Gemini modelleri, doküman bağlamlarının tamamını anlamak için yerel görsel işleme özelliğini kullanarak PDF biçimindeki dokümanları işleyebilir. Bu özellik, basit metin ayıklamanın ötesine geçerek Gemini'ın aşağıdaki işlemleri yapmasına olanak tanır:
- Metin, resim, diyagram, grafik ve tablo gibi içerikleri 1.000 sayfaya kadar olan uzun dokümanlarda bile analiz edip yorumlayın.
- Bilgileri yapılandırılmış çıkış biçimlerinde ayıklayın.
- Bir dokümandaki hem görsel hem de metin öğelerine dayalı olarak özetleme ve soruları yanıtlama
- Aşağı akış uygulamalarında kullanılmak üzere, düzenleri ve biçimlendirmeyi koruyarak doküman içeriğini (ör. HTML'ye) transkribe edin.
Satır içi PDF verilerini iletme
İsteğe satır içi PDF verileri iletebilirsiniz generateContent
.
20 MB'tan küçük PDF yükleri için base64 kodlu dokümanları yükleme veya yerel olarak depolanan dosyaları doğrudan yükleme arasında seçim yapabilirsiniz.
Aşağıdaki örnekte, bir URL'den PDF'yi nasıl getireceğiniz ve işleme için baytlara nasıl dönüştüreceğiniz gösterilmektedir:
Python
from google import genai
from google.genai import types
import httpx
client = genai.Client()
doc_url = "https://discovery.ucl.ac.uk/id/eprint/10089234/1/343019_3_art_0_py4t4l_convrt.pdf"
# Retrieve and encode the PDF byte
doc_data = httpx.get(doc_url).content
prompt = "Summarize this document"
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[
types.Part.from_bytes(
data=doc_data,
mime_type='application/pdf',
),
prompt])
print(response.text)
JavaScript
import { GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const pdfResp = await fetch('https://discovery.ucl.ac.uk/id/eprint/10089234/1/343019_3_art_0_py4t4l_convrt.pdf')
.then((response) => response.arrayBuffer());
const contents = [
{ text: "Summarize this document" },
{
inlineData: {
mimeType: 'application/pdf',
data: Buffer.from(pdfResp).toString("base64")
}
}
];
const response = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: contents
});
console.log(response.text);
}
main();
Go
package main
import (
"context"
"fmt"
"io"
"net/http"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, _ := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
pdfResp, _ := http.Get("https://discovery.ucl.ac.uk/id/eprint/10089234/1/343019_3_art_0_py4t4l_convrt.pdf")
var pdfBytes []byte
if pdfResp != nil && pdfResp.Body != nil {
pdfBytes, _ = io.ReadAll(pdfResp.Body)
pdfResp.Body.Close()
}
parts := []*genai.Part{
&genai.Part{
InlineData: &genai.Blob{
MIMEType: "application/pdf",
Data: pdfBytes,
},
},
genai.NewPartFromText("Summarize this document"),
}
contents := []*genai.Content{
genai.NewContentFromParts(parts, genai.RoleUser),
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
contents,
nil,
)
fmt.Println(result.Text())
}
REST
DOC_URL="https://discovery.ucl.ac.uk/id/eprint/10089234/1/343019_3_art_0_py4t4l_convrt.pdf"
PROMPT="Summarize this document"
DISPLAY_NAME="base64_pdf"
# Download the PDF
wget -O "${DISPLAY_NAME}.pdf" "${DOC_URL}"
# Check for FreeBSD base64 and set flags accordingly
if [[ "$(base64 --version 2>&1)" = *"FreeBSD"* ]]; then
B64FLAGS="--input"
else
B64FLAGS="-w0"
fi
# Base64 encode the PDF
ENCODED_PDF=$(base64 $B64FLAGS "${DISPLAY_NAME}.pdf")
# Generate content using the base64 encoded PDF
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"inline_data": {"mime_type": "application/pdf", "data": "'"$ENCODED_PDF"'"}},
{"text": "'$PROMPT'"}
]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
# Clean up the downloaded PDF
rm "${DISPLAY_NAME}.pdf"
İşleme için yerel bir dosyadan PDF de okuyabilirsiniz:
Python
from google import genai
from google.genai import types
import pathlib
client = genai.Client()
# Retrieve and encode the PDF byte
filepath = pathlib.Path('file.pdf')
prompt = "Summarize this document"
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[
types.Part.from_bytes(
data=filepath.read_bytes(),
mime_type='application/pdf',
),
prompt])
print(response.text)
JavaScript
import { GoogleGenAI } from "@google/genai";
import * as fs from 'fs';
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const contents = [
{ text: "Summarize this document" },
{
inlineData: {
mimeType: 'application/pdf',
data: Buffer.from(fs.readFileSync("content/343019_3_art_0_py4t4l_convrt.pdf")).toString("base64")
}
}
];
const response = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: contents
});
console.log(response.text);
}
main();
Go
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, _ := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
pdfBytes, _ := os.ReadFile("path/to/your/file.pdf")
parts := []*genai.Part{
&genai.Part{
InlineData: &genai.Blob{
MIMEType: "application/pdf",
Data: pdfBytes,
},
},
genai.NewPartFromText("Summarize this document"),
}
contents := []*genai.Content{
genai.NewContentFromParts(parts, genai.RoleUser),
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
contents,
nil,
)
fmt.Println(result.Text())
}
File API'yi kullanarak PDF yükleme
Daha büyük dokümanları yüklemek için File API'yi kullanabilirsiniz. Toplam istek boyutu (dosyalar, metin istemi, sistem talimatları vb. dahil) 20 MB'tan büyük olduğunda her zaman File API'yi kullanın.
Dosya API'sini kullanarak dosya yüklemek için media.upload
işlevini çağırın. Aşağıdaki kod, bir doküman dosyasını yükler ve ardından dosyayı models.generateContent
çağrısında kullanır.
URL'lerden alınan büyük PDF'ler
URL'lerden büyük PDF dosyalarını yükleme ve işleme sürecini basitleştirmek için File API'yi kullanın:
Python
from google import genai
from google.genai import types
import io
import httpx
client = genai.Client()
long_context_pdf_path = "https://www.nasa.gov/wp-content/uploads/static/history/alsj/a17/A17_FlightPlan.pdf"
# Retrieve and upload the PDF using the File API
doc_io = io.BytesIO(httpx.get(long_context_pdf_path).content)
sample_doc = client.files.upload(
# You can pass a path or a file-like object here
file=doc_io,
config=dict(
mime_type='application/pdf')
)
prompt = "Summarize this document"
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[sample_doc, prompt])
print(response.text)
JavaScript
import { createPartFromUri, GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const pdfBuffer = await fetch("https://www.nasa.gov/wp-content/uploads/static/history/alsj/a17/A17_FlightPlan.pdf")
.then((response) => response.arrayBuffer());
const fileBlob = new Blob([pdfBuffer], { type: 'application/pdf' });
const file = await ai.files.upload({
file: fileBlob,
config: {
displayName: 'A17_FlightPlan.pdf',
},
});
// Wait for the file to be processed.
let getFile = await ai.files.get({ name: file.name });
while (getFile.state === 'PROCESSING') {
getFile = await ai.files.get({ name: file.name });
console.log(`current file status: ${getFile.state}`);
console.log('File is still processing, retrying in 5 seconds');
await new Promise((resolve) => {
setTimeout(resolve, 5000);
});
}
if (file.state === 'FAILED') {
throw new Error('File processing failed.');
}
// Add the file to the contents.
const content = [
'Summarize this document',
];
if (file.uri && file.mimeType) {
const fileContent = createPartFromUri(file.uri, file.mimeType);
content.push(fileContent);
}
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: content,
});
console.log(response.text);
}
main();
Go
package main
import (
"context"
"fmt"
"io"
"net/http"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, _ := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
pdfURL := "https://www.nasa.gov/wp-content/uploads/static/history/alsj/a17/A17_FlightPlan.pdf"
localPdfPath := "A17_FlightPlan_downloaded.pdf"
respHttp, _ := http.Get(pdfURL)
defer respHttp.Body.Close()
outFile, _ := os.Create(localPdfPath)
defer outFile.Close()
_, _ = io.Copy(outFile, respHttp.Body)
uploadConfig := &genai.UploadFileConfig{MIMEType: "application/pdf"}
uploadedFile, _ := client.Files.UploadFromPath(ctx, localPdfPath, uploadConfig)
promptParts := []*genai.Part{
genai.NewPartFromURI(uploadedFile.URI, uploadedFile.MIMEType),
genai.NewPartFromText("Summarize this document"),
}
contents := []*genai.Content{
genai.NewContentFromParts(promptParts, genai.RoleUser), // Specify role
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
contents,
nil,
)
fmt.Println(result.Text())
}
REST
PDF_PATH="https://www.nasa.gov/wp-content/uploads/static/history/alsj/a17/A17_FlightPlan.pdf"
DISPLAY_NAME="A17_FlightPlan"
PROMPT="Summarize this document"
# Download the PDF from the provided URL
wget -O "${DISPLAY_NAME}.pdf" "${PDF_PATH}"
MIME_TYPE=$(file -b --mime-type "${DISPLAY_NAME}.pdf")
NUM_BYTES=$(wc -c < "${DISPLAY_NAME}.pdf")
echo "MIME_TYPE: ${MIME_TYPE}"
echo "NUM_BYTES: ${NUM_BYTES}"
tmp_header_file=upload-header.tmp
# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
-D upload-header.tmp \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null
upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
# Upload the actual bytes.
curl "${upload_url}" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${DISPLAY_NAME}.pdf" 2> /dev/null > file_info.json
file_uri=$(jq ".file.uri" file_info.json)
echo "file_uri: ${file_uri}"
# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"text": "'$PROMPT'"},
{"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
# Clean up the downloaded PDF
rm "${DISPLAY_NAME}.pdf"
Yerel olarak depolanan büyük PDF'ler
Python
from google import genai
from google.genai import types
import pathlib
import httpx
client = genai.Client()
# Retrieve and encode the PDF byte
file_path = pathlib.Path('large_file.pdf')
# Upload the PDF using the File API
sample_file = client.files.upload(
file=file_path,
)
prompt="Summarize this document"
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[sample_file, "Summarize this document"])
print(response.text)
JavaScript
import { createPartFromUri, GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function main() {
const file = await ai.files.upload({
file: 'path-to-localfile.pdf'
config: {
displayName: 'A17_FlightPlan.pdf',
},
});
// Wait for the file to be processed.
let getFile = await ai.files.get({ name: file.name });
while (getFile.state === 'PROCESSING') {
getFile = await ai.files.get({ name: file.name });
console.log(`current file status: ${getFile.state}`);
console.log('File is still processing, retrying in 5 seconds');
await new Promise((resolve) => {
setTimeout(resolve, 5000);
});
}
if (file.state === 'FAILED') {
throw new Error('File processing failed.');
}
// Add the file to the contents.
const content = [
'Summarize this document',
];
if (file.uri && file.mimeType) {
const fileContent = createPartFromUri(file.uri, file.mimeType);
content.push(fileContent);
}
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: content,
});
console.log(response.text);
}
main();
Go
package main
import (
"context"
"fmt"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, _ := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
localPdfPath := "/path/to/file.pdf"
uploadConfig := &genai.UploadFileConfig{MIMEType: "application/pdf"}
uploadedFile, _ := client.Files.UploadFromPath(ctx, localPdfPath, uploadConfig)
promptParts := []*genai.Part{
genai.NewPartFromURI(uploadedFile.URI, uploadedFile.MIMEType),
genai.NewPartFromText("Give me a summary of this pdf file."),
}
contents := []*genai.Content{
genai.NewContentFromParts(promptParts, genai.RoleUser),
}
result, _ := client.Models.GenerateContent(
ctx,
"gemini-2.5-flash",
contents,
nil,
)
fmt.Println(result.Text())
}
REST
NUM_BYTES=$(wc -c < "${PDF_PATH}")
DISPLAY_NAME=TEXT
tmp_header_file=upload-header.tmp
# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GEMINI_API_KEY}" \
-D upload-header.tmp \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: application/pdf" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null
upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
# Upload the actual bytes.
curl "${upload_url}" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${PDF_PATH}" 2> /dev/null > file_info.json
file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri
# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"text": "Can you add a few more lines to this poem?"},
{"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
files.get
işlevini çağırarak API'nin yüklenen dosyayı başarıyla sakladığını doğrulayabilir ve dosyanın meta verilerini alabilirsiniz. Yalnızca name
(ve dolayısıyla uri
) benzersizdir.
Python
from google import genai
import pathlib
client = genai.Client()
fpath = pathlib.Path('example.txt')
fpath.write_text('hello')
file = client.files.upload(file='example.txt')
file_info = client.files.get(name=file.name)
print(file_info.model_dump_json(indent=4))
REST
name=$(jq ".file.name" file_info.json)
# Get the file of interest to check state
curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
# Print some information about the file you got
name=$(jq ".file.name" file_info.json)
echo name=$name
file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri
Birden fazla PDF'yi iletme
Gemini API, dokümanların ve metin isteminin toplam boyutu modelin bağlam penceresi içinde kaldığı sürece tek bir istekte birden fazla PDF dokümanını (1.000 sayfaya kadar) işleyebilir.
Python
from google import genai
import io
import httpx
client = genai.Client()
doc_url_1 = "https://arxiv.org/pdf/2312.11805"
doc_url_2 = "https://arxiv.org/pdf/2403.05530"
# Retrieve and upload both PDFs using the File API
doc_data_1 = io.BytesIO(httpx.get(doc_url_1).content)
doc_data_2 = io.BytesIO(httpx.get(doc_url_2).content)
sample_pdf_1 = client.files.upload(
file=doc_data_1,
config=dict(mime_type='application/pdf')
)
sample_pdf_2 = client.files.upload(
file=doc_data_2,
config=dict(mime_type='application/pdf')
)
prompt = "What is the difference between each of the main benchmarks between these two papers? Output these in a table."
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[sample_pdf_1, sample_pdf_2, prompt])
print(response.text)
JavaScript
import { createPartFromUri, GoogleGenAI } from "@google/genai";
const ai = new GoogleGenAI({ apiKey: "GEMINI_API_KEY" });
async function uploadRemotePDF(url, displayName) {
const pdfBuffer = await fetch(url)
.then((response) => response.arrayBuffer());
const fileBlob = new Blob([pdfBuffer], { type: 'application/pdf' });
const file = await ai.files.upload({
file: fileBlob,
config: {
displayName: displayName,
},
});
// Wait for the file to be processed.
let getFile = await ai.files.get({ name: file.name });
while (getFile.state === 'PROCESSING') {
getFile = await ai.files.get({ name: file.name });
console.log(`current file status: ${getFile.state}`);
console.log('File is still processing, retrying in 5 seconds');
await new Promise((resolve) => {
setTimeout(resolve, 5000);
});
}
if (file.state === 'FAILED') {
throw new Error('File processing failed.');
}
return file;
}
async function main() {
const content = [
'What is the difference between each of the main benchmarks between these two papers? Output these in a table.',
];
let file1 = await uploadRemotePDF("https://arxiv.org/pdf/2312.11805", "PDF 1")
if (file1.uri && file1.mimeType) {
const fileContent = createPartFromUri(file1.uri, file1.mimeType);
content.push(fileContent);
}
let file2 = await uploadRemotePDF("https://arxiv.org/pdf/2403.05530", "PDF 2")
if (file2.uri && file2.mimeType) {
const fileContent = createPartFromUri(file2.uri, file2.mimeType);
content.push(fileContent);
}
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: content,
});
console.log(response.text);
}
main();
Go
package main
import (
"context"
"fmt"
"io"
"net/http"
"os"
"google.golang.org/genai"
)
func main() {
ctx := context.Background()
client, _ := genai.NewClient(ctx, &genai.ClientConfig{
APIKey: os.Getenv("GEMINI_API_KEY"),
Backend: genai.BackendGeminiAPI,
})
docUrl1 := "https://arxiv.org/pdf/2312.11805"
docUrl2 := "https://arxiv.org/pdf/2403.05530"
localPath1 := "doc1_downloaded.pdf"
localPath2 := "doc2_downloaded.pdf"
respHttp1, _ := http.Get(docUrl1)
defer respHttp1.Body.Close()
outFile1, _ := os.Create(localPath1)
_, _ = io.Copy(outFile1, respHttp1.Body)
outFile1.Close()
respHttp2, _ := http.Get(docUrl2)
defer respHttp2.Body.Close()
outFile2, _ := os.Create(localPath2)
_, _ = io.Copy(outFile2, respHttp2.Body)
outFile2.Close()
uploadConfig1 := &genai.UploadFileConfig{MIMEType: "application/pdf"}
uploadedFile1, _ := client.Files.UploadFromPath(ctx, localPath1, uploadConfig1)
uploadConfig2 := &genai.UploadFileConfig{MIMEType: "application/pdf"}
uploadedFile2, _ := client.Files.UploadFromPath(ctx, localPath2, uploadConfig2)
promptParts := []*genai.Part{
genai.NewPartFromURI(uploadedFile1.URI, uploadedFile1.MIMEType),
genai.NewPartFromURI(uploadedFile2.URI, uploadedFile2.MIMEType),
genai.NewPartFromText("What is the difference between each of the " +
"main benchmarks between these two papers? " +
"Output these in a table."),
}
contents := []*genai.Content{
genai.NewContentFromParts(promptParts, genai.RoleUser),
}
modelName := "gemini-2.5-flash"
result, _ := client.Models.GenerateContent(
ctx,
modelName,
contents,
nil,
)
fmt.Println(result.Text())
}
REST
DOC_URL_1="https://arxiv.org/pdf/2312.11805"
DOC_URL_2="https://arxiv.org/pdf/2403.05530"
DISPLAY_NAME_1="Gemini_paper"
DISPLAY_NAME_2="Gemini_1.5_paper"
PROMPT="What is the difference between each of the main benchmarks between these two papers? Output these in a table."
# Function to download and upload a PDF
upload_pdf() {
local doc_url="$1"
local display_name="$2"
# Download the PDF
wget -O "${display_name}.pdf" "${doc_url}"
local MIME_TYPE=$(file -b --mime-type "${display_name}.pdf")
local NUM_BYTES=$(wc -c < "${display_name}.pdf")
echo "MIME_TYPE: ${MIME_TYPE}"
echo "NUM_BYTES: ${NUM_BYTES}"
local tmp_header_file=upload-header.tmp
# Initial resumable request
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
-D "${tmp_header_file}" \
-H "X-Goog-Upload-Protocol: resumable" \
-H "X-Goog-Upload-Command: start" \
-H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
-H "Content-Type: application/json" \
-d "{'file': {'display_name': '${display_name}'}}" 2> /dev/null
local upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"
# Upload the PDF
curl "${upload_url}" \
-H "Content-Length: ${NUM_BYTES}" \
-H "X-Goog-Upload-Offset: 0" \
-H "X-Goog-Upload-Command: upload, finalize" \
--data-binary "@${display_name}.pdf" 2> /dev/null > "file_info_${display_name}.json"
local file_uri=$(jq ".file.uri" "file_info_${display_name}.json")
echo "file_uri for ${display_name}: ${file_uri}"
# Clean up the downloaded PDF
rm "${display_name}.pdf"
echo "${file_uri}"
}
# Upload the first PDF
file_uri_1=$(upload_pdf "${DOC_URL_1}" "${DISPLAY_NAME_1}")
# Upload the second PDF
file_uri_2=$(upload_pdf "${DOC_URL_2}" "${DISPLAY_NAME_2}")
# Now generate content using both files
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-X POST \
-d '{
"contents": [{
"parts":[
{"file_data": {"mime_type": "application/pdf", "file_uri": '$file_uri_1'}},
{"file_data": {"mime_type": "application/pdf", "file_uri": '$file_uri_2'}},
{"text": "'$PROMPT'"}
]
}]
}' 2> /dev/null > response.json
cat response.json
echo
jq ".candidates[].content.parts[].text" response.json
Teknik ayrıntılar
Gemini en fazla 1.000 belge sayfasını destekler. Her belge sayfası 258 jetona eşittir.
Modelin bağlam penceresi dışında bir dokümandaki piksel sayısıyla ilgili belirli bir sınır olmasa da daha büyük sayfalar, orijinal en boy oranları korunarak maksimum 3072x3072 çözünürlüğe ölçeklendirilirken daha küçük sayfalar 768x768 piksele ölçeklendirilir. Daha küçük boyutlardaki sayfalar için bant genişliği dışında maliyet düşüşü veya daha yüksek çözünürlükteki sayfalar için performans artışı olmaz.
Doküman türleri
Teknik olarak, doküman anlama için TXT, Markdown, HTML, XML gibi diğer MIME türlerini iletebilirsiniz. Ancak dokümanla ilgili görsel yalnızca PDF'leri anlamlı bir şekilde anlar. Diğer türler düz metin olarak ayıklanır ve model, bu dosyaların oluşturulmasında gördüklerimizi yorumlayamaz. Grafikler, diyagramlar, HTML etiketleri, Markdown biçimlendirmesi vb. gibi dosya türüne özgü tüm özellikler kaybolur.
En iyi uygulamalar
En iyi sonuçlar için:
- Yüklemeden önce sayfaları doğru yöne döndürün.
- Bulanık sayfalardan kaçının.
- Tek bir sayfa kullanıyorsanız metin istemini sayfanın sonuna yerleştirin.
Sırada ne var?
Daha fazla bilgi edinmek için aşağıdaki kaynaklara göz atın:
- Dosya istemi stratejileri: Gemini API, çok formatlı istem olarak da bilinen metin, resim, ses ve video verileriyle istemi destekler.
- Sistem talimatları: Sistem talimatları, modelin davranışını özel ihtiyaçlarınıza ve kullanım alanlarınıza göre yönlendirmenizi sağlar.