Análisis de la asistencia al cliente con Gemini 2.5 Pro y CrewAI

CrewAI es un framework para orquestar agentes de IA autónomos que colaboran para lograr objetivos complejos. Te permite definir agentes especificando roles, objetivos y historias de fondo, y luego definir tareas para ellos.

En este ejemplo, se muestra cómo compilar un sistema de varios agentes para analizar los datos de asistencia al cliente y, así, identificar problemas y proponer mejoras en el proceso con Gemini 2.5 Pro, lo que genera un informe destinado a que lo lea un director de operaciones (COO).

En la guía, se muestra cómo crear un "equipo" de agentes de IA que puedan realizar las siguientes tareas:

  1. Recuperar y analizar datos de asistencia al cliente (simulados en este ejemplo)
  2. Identifica los problemas recurrentes y los cuellos de botella del proceso.
  3. Sugiere mejoras prácticas.
  4. Compila los resultados en un informe conciso adecuado para un director de operaciones.

Necesitas una clave de API de Gemini. Si aún no tienes una, puedes obtener una en Google AI Studio.

pip install "crewai[tools]"

Establece tu clave de API de Gemini como una variable de entorno llamada GEMINI_API_KEY y, luego, configura CrewAI para que use el modelo Gemini 2.5 Pro.

import os
from crewai import LLM

# Read your API key from the environment variable
gemini_api_key = os.getenv("GEMINI_API_KEY")

# Use Gemini 2.5 Pro Experimental model
gemini_llm = LLM(
    model='gemini/gemini-2.5-pro',
    api_key=gemini_api_key,
    temperature=0.0  # Lower temperature for more consistent results.
)

Define los componentes

Las aplicaciones de CrewAI se compilan con Tools, Agents, Tasks y el mismo Crew. Cada una de ellas se explica en las siguientes secciones.

Herramientas

Las herramientas son capacidades que los agentes pueden usar para interactuar con el mundo exterior o realizar acciones específicas. Aquí, defines una herramienta de marcador de posición para simular la recuperación de datos de asistencia al cliente. En una aplicación real, te conectarías a una base de datos, una API o un sistema de archivos. Para obtener más información sobre las herramientas, consulta la guía de herramientas de CrewAI.

from crewai.tools import BaseTool

# Placeholder tool for fetching customer support data
class CustomerSupportDataTool(BaseTool):
    name: str = "Customer Support Data Fetcher"
    description: str = (
      "Fetches recent customer support interactions, tickets, and feedback. "
      "Returns a summary string.")

    def _run(self, argument: str) -> str:
        # In a real scenario, this would query a database or API.
        # For this example, return simulated data.
        print(f"--- Fetching data for query: {argument} ---")
        return (
            """Recent Support Data Summary:
- 50 tickets related to 'login issues'. High resolution time (avg 48h).
- 30 tickets about 'billing discrepancies'. Mostly resolved within 12h.
- 20 tickets on 'feature requests'. Often closed without resolution.
- Frequent feedback mentions 'confusing user interface' for password reset.
- High volume of calls related to 'account verification process'.
- Sentiment analysis shows growing frustration with 'login issues' resolution time.
- Support agent notes indicate difficulty reproducing 'login issues'."""
        )

support_data_tool = CustomerSupportDataTool()

Agentes

Los agentes son los trabajadores individuales de IA de tu equipo. Cada agente tiene un role, goal, backstory, llm asignado y tools opcional específicos. Para obtener más información sobre los agentes, consulta la guía de agentes de CrewAI.

from crewai import Agent

# Agent 1: Data analyst
data_analyst = Agent(
    role='Customer Support Data Analyst',
    goal='Analyze customer support data to identify trends, recurring issues, and key pain points.',
    backstory=(
        """You are an expert data analyst specializing in customer support operations.
        Your strength lies in identifying patterns and quantifying problems from raw support data."""
    ),
    verbose=True,
    allow_delegation=False,  # This agent focuses on its specific task
    tools=[support_data_tool],  # Assign the data fetching tool
    llm=gemini_llm  # Use the configured Gemini LLM
)

# Agent 2: Process optimizer
process_optimizer = Agent(
    role='Process Optimization Specialist',
    goal='Identify bottlenecks and inefficiencies in current support processes based on the data analysis. Propose actionable improvements.',
    backstory=(
        """You are a specialist in optimizing business processes, particularly in customer support.
        You excel at pinpointing root causes of delays and inefficiencies and suggesting concrete solutions."""
    ),
    verbose=True,
    allow_delegation=False,
    # No tools needed, this agent relies on the context provided by data_analyst.
    llm=gemini_llm
)

# Agent 3: Report writer
report_writer = Agent(
    role='Executive Report Writer',
    goal='Compile the analysis and improvement suggestions into a concise, clear, and actionable report for the COO.',
    backstory=(
        """You are a skilled writer adept at creating executive summaries and reports.
        You focus on clarity, conciseness, and highlighting the most critical information and recommendations for senior leadership."""
    ),
    verbose=True,
    allow_delegation=False,
    llm=gemini_llm
)

Tasks

Las tareas definen las tareas específicas de los agentes. Cada tarea tiene un description, un expected_output y se asigna a un agent. Las tareas se ejecutan de forma secuencial de forma predeterminada y, además, incluyen el contexto de la tarea anterior. Para obtener más información sobre las tareas, consulta la guía de tareas de CrewAI.

from crewai import Task

# Task 1: Analyze data
analysis_task = Task(
    description=(
        """Fetch and analyze the latest customer support interaction data (tickets, feedback, call logs)
        focusing on the last quarter. Identify the top 3-5 recurring issues, quantify their frequency
        and impact (e.g., resolution time, customer sentiment). Use the Customer Support Data Fetcher tool."""
    ),
    expected_output=(
        """A summary report detailing the key findings from the customer support data analysis, including:
- Top 3-5 recurring issues with frequency.
- Average resolution times for these issues.
- Key customer pain points mentioned in feedback.
- Any notable trends in sentiment or support agent observations."""
    ),
    agent=data_analyst  # Assign task to the data_analyst agent
)

# Task 2: Identify bottlenecks and suggest improvements
optimization_task = Task(
    description=(
        """Based on the data analysis report provided by the Data Analyst, identify the primary bottlenecks
        in the support processes contributing to the identified issues (especially the top recurring ones).
        Propose 2-3 concrete, actionable process improvements to address these bottlenecks.
        Consider potential impact and ease of implementation."""
    ),
    expected_output=(
        """A concise list identifying the main process bottlenecks (e.g., lack of documentation for agents,
        complex escalation path, UI issues) linked to the key problems.
A list of 2-3 specific, actionable recommendations for process improvement
(e.g., update agent knowledge base, simplify password reset UI, implement proactive monitoring)."""
    ),
    agent=process_optimizer  # Assign task to the process_optimizer agent
    # This task implicitly uses the output of analysis_task as context
)

# Task 3: Compile COO report
report_task = Task(
    description=(
        """Compile the findings from the Data Analyst and the recommendations from the Process Optimization Specialist
        into a single, concise executive report for the COO. The report should clearly state:
1. The most critical customer support issues identified (with brief data points).
2. The key process bottlenecks causing these issues.
3. The recommended process improvements.
Ensure the report is easy to understand, focuses on actionable insights, and is formatted professionally."""
    ),
    expected_output=(
        """A well-structured executive report (max 1 page) summarizing the critical support issues,
        underlying process bottlenecks, and clear, actionable recommendations for the COO.
        Use clear headings and bullet points."""
    ),
    agent=report_writer  # Assign task to the report_writer agent
)

Equipo de rodaje

Crew reúne a los agentes y las tareas, y define el proceso del flujo de trabajo (como "secuencial").

from crewai import Crew, Process

# Define the crew with agents, tasks, and process
support_analysis_crew = Crew(
    agents=[data_analyst, process_optimizer, report_writer],
    tasks=[analysis_task, optimization_task, report_task],
    process=Process.sequential,  # Tasks will run sequentially in the order defined
    verbose=True
)

Ejecuta el equipo

Por último, inicia la ejecución de la tripulación con las entradas necesarias.

# Start the crew's work
print("--- Starting Customer Support Analysis Crew ---")
# The 'inputs' dictionary provides initial context if needed by the first task.
# In this case, the tool simulates data fetching regardless of the input.
result = support_analysis_crew.kickoff(inputs={'data_query': 'last quarter support data'})

print("--- Crew Execution Finished ---")
print("--- Final Report for COO ---")
print(result)

Ahora se ejecutará la secuencia de comandos. Data Analyst usará la herramienta, Process Optimizer analizará los resultados y Report Writer compilará el informe final, que luego se imprimirá en la consola. La configuración de verbose=True mostrará el proceso de pensamiento y las acciones detalladas de cada agente.

Para obtener más información sobre CrewAI, consulta la introducción a CrewAI.