import types

client = genai.Client()

# Check which models support caching.
for m in client.models.list():
  for action in m.supported_actions:
    if action == "createCachedContent":
      print(m.name)
      break

# Download file
response = requests.get(
    'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)

# Upload file
document = client.files.upload(file='a11.txt')

# Create cache
model='gemini-1.5-flash-001'
apollo_cache = client.caches.create(
      model=model,
      config={
          'contents': [document],
          'system_instruction': 'You are an expert at analyzing transcripts.',
      },
  )

# Generate response
response = client.models.generate_content(
    model=model,
    contents='Find a lighthearted moment from this transcript',
    config=types.GenerateContentConfig(
        cached_content=apollo_cache.name,
    )
)

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const filePath = path.join(media, "a11.txt");
const document = await ai.files.upload({
  file: filePath,
  config: { mimeType: "text/plain" },
});
console.log("Uploaded file name:", document.name);
const modelName = "gemini-1.5-flash";

const contents = [
  createUserContent(createPartFromUri(document.uri, document.mimeType)),
];

const cache = await ai.caches.create({
  model: modelName,
  config: {
    contents: contents,
    systemInstruction: "You are an expert analyzing transcripts.",
  },
});
console.log("Cache created:", cache);

const response = await ai.models.generateContent({
  model: modelName,
  contents: "Please summarize this transcript",
  config: { cachedContent: cache.name },
});
console.log("Response text:", response.text);

توکن ها را بشمار

تعداد توکن های یک درخواست را بشمارید.

قبل از

پایتون

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.count_tokens(
    'The quick brown fox jumps over the lazy dog.')

جاوا اسکریپت

 import { GoogleGenerativeAI } from "@google/generative-ai";

 const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY+);
 const model = genAI.getGenerativeModel({
   model: "gemini-1.5-flash",
 });

 // Count tokens in a prompt without calling text generation.
 const countResult = await model.countTokens(
   "The quick brown fox jumps over the lazy dog.",
 );

 console.log(countResult.totalTokens); // 11

 const generateResult = await model.generateContent(
   "The quick brown fox jumps over the lazy dog.",
 );

 // On the response for `generateContent`, use `usageMetadata`
 // to get separate input and output token counts
 // (`promptTokenCount` and `candidatesTokenCount`, respectively),
 // as well as the combined token count (`totalTokenCount`).
 console.log(generateResult.response.usageMetadata);
 // candidatesTokenCount and totalTokenCount depend on response, may vary
 // { promptTokenCount: 11, candidatesTokenCount: 124, totalTokenCount: 135 }

بعد از

پایتون

from google import genai

client = genai.Client()

response = client.models.count_tokens(
    model='gemini-2.0-flash',
    contents='The quick brown fox jumps over the lazy dog.',
)

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const prompt = "The quick brown fox jumps over the lazy dog.";
const countTokensResponse = await ai.models.countTokens({
  model: "gemini-2.0-flash",
  contents: prompt,
});
console.log(countTokensResponse.totalTokens);

const generateResponse = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: prompt,
});
console.log(generateResponse.usageMetadata);

تولید تصاویر

تولید تصاویر:

قبل از

پایتون

#pip install https://github.com/google-gemini/generative-ai-python@imagen
import google.generativeai as genai

imagen = genai.ImageGenerationModel(
    "imagen-3.0-generate-001")
gen_images = imagen.generate_images(
    prompt="Robot holding a red skateboard",
    number_of_images=1,
    safety_filter_level="block_low_and_above",
    person_generation="allow_adult",
    aspect_ratio="3:4",
)

بعد از

پایتون

from google import genai

client = genai.Client()

gen_images = client.models.generate_images(
    model='imagen-3.0-generate-001',
    prompt='Robot holding a red skateboard',
    config=types.GenerateImagesConfig(
        number_of_images= 1,
        safety_filter_level= "BLOCK_LOW_AND_ABOVE",
        person_generation= "ALLOW_ADULT",
        aspect_ratio= "3:4",
    )
)

for n, image in enumerate(gen_images.generated_images):
    pathlib.Path(f'{n}.png').write_bytes(
        image.image.image_bytes)

جاسازی محتوا

جاسازی محتوا را ایجاد کنید.

قبل از

پایتون

import google.generativeai as genai

response = genai.embed_content(
  model='models/gemini-embedding-001',
  content='Hello world'
)

جاوا اسکریپت

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
  model: "gemini-embedding-001",
});

const result = await model.embedContent("Hello world!");

console.log(result.embedding);

بعد از

پایتون

from google import genai

client = genai.Client()

response = client.models.embed_content(
  model='gemini-embedding-001',
  contents='Hello world',
)

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const text = "Hello World!";
const result = await ai.models.embedContent({
  model: "gemini-embedding-001",
  contents: text,
  config: { outputDimensionality: 10 },
});
console.log(result.embeddings);

یک مدل را تنظیم کنید

یک مدل تنظیم شده ایجاد و استفاده کنید.

SDK جدید تنظیم را با client.tunings.tune ساده می‌کند، که کار تنظیم را راه‌اندازی می‌کند و تا پایان کار نظرسنجی می‌کند.

قبل از

پایتون

import google.generativeai as genai
import random

# create tuning model
train_data = {}
for i in range(1, 6):
  key = f'input {i}'
  value = f'output {i}'
  train_data[key] = value

name = f'generate-num-{random.randint(0,10000)}'
operation = genai.create_tuned_model(
    source_model='models/gemini-1.5-flash-001-tuning',
    training_data=train_data,
    id = name,
    epoch_count = 5,
    batch_size=4,
    learning_rate=0.001,
)
# wait for tuning complete
tuningProgress = operation.result()

# generate content with the tuned model
model = genai.GenerativeModel(model_name=f'tunedModels/{name}')
response = model.generate_content('55')

بعد از

پایتون

from google import genai
from google.genai import types

client = genai.Client()

# Check which models are available for tuning.
for m in client.models.list():
  for action in m.supported_actions:
    if action == "createTunedModel":
      print(m.name)
      break

# create tuning model
training_dataset=types.TuningDataset(
        examples=[
            types.TuningExample(
                text_input=f'input {i}',
                output=f'output {i}',
            )
            for i in range(5)
        ],
    )
tuning_job = client.tunings.tune(
    base_model='models/gemini-1.5-flash-001-tuning',
    training_dataset=training_dataset,
    config=types.CreateTuningJobConfig(
        epoch_count= 5,
        batch_size=4,
        learning_rate=0.001,
        tuned_model_display_name="test tuned model"
    )
)

# generate content with the tuned model
response = client.models.generate_content(
    model=tuning_job.tuned_model.model,
    contents='55',
)
،

با شروع انتشار Gemini 2.0 در اواخر سال 2024، مجموعه جدیدی از کتابخانه ها به نام Google GenAI SDK را معرفی کردیم. این یک تجربه توسعه‌دهنده بهبود یافته را از طریق معماری مشتری به‌روز ارائه می‌دهد و انتقال بین گردش‌های کاری توسعه‌دهنده و سازمانی را ساده می‌کند .

Google GenAI SDK اکنون در همه پلتفرم‌های پشتیبانی شده در دسترس عمومی (GA) قرار دارد. اگر از یکی از کتابخانه های قدیمی ما استفاده می کنید، اکیداً به شما توصیه می کنیم که مهاجرت کنید.

این راهنما نمونه‌هایی از قبل و بعد از کدهای انتقال داده را ارائه می‌کند تا به شما در شروع کار کمک کند.

نصب و راه اندازی

قبل از

پایتون

pip install -U -q "google-generativeai"

جاوا اسکریپت

npm install @google/generative-ai

برو

go get github.com/google/generative-ai-go

بعد از

پایتون

pip install -U -q "google-genai"

جاوا اسکریپت

npm install @google/genai

برو

go get google.golang.org/genai

دسترسی به API

SDK قدیمی به طور ضمنی مشتری API را در پشت صحنه با استفاده از انواع روش‌های ad hoc مدیریت می‌کرد. این امر مدیریت مشتری و اعتبارنامه ها را دشوار می کرد. اکنون، شما از طریق یک شی Client مرکزی تعامل دارید. این شی Client به عنوان یک نقطه ورودی واحد برای سرویس‌های API مختلف (مانند models ، chats ، files ، tunings ) عمل می‌کند، که ثبات را ارتقا می‌دهد و مدیریت اعتبار و پیکربندی را در تماس‌های API مختلف ساده‌تر می‌کند.

قبل (دسترسی کمتر متمرکز API)

پایتون

SDK قدیمی به صراحت از یک شی کلاینت سطح بالا برای بیشتر تماس‌های API استفاده نمی‌کرد. شما می توانید مستقیماً اشیاء GenerativeModel را نمونه سازی کنید و با آنها تعامل داشته باشید.

import google.generativeai as genai

# Directly create and use model objects
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(...)
chat = model.start_chat(...)

جاوا اسکریپت

در حالی که GoogleGenerativeAI یک نقطه مرکزی برای مدل‌ها و چت بود، سایر عملکردها مانند مدیریت فایل و حافظه پنهان اغلب نیاز به وارد کردن و نمونه‌سازی کلاس‌های کلاینت کاملاً مجزا داشتند.

import { GoogleGenerativeAI } from "@google/generative-ai";
import { GoogleAIFileManager, GoogleAICacheManager } from "@google/generative-ai/server"; // For files/caching

const genAI = new GoogleGenerativeAI("YOUR_API_KEY");
const fileManager = new GoogleAIFileManager("YOUR_API_KEY");
const cacheManager = new GoogleAICacheManager("YOUR_API_KEY");

// Get a model instance, then call methods on it
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const result = await model.generateContent(...);
const chat = model.startChat(...);

// Call methods on separate client objects for other services
const uploadedFile = await fileManager.uploadFile(...);
const cache = await cacheManager.create(...);

برو

تابع genai.NewClient یک کلاینت ایجاد کرد، اما عملیات مدل مولد معمولاً در یک نمونه GenerativeModel جداگانه که از این کلاینت به دست می‌آمد فراخوانی می‌شد. سایر خدمات ممکن است از طریق بسته ها یا الگوهای مجزا قابل دسترسی بوده باشند.

import (
      "github.com/google/generative-ai-go/genai"
      "github.com/google/generative-ai-go/genai/fileman" // For files
      "google.golang.org/api/option"
)

client, err := genai.NewClient(ctx, option.WithAPIKey("YOUR_API_KEY"))
fileClient, err := fileman.NewClient(ctx, option.WithAPIKey("YOUR_API_KEY"))

// Get a model instance, then call methods on it
model := client.GenerativeModel("gemini-1.5-flash")
resp, err := model.GenerateContent(...)
cs := model.StartChat()

// Call methods on separate client objects for other services
uploadedFile, err := fileClient.UploadFile(...)

بعد از (Centralized Client Object)

پایتون

from google import genai

# Create a single client object
client = genai.Client()

# Access API methods through services on the client object
response = client.models.generate_content(...)
chat = client.chats.create(...)
my_file = client.files.upload(...)
tuning_job = client.tunings.tune(...)

جاوا اسکریپت

import { GoogleGenAI } from "@google/genai";

// Create a single client object
const ai = new GoogleGenAI({apiKey: "YOUR_API_KEY"});

// Access API methods through services on the client object
const response = await ai.models.generateContent(...);
const chat = ai.chats.create(...);
const uploadedFile = await ai.files.upload(...);
const cache = await ai.caches.create(...);

برو

import "google.golang.org/genai"

// Create a single client object
client, err := genai.NewClient(ctx, nil)

// Access API methods through services on the client object
result, err := client.Models.GenerateContent(...)
chat, err := client.Chats.Create(...)
uploadedFile, err := client.Files.Upload(...)
tuningJob, err := client.Tunings.Tune(...)

احراز هویت

هر دو کتابخانه قدیمی و جدید با استفاده از کلیدهای API احراز هویت می شوند. می توانید کلید API خود را در Google AI Studio ایجاد کنید .

قبل از

پایتون

SDK قدیمی شیء کلاینت API را بطور ضمنی مدیریت می کرد.

import google.generativeai as genai

genai.configure(api_key=...)

جاوا اسکریپت

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");

برو

وارد کردن کتابخانه های گوگل:

import (
      "github.com/google/generative-ai-go/genai"
      "google.golang.org/api/option"
)

ایجاد مشتری:

client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))

بعد از

پایتون

با Google GenAI SDK، ابتدا یک کلاینت API ایجاد می کنید که برای فراخوانی API استفاده می شود. SDK جدید کلید API شما را از یکی از متغیرهای محیطی GEMINI_API_KEY یا GOOGLE_API_KEY دریافت می‌کند، اگر یکی را به مشتری ارسال نکنید.

export GEMINI_API_KEY="YOUR_API_KEY"
from google import genai

client = genai.Client() # Set the API key using the GEMINI_API_KEY env var.
                        # Alternatively, you could set the API key explicitly:
                        # client = genai.Client(api_key="your_api_key")

جاوا اسکریپت

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({apiKey: "GEMINI_API_KEY"});

برو

وارد کردن کتابخانه GenAI:

import "google.golang.org/genai"

ایجاد مشتری:

client, err := genai.NewClient(ctx, &genai.ClientConfig{
        Backend:  genai.BackendGeminiAPI,
})

تولید محتوا

متن

قبل از

پایتون

قبلاً هیچ شیء مشتری وجود نداشت، شما مستقیماً از طریق اشیاء GenerativeModel به APIها دسترسی داشتید.

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
    'Tell me a story in 300 words'
)
print(response.text)

جاوا اسکریپت

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const prompt = "Tell me a story in 300 words";

const result = await model.generateContent(prompt);
console.log(result.response.text());

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
    log.Fatal(err)
}
defer client.Close()

model := client.GenerativeModel("gemini-1.5-flash")
resp, err := model.GenerateContent(ctx, genai.Text("Tell me a story in 300 words."))
if err != nil {
    log.Fatal(err)
}

printResponse(resp) // utility for printing response parts

بعد از

پایتون

Google GenAI SDK جدید دسترسی به تمام روش های API را از طریق شی Client فراهم می کند. به جز چند مورد خاص حالت دار ( chat و session Api زنده)، همه اینها توابع بدون حالت هستند. برای سودمندی و یکنواختی، اشیاء برگردانده شده طبقات pydantic هستند.

from google import genai
client = genai.Client()

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents='Tell me a story in 300 words.'
)
print(response.text)

print(response.model_dump_json(
    exclude_none=True, indent=4))

جاوا اسکریپت

import { GoogleGenAI } from "@google/genai";

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "Tell me a story in 300 words.",
});
console.log(response.text);

برو

ctx := context.Background()
  client, err := genai.NewClient(ctx, nil)
if err != nil {
    log.Fatal(err)
}

result, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", genai.Text("Tell me a story in 300 words."), nil)
if err != nil {
    log.Fatal(err)
}
debugPrint(result) // utility for printing result

تصویر

قبل از

پایتون

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content([
    'Tell me a story based on this image',
    Image.open(image_path)
])
print(response.text)

جاوا اسکریپت

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

function fileToGenerativePart(path, mimeType) {
  return {
    inlineData: {
      data: Buffer.from(fs.readFileSync(path)).toString("base64"),
      mimeType,
    },
  };
}

const prompt = "Tell me a story based on this image";

const imagePart = fileToGenerativePart(
  `path/to/organ.jpg`,
  "image/jpeg",
);

const result = await model.generateContent([prompt, imagePart]);
console.log(result.response.text());

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
    log.Fatal(err)
}
defer client.Close()

model := client.GenerativeModel("gemini-1.5-flash")

imgData, err := os.ReadFile("path/to/organ.jpg")
if err != nil {
    log.Fatal(err)
}

resp, err := model.GenerateContent(ctx,
    genai.Text("Tell me about this instrument"),
    genai.ImageData("jpeg", imgData))
if err != nil {
    log.Fatal(err)
}

printResponse(resp) // utility for printing response

بعد از

پایتون

بسیاری از ویژگی های راحتی مشابه در SDK جدید وجود دارد. به عنوان مثال، اشیاء PIL.Image به طور خودکار تبدیل می شوند.

from google import genai
from PIL import Image

client = genai.Client()

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents=[
        'Tell me a story based on this image',
        Image.open(image_path)
    ]
)
print(response.text)

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const organ = await ai.files.upload({
  file: "path/to/organ.jpg",
});

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: [
    createUserContent([
      "Tell me a story based on this image",
      createPartFromUri(organ.uri, organ.mimeType)
    ]),
  ],
});
console.log(response.text);

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
    log.Fatal(err)
}

imgData, err := os.ReadFile("path/to/organ.jpg")
if err != nil {
    log.Fatal(err)
}

parts := []*genai.Part{
    {Text: "Tell me a story based on this image"},
    {InlineData: &genai.Blob{Data: imgData, MIMEType: "image/jpeg"}},
}
contents := []*genai.Content{
    {Parts: parts},
}

result, err := client.Models.GenerateContent(ctx, "gemini-2.0-flash", contents, nil)
if err != nil {
    log.Fatal(err)
}
debugPrint(result) // utility for printing result

پخش جریانی

قبل از

پایتون

import google.generativeai as genai

response = model.generate_content(
    "Write a cute story about cats.",
    stream=True)
for chunk in response:
    print(chunk.text)

جاوا اسکریپت

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const prompt = "Write a story about a magic backpack.";

const result = await model.generateContentStream(prompt);

// Print text as it comes in.
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
    log.Fatal(err)
}
defer client.Close()

model := client.GenerativeModel("gemini-1.5-flash")
iter := model.GenerateContentStream(ctx, genai.Text("Write a story about a magic backpack."))
for {
    resp, err := iter.Next()
    if err == iterator.Done {
        break
    }
    if err != nil {
        log.Fatal(err)
    }
    printResponse(resp) // utility for printing the response
}

بعد از

پایتون

from google import genai

client = genai.Client()

for chunk in client.models.generate_content_stream(
  model='gemini-2.0-flash',
  contents='Tell me a story in 300 words.'
):
    print(chunk.text)

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const response = await ai.models.generateContentStream({
  model: "gemini-2.0-flash",
  contents: "Write a story about a magic backpack.",
});
let text = "";
for await (const chunk of response) {
  console.log(chunk.text);
  text += chunk.text;
}

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
    log.Fatal(err)
}

for result, err := range client.Models.GenerateContentStream(
    ctx,
    "gemini-2.0-flash",
    genai.Text("Write a story about a magic backpack."),
    nil,
) {
    if err != nil {
        log.Fatal(err)
    }
    fmt.Print(result.Candidates[0].Content.Parts[0].Text)
}

پیکربندی

قبل از

پایتون

import google.generativeai as genai

model = genai.GenerativeModel(
  'gemini-1.5-flash',
    system_instruction='you are a story teller for kids under 5 years old',
    generation_config=genai.GenerationConfig(
      max_output_tokens=400,
      top_k=2,
      top_p=0.5,
      temperature=0.5,
      response_mime_type='application/json',
      stop_sequences=['\n'],
    )
)
response = model.generate_content('tell me a story in 100 words')

جاوا اسکریپت

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  generationConfig: {
    candidateCount: 1,
    stopSequences: ["x"],
    maxOutputTokens: 20,
    temperature: 1.0,
  },
});

const result = await model.generateContent(
  "Tell me a story about a magic backpack.",
);
console.log(result.response.text())

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
    log.Fatal(err)
}
defer client.Close()

model := client.GenerativeModel("gemini-1.5-flash")
model.SetTemperature(0.5)
model.SetTopP(0.5)
model.SetTopK(2.0)
model.SetMaxOutputTokens(100)
model.ResponseMIMEType = "application/json"
resp, err := model.GenerateContent(ctx, genai.Text("Tell me about New York"))
if err != nil {
    log.Fatal(err)
}
printResponse(resp) // utility for printing response

بعد از

پایتون

برای همه روش‌ها در SDK جدید، آرگومان‌های مورد نیاز به عنوان آرگومان‌های کلیدواژه ارائه می‌شوند. تمام ورودی های اختیاری در آرگومان config ارائه می شوند. آرگومان های پیکربندی را می توان به عنوان دیکشنری پایتون یا کلاس های Config در فضای نام google.genai.types مشخص کرد. برای سودمندی و یکنواختی، تمام تعاریف درون ماژول types ، کلاس‌های pydantic هستند.

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
  model='gemini-2.0-flash',
  contents='Tell me a story in 100 words.',
  config=types.GenerateContentConfig(
      system_instruction='you are a story teller for kids under 5 years old',
      max_output_tokens= 400,
      top_k= 2,
      top_p= 0.5,
      temperature= 0.5,
      response_mime_type= 'application/json',
      stop_sequences= ['\n'],
      seed=42,
  ),
)

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "Tell me a story about a magic backpack.",
  config: {
    candidateCount: 1,
    stopSequences: ["x"],
    maxOutputTokens: 20,
    temperature: 1.0,
  },
});

console.log(response.text);

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
    log.Fatal(err)
}

result, err := client.Models.GenerateContent(ctx,
    "gemini-2.0-flash",
    genai.Text("Tell me about New York"),
    &genai.GenerateContentConfig{
        Temperature:      genai.Ptr[float32](0.5),
        TopP:             genai.Ptr[float32](0.5),
        TopK:             genai.Ptr[float32](2.0),
        ResponseMIMEType: "application/json",
        StopSequences:    []string{"Yankees"},
        CandidateCount:   2,
        Seed:             genai.Ptr[int32](42),
        MaxOutputTokens:  128,
        PresencePenalty:  genai.Ptr[float32](0.5),
        FrequencyPenalty: genai.Ptr[float32](0.5),
    },
)
if err != nil {
    log.Fatal(err)
}
debugPrint(result) // utility for printing response

تنظیمات ایمنی

ایجاد پاسخ با تنظیمات ایمنی:

قبل از

پایتون

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
    'say something bad',
    safety_settings={
        'HATE': 'BLOCK_ONLY_HIGH',
        'HARASSMENT': 'BLOCK_ONLY_HIGH',
  }
)

جاوا اسکریپت

import { GoogleGenerativeAI, HarmCategory, HarmBlockThreshold } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  safetySettings: [
    {
      category: HarmCategory.HARM_CATEGORY_HARASSMENT,
      threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    },
  ],
});

const unsafePrompt =
  "I support Martians Soccer Club and I think " +
  "Jupiterians Football Club sucks! Write an ironic phrase telling " +
  "them how I feel about them.";

const result = await model.generateContent(unsafePrompt);

try {
  result.response.text();
} catch (e) {
  console.error(e);
  console.log(result.response.candidates[0].safetyRatings);
}

بعد از

پایتون

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
  model='gemini-2.0-flash',
  contents='say something bad',
  config=types.GenerateContentConfig(
      safety_settings= [
          types.SafetySetting(
              category='HARM_CATEGORY_HATE_SPEECH',
              threshold='BLOCK_ONLY_HIGH'
          ),
      ]
  ),
)

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const unsafePrompt =
  "I support Martians Soccer Club and I think " +
  "Jupiterians Football Club sucks! Write an ironic phrase telling " +
  "them how I feel about them.";

const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: unsafePrompt,
  config: {
    safetySettings: [
      {
        category: "HARM_CATEGORY_HARASSMENT",
        threshold: "BLOCK_ONLY_HIGH",
      },
    ],
  },
});

console.log("Finish reason:", response.candidates[0].finishReason);
console.log("Safety ratings:", response.candidates[0].safetyRatings);

همگام

قبل از

پایتون

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content_async(
    'tell me a story in 100 words'
)

بعد از

پایتون

برای استفاده از SDK جدید با asyncio , یک پیاده سازی async جداگانه برای هر روش تحت client.aio وجود دارد .

from google import genai

client = genai.Client()

response = await client.aio.models.generate_content(
    model='gemini-2.0-flash',
    contents='Tell me a story in 300 words.'
)

چت کنید

یک چت را شروع کنید و به مدل پیام دهید:

قبل از

پایتون

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
chat = model.start_chat()

response = chat.send_message(
    "Tell me a story in 100 words")
response = chat.send_message(
    "What happened after that?")

جاوا اسکریپت

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const chat = model.startChat({
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});
let result = await chat.sendMessage("I have 2 dogs in my house.");
console.log(result.response.text());
result = await chat.sendMessage("How many paws are in my house?");
console.log(result.response.text());

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey("GOOGLE_API_KEY"))
if err != nil {
    log.Fatal(err)
}
defer client.Close()

model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()

cs.History = []*genai.Content{
    {
        Parts: []genai.Part{
            genai.Text("Hello, I have 2 dogs in my house."),
        },
        Role: "user",
    },
    {
        Parts: []genai.Part{
            genai.Text("Great to meet you. What would you like to know?"),
        },
        Role: "model",
    },
}

res, err := cs.SendMessage(ctx, genai.Text("How many paws are in my house?"))
if err != nil {
    log.Fatal(err)
}
printResponse(res) // utility for printing the response

بعد از

پایتون

from google import genai

client = genai.Client()

chat = client.chats.create(model='gemini-2.0-flash')

response = chat.send_message(
    message='Tell me a story in 100 words')
response = chat.send_message(
    message='What happened after that?')

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const chat = ai.chats.create({
  model: "gemini-2.0-flash",
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});

const response1 = await chat.sendMessage({
  message: "I have 2 dogs in my house.",
});
console.log("Chat response 1:", response1.text);

const response2 = await chat.sendMessage({
  message: "How many paws are in my house?",
});
console.log("Chat response 2:", response2.text);

برو

ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
    log.Fatal(err)
}

chat, err := client.Chats.Create(ctx, "gemini-2.0-flash", nil, nil)
if err != nil {
    log.Fatal(err)
}

result, err := chat.SendMessage(ctx, genai.Part{Text: "Hello, I have 2 dogs in my house."})
if err != nil {
    log.Fatal(err)
}
debugPrint(result) // utility for printing result

result, err = chat.SendMessage(ctx, genai.Part{Text: "How many paws are in my house?"})
if err != nil {
    log.Fatal(err)
}
debugPrint(result) // utility for printing result

فراخوانی تابع

قبل از

پایتون

import google.generativeai as genai
from enum import Enum

def get_current_weather(location: str) -> str:
    """Get the current whether in a given location.

    Args:
        location: required, The city and state, e.g. San Franciso, CA
        unit: celsius or fahrenheit
    """
    print(f'Called with: {location=}')
    return "23C"

model = genai.GenerativeModel(
    model_name="gemini-1.5-flash",
    tools=[get_current_weather]
)

response = model.generate_content("What is the weather in San Francisco?")
function_call = response.candidates[0].parts[0].function_call

بعد از

پایتون

در SDK جدید، فراخوانی خودکار عملکرد پیش‌فرض است. در اینجا، شما آن را غیرفعال کنید.

from google import genai
from google.genai import types

client = genai.Client()

def get_current_weather(location: str) -> str:
    """Get the current whether in a given location.

    Args:
        location: required, The city and state, e.g. San Franciso, CA
        unit: celsius or fahrenheit
    """
    print(f'Called with: {location=}')
    return "23C"

response = client.models.generate_content(
  model='gemini-2.0-flash',
  contents="What is the weather like in Boston?",
  config=types.GenerateContentConfig(
      tools=[get_current_weather],
      automatic_function_calling={'disable': True},
  ),
)

function_call = response.candidates[0].content.parts[0].function_call

فراخوانی خودکار عملکرد

قبل از

پایتون

SDK قدیمی فقط از تماس خودکار عملکرد در چت پشتیبانی می کند. در SDK جدید این رفتار پیش‌فرض در generate_content است.

import google.generativeai as genai

def get_current_weather(city: str) -> str:
    return "23C"

model = genai.GenerativeModel(
    model_name="gemini-1.5-flash",
    tools=[get_current_weather]
)

chat = model.start_chat(
    enable_automatic_function_calling=True)
result = chat.send_message("What is the weather in San Francisco?")

بعد از

پایتون

from google import genai
from google.genai import types
client = genai.Client()

def get_current_weather(city: str) -> str:
    return "23C"

response = client.models.generate_content(
  model='gemini-2.0-flash',
  contents="What is the weather like in Boston?",
  config=types.GenerateContentConfig(
      tools=[get_current_weather]
  ),
)

اجرای کد

اجرای کد ابزاری است که به مدل اجازه می دهد کد پایتون را تولید کند، آن را اجرا کند و نتیجه را برگرداند.

قبل از

پایتون

import google.generativeai as genai

model = genai.GenerativeModel(
    model_name="gemini-1.5-flash",
    tools="code_execution"
)

result = model.generate_content(
  "What is the sum of the first 50 prime numbers? Generate and run code for "
  "the calculation, and make sure you get all 50.")

جاوا اسکریپت

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  tools: [{ codeExecution: {} }],
});

const result = await model.generateContent(
  "What is the sum of the first 50 prime numbers? " +
    "Generate and run code for the calculation, and make sure you get " +
    "all 50.",
);

console.log(result.response.text());

بعد از

پایتون

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents='What is the sum of the first 50 prime numbers? Generate and run '
            'code for the calculation, and make sure you get all 50.',
    config=types.GenerateContentConfig(
        tools=[types.Tool(code_execution=types.ToolCodeExecution)],
    ),
)

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });

const response = await ai.models.generateContent({
  model: "gemini-2.0-pro-exp-02-05",
  contents: `Write and execute code that calculates the sum of the first 50 prime numbers.
            Ensure that only the executable code and its resulting output are generated.`,
});

// Each part may contain text, executable code, or an execution result.
for (const part of response.candidates[0].content.parts) {
  console.log(part);
  console.log("\n");
}

console.log("-".repeat(80));
// The `.text` accessor concatenates the parts into a markdown-formatted text.
console.log("\n", response.text);

جستجوی زمین

GoogleSearch (Gemini>=2.0) و GoogleSearchRetrieval (Gemini < 2.0) ابزارهایی هستند که به مدل اجازه می‌دهند تا داده‌های وب عمومی را برای اتصال به زمین، که توسط Google ارائه می‌شود، بازیابی کند.

قبل از

پایتون

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
    contents="what is the Google stock price?",
    tools='google_search_retrieval'
)

بعد از

پایتون

from google import genai
from google.genai import types

client = genai.Client()

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents='What is the Google stock price?',
    config=types.GenerateContentConfig(
        tools=[
            types.Tool(
                google_search=types.GoogleSearch()
            )
        ]
    )
)

پاسخ JSON

پاسخ ها را در قالب JSON ایجاد کنید.

قبل از

پایتون

با مشخص کردن یک response_schema و تنظیم response_mime_type="application/json" کاربران می توانند مدل را محدود کنند تا پاسخ JSON را به دنبال یک ساختار داده شده تولید کند.

import google.generativeai as genai
import typing_extensions as typing

class CountryInfo(typing.TypedDict):
    name: str
    population: int
    capital: str
    continent: str
    major_cities: list[str]
    gdp: int
    official_language: str
    total_area_sq_mi: int

model = genai.GenerativeModel(model_name="gemini-1.5-flash")
result = model.generate_content(
    "Give me information of the United States",
    generation_config=genai.GenerationConfig(
        response_mime_type="application/json",
        response_schema = CountryInfo
    ),
)

جاوا اسکریپت

import { GoogleGenerativeAI, SchemaType } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");

const schema = {
  description: "List of recipes",
  type: SchemaType.ARRAY,
  items: {
    type: SchemaType.OBJECT,
    properties: {
      recipeName: {
        type: SchemaType.STRING,
        description: "Name of the recipe",
        nullable: false,
      },
    },
    required: ["recipeName"],
  },
};

const model = genAI.getGenerativeModel({
  model: "gemini-1.5-pro",
  generationConfig: {
    responseMimeType: "application/json",
    responseSchema: schema,
  },
});

const result = await model.generateContent(
  "List a few popular cookie recipes.",
);
console.log(result.response.text());

بعد از

پایتون

SDK جدید از کلاس‌های pydantic برای ارائه طرحواره استفاده می‌کند (اگرچه می‌توانید یک genai.types.Schema یا dict معادل آن را ارسال کنید). در صورت امکان، SDK JSON برگشتی را تجزیه می کند و نتیجه را در response.parsed برمی گرداند. اگر یک کلاس pydantic را به عنوان طرحواره ارائه کرده باشید، SDK آن JSON به نمونه ای از کلاس تبدیل می کند.

from google import genai
from pydantic import BaseModel

client = genai.Client()

class CountryInfo(BaseModel):
    name: str
    population: int
    capital: str
    continent: str
    major_cities: list[str]
    gdp: int
    official_language: str
    total_area_sq_mi: int

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents='Give me information of the United States.',
    config={
        'response_mime_type': 'application/json',
        'response_schema': CountryInfo,
    },
)

response.parsed

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const response = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: "List a few popular cookie recipes.",
  config: {
    responseMimeType: "application/json",
    responseSchema: {
      type: "array",
      items: {
        type: "object",
        properties: {
          recipeName: { type: "string" },
          ingredients: { type: "array", items: { type: "string" } },
        },
        required: ["recipeName", "ingredients"],
      },
    },
  },
});
console.log(response.text);

فایل ها

آپلود کنید

آپلود فایل:

قبل از

پایتون

import requests
import pathlib
import google.generativeai as genai

# Download file
response = requests.get(
    'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)

file = genai.upload_file(path='a11.txt')

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content([
    'Can you summarize this file:',
    my_file
])
print(response.text)

بعد از

پایتون

import requests
import pathlib
from google import genai

client = genai.Client()

# Download file
response = requests.get(
    'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)

my_file = client.files.upload(file='a11.txt')

response = client.models.generate_content(
    model='gemini-2.0-flash',
    contents=[
        'Can you summarize this file:',
        my_file
    ]
)
print(response.text)

لیست کنید و دریافت کنید

فایل های آپلود شده را فهرست کنید و یک فایل آپلود شده با نام فایل دریافت کنید:

قبل از

پایتون

import google.generativeai as genai

for file in genai.list_files():
  print(file.name)

file = genai.get_file(name=file.name)

بعد از

پایتون

from google import genai
client = genai.Client()

for file in client.files.list():
    print(file.name)

file = client.files.get(name=file.name)

حذف کنید

حذف یک فایل:

قبل از

پایتون

import pathlib
import google.generativeai as genai

pathlib.Path('dummy.txt').write_text(dummy)
dummy_file = genai.upload_file(path='dummy.txt')

file = genai.delete_file(name=dummy_file.name)

بعد از

پایتون

import pathlib
from google import genai

client = genai.Client()

pathlib.Path('dummy.txt').write_text(dummy)
dummy_file = client.files.upload(file='dummy.txt')

response = client.files.delete(name=dummy_file.name)

ذخیره سازی متن

ذخیره سازی متن به کاربر امکان می دهد یک بار محتوا را به مدل منتقل کند، نشانه های ورودی را در حافظه پنهان نگه دارد و سپس در تماس های بعدی به نشانه های کش شده مراجعه کند تا هزینه را کاهش دهد.

قبل از

پایتون

import requests
import pathlib
import google.generativeai as genai
from google.generativeai import caching

# Download file
response = requests.get(
    'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)

# Upload file
document = genai.upload_file(path="a11.txt")

# Create cache
apollo_cache = caching.CachedContent.create(
    model="gemini-1.5-flash-001",
    system_instruction="You are an expert at analyzing transcripts.",
    contents=[document],
)

# Generate response
apollo_model = genai.GenerativeModel.from_cached_content(
    cached_content=apollo_cache
)
response = apollo_model.generate_content("Find a lighthearted moment from this transcript")

جاوا اسکریپت

import { GoogleAICacheManager, GoogleAIFileManager } from "@google/generative-ai/server";
import { GoogleGenerativeAI } from "@google/generative-ai";

const cacheManager = new GoogleAICacheManager("GOOGLE_API_KEY");
const fileManager = new GoogleAIFileManager("GOOGLE_API_KEY");

const uploadResult = await fileManager.uploadFile("path/to/a11.txt", {
  mimeType: "text/plain",
});

const cacheResult = await cacheManager.create({
  model: "models/gemini-1.5-flash",
  contents: [
    {
      role: "user",
      parts: [
        {
          fileData: {
            fileUri: uploadResult.file.uri,
            mimeType: uploadResult.file.mimeType,
          },
        },
      ],
    },
  ],
});

console.log(cacheResult);

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModelFromCachedContent(cacheResult);
const result = await model.generateContent(
  "Please summarize this transcript.",
);
console.log(result.response.text());

بعد از

پایتون

import requests
import pathlib
from google import genai
from google.genai import types

client = genai.Client()

# Check which models support caching.
for m in client.models.list():
  for action in m.supported_actions:
    if action == "createCachedContent":
      print(m.name)
      break

# Download file
response = requests.get(
    'https://storage.googleapis.com/generativeai-downloads/data/a11.txt')
pathlib.Path('a11.txt').write_text(response.text)

# Upload file
document = client.files.upload(file='a11.txt')

# Create cache
model='gemini-1.5-flash-001'
apollo_cache = client.caches.create(
      model=model,
      config={
          'contents': [document],
          'system_instruction': 'You are an expert at analyzing transcripts.',
      },
  )

# Generate response
response = client.models.generate_content(
    model=model,
    contents='Find a lighthearted moment from this transcript',
    config=types.GenerateContentConfig(
        cached_content=apollo_cache.name,
    )
)

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const filePath = path.join(media, "a11.txt");
const document = await ai.files.upload({
  file: filePath,
  config: { mimeType: "text/plain" },
});
console.log("Uploaded file name:", document.name);
const modelName = "gemini-1.5-flash";

const contents = [
  createUserContent(createPartFromUri(document.uri, document.mimeType)),
];

const cache = await ai.caches.create({
  model: modelName,
  config: {
    contents: contents,
    systemInstruction: "You are an expert analyzing transcripts.",
  },
});
console.log("Cache created:", cache);

const response = await ai.models.generateContent({
  model: modelName,
  contents: "Please summarize this transcript",
  config: { cachedContent: cache.name },
});
console.log("Response text:", response.text);

توکن ها را بشمار

تعداد توکن های یک درخواست را بشمارید.

قبل از

پایتون

import google.generativeai as genai

model = genai.GenerativeModel('gemini-1.5-flash')
response = model.count_tokens(
    'The quick brown fox jumps over the lazy dog.')

جاوا اسکریپت

 import { GoogleGenerativeAI } from "@google/generative-ai";

 const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY+);
 const model = genAI.getGenerativeModel({
   model: "gemini-1.5-flash",
 });

 // Count tokens in a prompt without calling text generation.
 const countResult = await model.countTokens(
   "The quick brown fox jumps over the lazy dog.",
 );

 console.log(countResult.totalTokens); // 11

 const generateResult = await model.generateContent(
   "The quick brown fox jumps over the lazy dog.",
 );

 // On the response for `generateContent`, use `usageMetadata`
 // to get separate input and output token counts
 // (`promptTokenCount` and `candidatesTokenCount`, respectively),
 // as well as the combined token count (`totalTokenCount`).
 console.log(generateResult.response.usageMetadata);
 // candidatesTokenCount and totalTokenCount depend on response, may vary
 // { promptTokenCount: 11, candidatesTokenCount: 124, totalTokenCount: 135 }

بعد از

پایتون

from google import genai

client = genai.Client()

response = client.models.count_tokens(
    model='gemini-2.0-flash',
    contents='The quick brown fox jumps over the lazy dog.',
)

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const prompt = "The quick brown fox jumps over the lazy dog.";
const countTokensResponse = await ai.models.countTokens({
  model: "gemini-2.0-flash",
  contents: prompt,
});
console.log(countTokensResponse.totalTokens);

const generateResponse = await ai.models.generateContent({
  model: "gemini-2.0-flash",
  contents: prompt,
});
console.log(generateResponse.usageMetadata);

تولید تصاویر

تولید تصاویر:

قبل از

پایتون

#pip install https://github.com/google-gemini/generative-ai-python@imagen
import google.generativeai as genai

imagen = genai.ImageGenerationModel(
    "imagen-3.0-generate-001")
gen_images = imagen.generate_images(
    prompt="Robot holding a red skateboard",
    number_of_images=1,
    safety_filter_level="block_low_and_above",
    person_generation="allow_adult",
    aspect_ratio="3:4",
)

بعد از

پایتون

from google import genai

client = genai.Client()

gen_images = client.models.generate_images(
    model='imagen-3.0-generate-001',
    prompt='Robot holding a red skateboard',
    config=types.GenerateImagesConfig(
        number_of_images= 1,
        safety_filter_level= "BLOCK_LOW_AND_ABOVE",
        person_generation= "ALLOW_ADULT",
        aspect_ratio= "3:4",
    )
)

for n, image in enumerate(gen_images.generated_images):
    pathlib.Path(f'{n}.png').write_bytes(
        image.image.image_bytes)

جاسازی محتوا

جاسازی محتوا را ایجاد کنید.

قبل از

پایتون

import google.generativeai as genai

response = genai.embed_content(
  model='models/gemini-embedding-001',
  content='Hello world'
)

جاوا اسکریپت

import { GoogleGenerativeAI } from "@google/generative-ai";

const genAI = new GoogleGenerativeAI("GOOGLE_API_KEY");
const model = genAI.getGenerativeModel({
  model: "gemini-embedding-001",
});

const result = await model.embedContent("Hello world!");

console.log(result.embedding);

بعد از

پایتون

from google import genai

client = genai.Client()

response = client.models.embed_content(
  model='gemini-embedding-001',
  contents='Hello world',
)

جاوا اسکریپت

import {GoogleGenAI} from '@google/genai';

const ai = new GoogleGenAI({ apiKey: "GOOGLE_API_KEY" });
const text = "Hello World!";
const result = await ai.models.embedContent({
  model: "gemini-embedding-001",
  contents: text,
  config: { outputDimensionality: 10 },
});
console.log(result.embeddings);

یک مدل را تنظیم کنید

یک مدل تنظیم شده ایجاد و استفاده کنید.

SDK جدید تنظیم را با client.tunings.tune ساده می‌کند، که کار تنظیم را راه‌اندازی می‌کند و تا پایان کار نظرسنجی می‌کند.

قبل از

پایتون

import google.generativeai as genai
import random

# create tuning model
train_data = {}
for i in range(1, 6):
  key = f'input {i}'
  value = f'output {i}'
  train_data[key] = value

name = f'generate-num-{random.randint(0,10000)}'
operation = genai.create_tuned_model(
    source_model='models/gemini-1.5-flash-001-tuning',
    training_data=train_data,
    id = name,
    epoch_count = 5,
    batch_size=4,
    learning_rate=0.001,
)
# wait for tuning complete
tuningProgress = operation.result()

# generate content with the tuned model
model = genai.GenerativeModel(model_name=f'tunedModels/{name}')
response = model.generate_content('55')

بعد از

پایتون

from google import genai
from google.genai import types

client = genai.Client()

# Check which models are available for tuning.
for m in client.models.list():
  for action in m.supported_actions:
    if action == "createTunedModel":
      print(m.name)
      break

# create tuning model
training_dataset=types.TuningDataset(
        examples=[
            types.TuningExample(
                text_input=f'input {i}',
                output=f'output {i}',
            )
            for i in range(5)
        ],
    )
tuning_job = client.tunings.tune(
    base_model='models/gemini-1.5-flash-001-tuning',
    training_dataset=training_dataset,
    config=types.CreateTuningJobConfig(
        epoch_count= 5,
        batch_size=4,
        learning_rate=0.001,
        tuned_model_display_name="test tuned model"
    )
)

# generate content with the tuned model
response = client.models.generate_content(
    model=tuning_job.tuned_model.model,
    contents='55',
)