מודלי Gemini מתוכננים להיות מולטימודאליים מההתחלה, ולכן הם יכולים לבצע מגוון רחב של משימות עיבוד תמונות וראייה ממוחשבת, כולל, בין היתר, כתיבת כתוביות לתמונות, סיווג תמונות ומענה לשאלות על תמונות, בלי צורך לאמן מודלים מיוחדים של ML.
העברת תמונות ל-Gemini
יש שתי דרכים לספק תמונות כקלט ל-Gemini:
- העברת נתוני תמונה מוטבעים: מתאים לקבצים קטנים יותר (גודל הבקשה הכולל קטן מ-20MB, כולל הנחיות).
- העלאת תמונות באמצעות File API: מומלץ לקבצים גדולים יותר או לשימוש חוזר בתמונות בכמה בקשות.
העברת נתוני תמונות מוטבעות
אפשר להעביר נתוני תמונות מוטבעות בבקשה אל generateContent
. אפשר לספק נתוני תמונה כמחרוזות מקודדות ב-Base64 או על ידי קריאה ישירה של קבצים מקומיים (בהתאם לשפה).
בדוגמה הבאה מוצג איך לקרוא תמונה מקובץ מקומי ולהעביר אותה אל generateContent
API לעיבוד.
Python
from google.genai import types
with open('path/to/small-sample.jpg', 'rb') as f:
image_bytes = f.read()
response = client.models.generate_content(
model='gemini-2.5-flash',
contents=[
types.Part.from_bytes(
data=image_bytes,
mime_type='image/jpeg',
),
'Caption this image.'
]
)
print(response.text)
JavaScript
import { GoogleGenAI } from "@google/genai";
import * as fs from "node:fs";
const ai = new GoogleGenAI({});
const base64ImageFile = fs.readFileSync("path/to/small-sample.jpg", {
encoding: "base64",
});
const contents = [
{
inlineData: {
mimeType: "image/jpeg",
data: base64ImageFile,
},
},
{ text: "Caption this image." },
];
const response = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: contents,
});
console.log(response.text);
Go
bytes, _ := os.ReadFile("path/to/small-sample.jpg")
parts := []*genai.Part{
genai.NewPartFromBytes(bytes, "image/jpeg"),
genai.NewPartFromText("Caption this image."),
}
contents := []*genai.Content{
genai.NewContentFromParts(parts, genai.RoleUser),
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
contents,
nil,
)
fmt.Println(result.Text())
REST
IMG_PATH="/path/to/your/image1.jpg"
if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
B64FLAGS="--input"
else
B64FLAGS="-w0"
fi
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{
"inline_data": {
"mime_type":"image/jpeg",
"data": "'"$(base64 $B64FLAGS $IMG_PATH)"'"
}
},
{"text": "Caption this image."},
]
}]
}' 2> /dev/null
אפשר גם לאחזר תמונה מכתובת URL, להמיר אותה לבייטים ולהעביר אותה אל generateContent
, כמו בדוגמאות הבאות.
Python
from google import genai
from google.genai import types
import requests
image_path = "https://goo.gle/instrument-img"
image_bytes = requests.get(image_path).content
image = types.Part.from_bytes(
data=image_bytes, mime_type="image/jpeg"
)
client = genai.Client()
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=["What is this image?", image],
)
print(response.text)
JavaScript
import { GoogleGenAI } from "@google/genai";
async function main() {
const ai = new GoogleGenAI({});
const imageUrl = "https://goo.gle/instrument-img";
const response = await fetch(imageUrl);
const imageArrayBuffer = await response.arrayBuffer();
const base64ImageData = Buffer.from(imageArrayBuffer).toString('base64');
const result = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: [
{
inlineData: {
mimeType: 'image/jpeg',
data: base64ImageData,
},
},
{ text: "Caption this image." }
],
});
console.log(result.text);
}
main();
Go
package main
import (
"context"
"fmt"
"os"
"io"
"net/http"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
// Download the image.
imageResp, _ := http.Get("https://goo.gle/instrument-img")
imageBytes, _ := io.ReadAll(imageResp.Body)
parts := []*genai.Part{
genai.NewPartFromBytes(imageBytes, "image/jpeg"),
genai.NewPartFromText("Caption this image."),
}
contents := []*genai.Content{
genai.NewContentFromParts(parts, genai.RoleUser),
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
contents,
nil,
)
fmt.Println(result.Text())
}
REST
IMG_URL="https://goo.gle/instrument-img"
MIME_TYPE=$(curl -sIL "$IMG_URL" | grep -i '^content-type:' | awk -F ': ' '{print $2}' | sed 's/\r$//' | head -n 1)
if [[ -z "$MIME_TYPE" || ! "$MIME_TYPE" == image/* ]]; then
MIME_TYPE="image/jpeg"
fi
# Check for macOS
if [[ "$(uname)" == "Darwin" ]]; then
IMAGE_B64=$(curl -sL "$IMG_URL" | base64 -b 0)
elif [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
IMAGE_B64=$(curl -sL "$IMG_URL" | base64)
else
IMAGE_B64=$(curl -sL "$IMG_URL" | base64 -w0)
fi
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{
"inline_data": {
"mime_type":"'"$MIME_TYPE"'",
"data": "'"$IMAGE_B64"'"
}
},
{"text": "Caption this image."}
]
}]
}' 2> /dev/null
העלאת תמונות באמצעות File API
כדי להשתמש בקובץ תמונה גדול או כדי להשתמש באותו קובץ תמונה שוב ושוב, צריך להשתמש ב-Files API. הקוד הבא מעלה קובץ תמונה ואז משתמש בקובץ בקריאה ל-generateContent
. מידע נוסף ודוגמאות זמינים במדריך לשימוש ב-Files API.
Python
from google import genai
client = genai.Client()
my_file = client.files.upload(file="path/to/sample.jpg")
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[my_file, "Caption this image."],
)
print(response.text)
JavaScript
import {
GoogleGenAI,
createUserContent,
createPartFromUri,
} from "@google/genai";
const ai = new GoogleGenAI({});
async function main() {
const myfile = await ai.files.upload({
file: "path/to/sample.jpg",
config: { mimeType: "image/jpeg" },
});
const response = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: createUserContent([
createPartFromUri(myfile.uri, myfile.mimeType),
"Caption this image.",
]),
});
console.log(response.text);
}
await main();
Go
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
uploadedFile, _ := client.Files.UploadFromPath(ctx, "path/to/sample.jpg", nil)
parts := []*genai.Part{
genai.NewPartFromText("Caption this image."),
genai.NewPartFromURI(uploadedFile.URI, uploadedFile.MIMEType),
}
contents := []*genai.Content{
genai.NewContentFromParts(parts, genai.RoleUser),
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
contents,
nil,
)
fmt.Println(result.Text())
}
REST
IMAGE_PATH="path/to/sample.jpg"
MIME_TYPE=$(file -b --mime-type "${IMAGE_PATH}")
NUM_BYTES=$(wc -c < "${IMAGE_PATH}")
DISPLAY_NAME=IMAGE
tmp_header_file=upload-header.tmp
# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "https://generativelanguage.googleapis.com/upload/v1beta/files" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-D upload-header.tmp \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null
upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
# Upload the actual bytes.
curl "${upload_url}" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${IMAGE_PATH}" 2> /dev/null > file_info.json
file_uri=$(jq -r ".file.uri" file_info.json)
echo file_uri=$file_uri
# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"file_data":{"mime_type": "'"${MIME_TYPE}"'", "file_uri": "'"${file_uri}"'"}},
{"text": "Caption this image."}]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
יצירת הנחיות עם כמה תמונות
אפשר לספק כמה תמונות בהנחיה אחת על ידי הוספה של כמה אובייקטים של תמונות
Part
למערך contents
. יכול להיות שיהיו בהם נתונים מוטבעים (קבצים מקומיים או כתובות URL) והפניות ל-File API.
Python
from google import genai
from google.genai import types
client = genai.Client()
# Upload the first image
image1_path = "path/to/image1.jpg"
uploaded_file = client.files.upload(file=image1_path)
# Prepare the second image as inline data
image2_path = "path/to/image2.png"
with open(image2_path, 'rb') as f:
img2_bytes = f.read()
# Create the prompt with text and multiple images
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[
"What is different between these two images?",
uploaded_file, # Use the uploaded file reference
types.Part.from_bytes(
data=img2_bytes,
mime_type='image/png'
)
]
)
print(response.text)
JavaScript
import {
GoogleGenAI,
createUserContent,
createPartFromUri,
} from "@google/genai";
import * as fs from "node:fs";
const ai = new GoogleGenAI({});
async function main() {
// Upload the first image
const image1_path = "path/to/image1.jpg";
const uploadedFile = await ai.files.upload({
file: image1_path,
config: { mimeType: "image/jpeg" },
});
// Prepare the second image as inline data
const image2_path = "path/to/image2.png";
const base64Image2File = fs.readFileSync(image2_path, {
encoding: "base64",
});
// Create the prompt with text and multiple images
const response = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: createUserContent([
"What is different between these two images?",
createPartFromUri(uploadedFile.uri, uploadedFile.mimeType),
{
inlineData: {
mimeType: "image/png",
data: base64Image2File,
},
},
]),
});
console.log(response.text);
}
await main();
Go
// Upload the first image
image1Path := "path/to/image1.jpg"
uploadedFile, _ := client.Files.UploadFromPath(ctx, image1Path, nil)
// Prepare the second image as inline data
image2Path := "path/to/image2.jpeg"
imgBytes, _ := os.ReadFile(image2Path)
parts := []*genai.Part{
genai.NewPartFromText("What is different between these two images?"),
genai.NewPartFromBytes(imgBytes, "image/jpeg"),
genai.NewPartFromURI(uploadedFile.URI, uploadedFile.MIMEType),
}
contents := []*genai.Content{
genai.NewContentFromParts(parts, genai.RoleUser),
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
contents,
nil,
)
fmt.Println(result.Text())
REST
# Upload the first image
IMAGE1_PATH="path/to/image1.jpg"
MIME1_TYPE=$(file -b --mime-type "${IMAGE1_PATH}")
NUM1_BYTES=$(wc -c < "${IMAGE1_PATH}")
DISPLAY_NAME1=IMAGE1
tmp_header_file1=upload-header1.tmp
curl "https://generativelanguage.googleapis.com/upload/v1beta/files" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-D upload-header1.tmp \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM1_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: ${MIME1_TYPE}" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${DISPLAY_NAME1}'}}" 2> /dev/null
upload_url1=$(grep -i "x-goog-upload-url: " "${tmp_header_file1}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file1}"
curl "${upload_url1}" \
-H "Content-Length: ${NUM1_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${IMAGE1_PATH}" 2> /dev/null > file_info1.json
file1_uri=$(jq ".file.uri" file_info1.json)
echo file1_uri=$file1_uri
# Prepare the second image (inline)
IMAGE2_PATH="path/to/image2.png"
MIME2_TYPE=$(file -b --mime-type "${IMAGE2_PATH}")
if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
B64FLAGS="--input"
else
B64FLAGS="-w0"
fi
IMAGE2_BASE64=$(base64 $B64FLAGS $IMAGE2_PATH)
# Now generate content using both images
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" \
-H "x-goog-api-key: $GEMINI_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"text": "What is different between these two images?"},
{"file_data":{"mime_type": "'"${MIME1_TYPE}"'", "file_uri": '$file1_uri'}},
{
"inline_data": {
"mime_type":"'"${MIME2_TYPE}"'",
"data": "'"$IMAGE2_BASE64"'"
}
}
]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
זיהוי אובייקטים
החל מ-Gemini 2.0, המודלים עוברים אימון נוסף כדי לזהות אובייקטים בתמונה ולקבל את קואורדינטות התיבה התוחמת שלהם. הקואורדינטות, ביחס לממדי התמונה, מותאמות לטווח [0, 1000]. צריך לשנות את קנה המידה של הקואורדינטות האלה בהתאם לגודל התמונה המקורית.
Python
from google import genai
from google.genai import types
from PIL import Image
import json
client = genai.Client()
prompt = "Detect the all of the prominent items in the image. The box_2d should be [ymin, xmin, ymax, xmax] normalized to 0-1000."
image = Image.open("/path/to/image.png")
config = types.GenerateContentConfig(
response_mime_type="application/json"
)
response = client.models.generate_content(model="gemini-2.5-flash",
contents=[image, prompt],
config=config
)
width, height = image.size
bounding_boxes = json.loads(response.text)
converted_bounding_boxes = []
for bounding_box in bounding_boxes:
abs_y1 = int(bounding_box["box_2d"][0]/1000 * height)
abs_x1 = int(bounding_box["box_2d"][1]/1000 * width)
abs_y2 = int(bounding_box["box_2d"][2]/1000 * height)
abs_x2 = int(bounding_box["box_2d"][3]/1000 * width)
converted_bounding_boxes.append([abs_x1, abs_y1, abs_x2, abs_y2])
print("Image size: ", width, height)
print("Bounding boxes:", converted_bounding_boxes)
דוגמאות נוספות אפשר למצוא בקובצי ה-notebook הבאים ב-Gemini Cookbook:
פילוח
החל מ-Gemini 2.5, המודלים לא רק מזהים פריטים אלא גם מבצעים פילוח שלהם ומספקים את מסכות המתאר שלהם.
המודל חוזה רשימת JSON, שבה כל פריט מייצג מסכת פילוח.
לכל פריט יש תיבת תוחמת (bounding box) ("box_2d
") בפורמט [y0, x0, y1, x1]
עם קואורדינטות מנורמלות בין 0 ל-1,000, תווית ("label
") שמזהה את האובייקט, ולבסוף מסכת הפילוח בתוך התיבה התוחמת, כקובץ PNG עם קידוד base64 שהוא מפת הסתברות עם ערכים בין 0 ל-255.
צריך לשנות את הגודל של המסכה כך שיתאים למידות של תיבת התוחמת, ואז להפוך אותה לבינארית לפי סף מהימנות (127 לנקודת האמצע).
Python
from google import genai
from google.genai import types
from PIL import Image, ImageDraw
import io
import base64
import json
import numpy as np
import os
client = genai.Client()
def parse_json(json_output: str):
# Parsing out the markdown fencing
lines = json_output.splitlines()
for i, line in enumerate(lines):
if line == "```json":
json_output = "\n".join(lines[i+1:]) # Remove everything before "```json"
output = json_output.split("```")[0] # Remove everything after the closing "```"
break # Exit the loop once "```json" is found
return json_output
def extract_segmentation_masks(image_path: str, output_dir: str = "segmentation_outputs"):
# Load and resize image
im = Image.open(image_path)
im.thumbnail([1024, 1024], Image.Resampling.LANCZOS)
prompt = """
Give the segmentation masks for the wooden and glass items.
Output a JSON list of segmentation masks where each entry contains the 2D
bounding box in the key "box_2d", the segmentation mask in key "mask", and
the text label in the key "label". Use descriptive labels.
"""
config = types.GenerateContentConfig(
thinking_config=types.ThinkingConfig(thinking_budget=0) # set thinking_budget to 0 for better results in object detection
)
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[prompt, im], # Pillow images can be directly passed as inputs (which will be converted by the SDK)
config=config
)
# Parse JSON response
items = json.loads(parse_json(response.text))
# Create output directory
os.makedirs(output_dir, exist_ok=True)
# Process each mask
for i, item in enumerate(items):
# Get bounding box coordinates
box = item["box_2d"]
y0 = int(box[0] / 1000 * im.size[1])
x0 = int(box[1] / 1000 * im.size[0])
y1 = int(box[2] / 1000 * im.size[1])
x1 = int(box[3] / 1000 * im.size[0])
# Skip invalid boxes
if y0 >= y1 or x0 >= x1:
continue
# Process mask
png_str = item["mask"]
if not png_str.startswith("data:image/png;base64,"):
continue
# Remove prefix
png_str = png_str.removeprefix("data:image/png;base64,")
mask_data = base64.b64decode(png_str)
mask = Image.open(io.BytesIO(mask_data))
# Resize mask to match bounding box
mask = mask.resize((x1 - x0, y1 - y0), Image.Resampling.BILINEAR)
# Convert mask to numpy array for processing
mask_array = np.array(mask)
# Create overlay for this mask
overlay = Image.new('RGBA', im.size, (0, 0, 0, 0))
overlay_draw = ImageDraw.Draw(overlay)
# Create overlay for the mask
color = (255, 255, 255, 200)
for y in range(y0, y1):
for x in range(x0, x1):
if mask_array[y - y0, x - x0] > 128: # Threshold for mask
overlay_draw.point((x, y), fill=color)
# Save individual mask and its overlay
mask_filename = f"{item['label']}_{i}_mask.png"
overlay_filename = f"{item['label']}_{i}_overlay.png"
mask.save(os.path.join(output_dir, mask_filename))
# Create and save overlay
composite = Image.alpha_composite(im.convert('RGBA'), overlay)
composite.save(os.path.join(output_dir, overlay_filename))
print(f"Saved mask and overlay for {item['label']} to {output_dir}")
# Example usage
if __name__ == "__main__":
extract_segmentation_masks("path/to/image.png")
דוגמה מפורטת יותר זמינה במדריך לשימוש ב-Cookbook.
אילו פורמטים של תמונות נתמכים?
Gemini תומך בסוגי ה-MIME הבאים של פורמטים של תמונות:
- PNG –
image/png
- JPEG –
image/jpeg
- WEBP –
image/webp
- HEIC –
image/heic
- HEIF -
image/heif
יכולות
כל הגרסאות של מודלי Gemini הן מולטימודאליות, ואפשר להשתמש בהן במגוון רחב של משימות עיבוד תמונות וראייה ממוחשבת, כולל, בין היתר, כיתוב תמונות, מענה על שאלות שקשורות לאובייקטים חזותיים, סיווג תמונות, זיהוי ופילוח אובייקטים.
Gemini יכול לצמצם את הצורך בשימוש במודלים מיוחדים של למידת מכונה, בהתאם לדרישות האיכות והביצועים שלכם.
חלק מהגרסאות המאוחרות יותר של המודל אומנו במיוחד כדי לשפר את הדיוק של משימות מיוחדות, בנוסף ליכולות כלליות:
מודלים של Gemini 2.0 עוברים אימון נוסף כדי לתמוך בזיהוי אובייקטים משופר.
מודלים של Gemini 2.5 עוברים אימון נוסף כדי לתמוך בפילוח משופר בנוסף לזיהוי אובייקטים.
מגבלות ומידע טכני חשוב
מגבלת קבצים
מודלים Gemini 2.5 Pro/Flash, 2.0 Flash, 1.5 Pro ו-1.5 Flash תומכים במקסימום של 3,600 קבצי תמונה לכל בקשה.
חישוב טוקנים
- Gemini 1.5 Flash ו-Gemini 1.5 Pro: 258 אסימונים אם שני הממדים <= 384 פיקסלים. תמונות גדולות יותר מוצגות כפסיפס (מינימום משבצת 256px, מקסימום 768px, שינוי גודל ל-768x768), וכל משבצת עולה 258 טוקנים.
- Gemini 2.0 Flash ו-Gemini 2.5 Flash/Pro: 258 טוקנים אם שני הממדים הם 384 pixels או פחות. תמונות גדולות יותר מחולקות למשבצות של 768x768 פיקסלים, וכל משבצת עולה 258 טוקנים.
טיפים ושיטות מומלצות
- מוודאים שהתמונות מסובבות בצורה נכונה.
- חשוב להשתמש בתמונות ברורות ולא מטושטשות.
- כשמשתמשים בתמונה אחת עם טקסט, צריך למקם את הנחיית הטקסט אחרי החלק של התמונה במערך
contents
.
המאמרים הבאים
במדריך הזה מוסבר איך להעלות קובצי תמונות וליצור פלט טקסט מקלט של תמונות. מידע נוסף זמין במשאבים הבאים:
- Files API: מידע נוסף על העלאה וניהול של קבצים לשימוש עם Gemini
- הוראות למערכת: הוראות למערכת מאפשרות לכם לכוון את התנהגות המודל בהתאם לצרכים הספציפיים ולתרחישי השימוש שלכם.
- אסטרטגיות להנחיות עם קבצים: Gemini API תומך בהנחיות עם נתוני טקסט, תמונה, אודיו ווידאו, שנקראות גם הנחיות מולטימודאליות.
- הנחיות בנושא בטיחות: לפעמים מודלים של AI גנרטיבי יוצרים תוצאות לא צפויות, כמו תוצאות לא מדויקות, מוטות או פוגעניות. עיבוד תמונה (Post Processing) והערכה אנושית חיוניים כדי לצמצם את הסיכון לנזק שעלול להיגרם מהתוצאות האלה.