
Collaborative Filtering for Implicit Feedback Datasets

Yifan Hu

AT&T Labs – Research

Florham Park, NJ 07932

Yehuda Koren∗

Yahoo! Research

Haifa 31905, Israel

Chris Volinsky

AT&T Labs – Research

Florham Park, NJ 07932

Abstract

A common task of recommender systems is to improve

customer experience through personalized recommenda-

tions based on prior implicit feedback. These systems pas-

sively track different sorts of user behavior, such as pur-

chase history, watching habits and browsing activity, in or-

der to model user preferences. Unlike the much more ex-

tensively researched explicit feedback, we do not have any

direct input from the users regarding their preferences. In

particular, we lack substantial evidence on which products

consumer dislike. In this work we identify unique proper-

ties of implicit feedback datasets. We propose treating the

data as indication of positive and negative preference asso-

ciated with vastly varying confidence levels. This leads to a

factor model which is especially tailored for implicit feed-

back recommenders. We also suggest a scalable optimiza-

tion procedure, which scales linearly with the data size. The

algorithm is used successfully within a recommender system

for television shows. It compares favorably with well tuned

implementations of other known methods. In addition, we

offer a novel way to give explanations to recommendations

given by this factor model.

1 Introduction

As e-commerce is growing in popularity, an important

challenge is helping customers sort through a large variety

of offered products to easily find the ones they will enjoy

the most. One of the tools that address this challenge is rec-

ommender systems, which are attracting a lot of attention

recently [1, 4, 12]. These systems provide users with per-

sonalized recommendations for products or services, which

hopefully suit their unique taste and needs. The technology

behind those systems is based on profiling users and prod-

ucts, and finding how to relate them.

Broadly speaking, recommender systems are based on

two different strategies (or combinations thereof). The con-

∗Work done while author was at AT&T Labs – Research

tent based approach creates a profile for each user or prod-

uct to characterize its nature. As an example, a movie pro-

file could include attributes regarding its genre, the par-

ticipating actors, its box office popularity, etc. User pro-

files might include demographic information or answers to

a suitable questionnaire. The resulting profiles allow pro-

grams to associate users with matching products. However,

content based strategies require gathering external informa-

tion that might not be available or easy to collect.

An alternative strategy, our focus in this work, relies only

on past user behavior without requiring the creation of ex-

plicit profiles. This approach is known as Collaborative

Filtering (CF), a term coined by the developers of the first

recommender system - Tapestry [8]. CF analyzes relation-

ships between users and interdependencies among products,

in order to identify new user-item associations. For exam-

ple, some CF systems identify pairs of items that tend to be

rated similarly or like-minded users with similar history of

rating or purchasing to deduce unknown relationships be-

tween users and items. The only required information is the

past behavior of users, which might be their previous trans-

actions or the way they rate products. A major appeal of CF

is that it is domain free, yet it can address aspects of the data

that are often elusive and very difficult to profile using con-

tent based techniques. While generally being more accu-

rate than content based techniques, CF suffers from the cold

start problem, due to its inability to address products new

to the system, for which content based approaches would be

adequate.

Recommender systems rely on different types of in-

put. Most convenient is the high quality explicit feedback,

which includes explicit input by users regarding their inter-

est in products. For example, Netflix collects star ratings

for movies and TiVo users indicate their preferences for

TV shows by hitting thumbs-up/down buttons. However,

explicit feedback is not always available. Thus, recom-

menders can infer user preferences from the more abundant

implicit feedback, which indirectly reflect opinion through

observing user behavior [14]. Types of implicit feedback

include purchase history, browsing history, search patterns,

or even mouse movements. For example, a user that pur-

chased many books by the same author probably likes that

author.

The vast majority of the literature in the field is focused

on processing explicit feedback; probably thanks to the con-

venience of using this kind of pure information. However,

in many practical situations recommender systems need to

be centered on implicit feedback. This may reflect reluc-

tance of users to rate products, or limitations of the system

that is unable to collect explicit feedback. In an implicit

model, once the user gives approval to collect usage data,

no additional explicit feedback (e.g. ratings) is required on

the user’s part.

This work conducts an exploration into algorithms

specifically suitable for processing implicit feedback. It re-

flects some of the major lessons and developments that were

achieved while we built a TV shows recommender engine.

Our setup prevents us from actively gathering explicit feed-

back from users, so the system was solely based on implicit

feedback – analyzing watching habits of anonymized users.

It is crucial to identify the unique characteristics of im-

plicit feedback, which prevent the direct use of algorithms

that were designed with explicit feedback in mind. In the

following we list the prime characteristics:

1. No negative feedback. By observing the users behav-

ior, we can infer which items they probably like and

thus chose to consume. However, it is hard to reliably

infer which items a user did not like. For example, a

user that did not watch a certain show might have done

so because she dislikes the show or just because she

did not know about the show or was not available to

watch it. This fundamental asymmetry does not exist

in explicit feedback where users tell us both what they

like and what they dislike. It has several implications.

For example, explicit recommenders tend to focus on

the gathered information – those user-item pairs that

we know their ratings – which provide a balanced pic-

ture on the user preference. Thus, the remaining user-

item relationships, which typically constitute the vast

majority of the data, are treated as “missing data” and

are omitted from the analysis. This is impossible with

implicit feedback, as concentrating only on the gath-

ered feedback will leave us with the positive feedback,

greatly misrepresenting the full user profile. Hence,

it is crucial to address also the missing data, which is

where most negative feedback is expected to be found.

2. Implicit feedback is inherently noisy. While we pas-

sively track the users behavior, we can only guess their

preferences and true motives. For example, we may

view purchase behavior for an individual, but this does

not necessarily indicate a positive view of the product.

The item may have been purchased as a gift, or per-

haps the user was disappointed with the product. We

may view that a television is on a particular channel at

a particular time, but the viewer might be asleep.

3. The numerical value of explicit feedback indicates

preference, whereas the numerical value of implicit

feedback indicates confidence. Systems based on ex-

plicit feedback let the user express their level of prefer-

ence, e.g. a star rating between 1 (“totally dislike”) and

5 (“really like”). On the other hand, numerical values

of implicit feedback describe the frequency of actions,

e.g., how much time the user watched a certain show,

how frequently a user is buying a certain item, etc. A

larger value is not indicating a higher preference. For

example, the most loved show may be a movie that the

user will watch only once, while there is a series that

the user quite likes and thus is watching every week.

However, the numerical value of the feedback is defi-

nitely useful, as it tells us about the confidence that we

have in a certain observation. A one time event might

be caused by various reasons that have nothing to do

with user preferences. However, a recurring event is

more likely to reflect the user opinion.

4. Evaluation of implicit-feedback recommender requires

appropriate measures. In the traditional setting where a

user is specifying a numeric score, there are clear met-

rics such as mean squared error to measure success in

prediction. However with implicit models we have to

take into account availability of the item, competition

for the item with other items, and repeat feedback. For

example, if we gather data on television viewing, it is

unclear how to evaluate a show that has been watched

more than once, or how to compare two shows that are

on at the same time, and hence cannot both be watched

by the user.

2 Preliminaries

We reserve special indexing letters for distinguishing

users from items: for users u, v, and for items i, j. The input

data associate users and items through rui values, which we

henceforth call observations. For explicit feedback datasets,

those values would be ratings that indicate the preference

by user u of item i, where high values mean stronger pref-

erence. For implicit feedback datasets, those values would

indicate observations for user actions. For example, rui can

indicate the number of times u purchased item i or the time

u spent on webpage i. In our TV recommender case, rui

indicates how many times u fully watched show i. For ex-

ample, rui = 0.7 indicates that u watched 70% of the show,

while for a user that watched the show twice we will set

rui = 2.

Explicit ratings are typically unknown for the vast ma-

jority of user-item pairs, hence applicable algorithms work

with the relatively few known ratings while ignoring the

missing ones. However, with implicit feedback it would be

natural to assign values to all rui variables. If no action was

observed rui is set to zero, thus meaning in our examples

zero watching time, or zero purchases on record.

3 Previous work

3.1 Neighborhood models

The most common approach to CF is based on neigh-

borhood models. Its original form, which was shared by

virtually all earlier CF systems, is user-oriented; see [9]

for a good analysis. Such user-oriented methods estimate

unknown ratings based on recorded ratings of like minded

users. Later, an analogous item-oriented approach [13, 19]

became popular. In those methods, a rating is estimated us-

ing known ratings made by the same user on similar items.

Better scalability and improved accuracy make the item-

oriented approach more favorable in many cases [2, 19, 20].

In addition, item-oriented methods are more amenable to

explaining the reasoning behind predictions. This is be-

cause users are familiar with items previously preferred by

them, but usually do not know those allegedly like minded

users.

Central to most item-oriented approaches is a similarity

measure between items, where sij denotes the similarity of

i and j. Frequently, it is based on the Pearson correlation

coefficient. Our goal is to predict rui – the unobserved value

by user u for item i. Using the similarity measure, we iden-

tify the k items rated by u, which are most similar to i. This

set of k neighbors is denoted by Sk(i; u). The predicted

value of rui is taken as a weighted average of the ratings for

neighboring items:

r̂ui =

∑

j∈Sk(i;u) sijruj
∑

j∈Sk(i;u) sij

(1)

Some enhancements of this scheme are well practiced for

explicit feedback, such as correcting for biases caused by

varying mean ratings of different users and items. Those

modifications are less relevant to implicit feedback datasets,

where instead of having ratings which are all on the same

scale, we use frequencies in which items are consumed by

the same user. Frequencies for disparate users might have

very different scale depending on the application, and it is

less clear how to calculate similarities. A good discussion

on how to use an item-oriented approach with implicit feed-

back is given by Deshpande and Karypis [6].

All item-oriented models share a disadvantage in regards

to implicit feedback - they do not provide the flexibility to

make a distinction between user preferences and the confi-

dence we might have in those preferences.

3.2 Latent factor models

Latent factor models comprise an alternative approach

to Collaborative Filtering with the more holistic goal to un-

cover latent features that explain observed ratings; exam-

ples include pLSA [11], neural networks [16], and Latent

Dirichlet Allocation [5]. We will focus on models that are

induced by Singular Value Decomposition (SVD) of the

user-item observations matrix. Recently, SVD models have

gained popularity, thanks to their attractive accuracy and

scalability; see, e.g., [3, 7, 15, 17, 20]. A typical model as-

sociates each user u with a user-factors vector xu ∈ R
f , and

each item i with an item-factors vector yi ∈ R
f . The pre-

diction is done by taking an inner product, i.e., r̂ui = xT
u yi.

The more involved part is parameter estimation. Many of

the recent works, applied to explicit feedback datasets, sug-

gested modeling directly only the observed ratings, while

avoiding overfitting through an adequate regularized model,

such as:

min
x⋆,y⋆

∑

ru,i is known

(rui − xT
u yi)

2 + λ(‖xu‖
2 + ‖yi‖

2) (2)

Here, λ is used for regularizing the model. Parameters are

often learnt by stochastic gradient descent; see, e.g., [7, 15,

20]. The results, as reported on the largest available dataset

– the Netflix dataset [4] – tend to be consistently superior

to those achieved by neighborhood models. In this work we

borrow this approach to implicit feedback datasets, which

requires modifications both in the model formulation and in

the optimization technique.

4 Our model

In this section we describe our model for implicit feed-

back. First, we need to formalize the notion of confidence

which the rui variables measure. To this end, let us intro-

duce a set of binary variables pui, which indicates the pref-

erence of user u to item i. The pui values are derived by

binarizing the rui values:

pui =

{

1 rui > 0
0 rui = 0

In other words, if a user u consumed item i (rui > 0),

then we have an indication that u likes i (pui = 1). On

the other hand, if u never consumed i, we believe no pref-

erence (pui = 0). However, our beliefs are associated with

greatly varying confidence levels. First, by the nature of the

data zero values of pui are associated with low confidence,

as not taking any positive action on an item can stem from

many other reasons beyond not liking it. For example, the

user might be unaware of the existence of the item, or un-

able to consume it due to its price or limited availability. In

addition, consuming an item can also be the result of fac-

tors different from preferring it. For example, a user may

watch a TV show just because she is staying on the channel

of the previously watched show. Or a consumer may buy

an item as gift for someone else, despite not liking the item

for himself. Thus, we will have different confidence levels

also among items that are indicated to be preferred by the

user. In general, as rui grows, we have a stronger indication

that the user indeed likes the item. Consequently, we intro-

duce a set of variables, cui, which measure our confidence

in observing pui. A plausible choice for cui would be:

cui = 1 + αrui

This way, we have some minimal confidence in pui for ev-

ery user-item pair, but as we observe more evidence for pos-

itive preference, our confidence in pui = 1 increases ac-

cordingly. The rate of increase is controlled by the constant

α. In our experiments, setting α = 40 was found to produce

good results.

Our goal is to find a vector xu ∈ R
f for each user u,

and a vector yi ∈ R
f for each item i that will factor user

preferences. In other words, preferences are assumed to

be the inner products: pui = xT
u yi. These vectors will be

known as the user-factors and the item-factors, respectively.

Essentially, the vectors strive to map users and items into

a common latent factor space where they can be directly

compared. This is similar to matrix factorization techniques

which are popular for explicit feedback data, with two im-

portant distinctions: (1) We need to account for the varying

confidence levels, (2) Optimization should account for all

possible u, i pairs, rather than only those corresponding to

observed data. Accordingly, factors are computed by mini-

mizing the following cost function:

min
x⋆,y⋆

∑

u,i

cui(pui − xT
u yi)

2 + λ

(

∑

u

‖xu‖
2 +

∑

i

‖yi‖
2

)

(3)

The λ
(
∑

u ‖xu‖
2 +

∑

i ‖yi‖
2
)

term is necessary for regu-

larizing the model such that it will not overfit the training

data. Exact value of the parameter λ is data-dependent and

determined by cross validation.

Notice that the cost function contains m ·n terms, where

m is the number of users and n is the number of items.

For typical datasets m · n can easily reach a few billion.

This huge number of terms prevents most direct optimiza-

tion techniques such as stochastic gradient descent, which

was widely used for explicit feedback datasets. Thus, we

suggest an alternative efficient optimization process, as fol-

lows.

Observe that when either the user-factors or the item-

factors are fixed, the cost function becomes quadratic so

its global minimum can be readily computed. This leads

to an alternating-least-squares optimization process, where

we alternate between re-computing user-factors and item-

factors, and each step is guaranteed to lower the value of

the cost function. Alternating least squares was used for

explicit feedback datasets [2], where unknown values were

treated as missing, leading to a sparse objective function.

The implicit feedback setup requires a different strategy to

overcome the dense cost function and to integrate the con-

fidence levels. We address these by exploiting the structure

of the variables so that this process can be implemented to

be highly scalable.

The first step is recomputing all user factors. Let us as-

sume that all item-factors are gathered within an n× f ma-

trix Y . Before looping through all users, we compute the

f × f matrix Y T Y in time O(f2n). For each user u, let us

define the diagonal n × n matrix Cu where Cu
ii = cui, and

also the vector p(u) ∈ R
n that contains all the preferences

by u (the pui values). By differentiation we find an analytic

expression for xu that minimizes the cost function (3):

xu = (Y T CuY + λI)−1Y T Cup(u) (4)

A computational bottleneck here is computing Y T CuY ,

whose naive calculation will require time O(f2n) (for each

of the m users). A significant speedup is achieved by us-

ing the fact that Y T CuY = Y T Y + Y T (Cu − I)Y . Now,

Y T Y is independent of u and was already precomputed.

As for Y T (Cu − I)Y , notice that Cu − I has only nu non-

zero elements, where nu is the number of items for which

rui > 0 and typically nu ≪ n. Similarly, Cup(u) contains

just nu non-zero elements. Consequently, recomputation of

xu is performed in time O(f2nu + f3). Here, we assumed

O(f3) time for the matrix inversion (Y T CuY + λI)−1,

even though more efficient algorithms exist, but probably

are less relevant for the typically small values of f . This

step is performed over each of the m users, so the total run-

ning time is O(f2N+f3m), whereN is the overall number

of non-zero observations, that is N =
∑

u nu. Importantly,

running time is linear in the size of the input. Typical val-

ues of f lie between 20 and 200; see experimental study in

Sec. 6.

A recomputation of the user-factors is followed by a re-

computation of all item-factors in a parallel fashion. We

arrange all user-factors within an m × f matrix X . First

we compute the f × f matrix XT X in time O(f2m). For

each item i, we define the diagonal m×m matrix Ci where

Ci
uu = cui, and also the vector p(i) ∈ R

m that contains all

the preferences for i. Then we solve:

yi = (XT CiX + λI)−1XT Cip(i) (5)

Using the same technique as with the user-factors, running

time of this step would be O(f2N + f3n). We employ

a few sweeps of paired recomputation of user- and item-

factors, till they stabilize. A typical number of sweeps is 10.

The whole process scales linearly with the size of the data.

After computing the user- and item-factors, we recommend

to user u the K available items with the largest value of

p̂ui = xT
u yi, where p̂ui symbolizes the predicted preference

of user u for item i.
Now that the basic description of our technique is com-

pleted we would like to further discuss it, as some of our

decisions can be modified. For example, one can derive pui

differently from rui, by setting a minimum threshold on rui

for the corresponding pui to be non-zero. Similarly, there

are many ways to transform rui into a confidence level cui.

One alternative method that also worked well to us is setting

cui = 1 + α log(1 + rui/ǫ). (6)

Regardless of the exact variant of the scheme, it is impor-

tant to realize its main properties, which address the unique

characteristics of implicit feedback:

1. Transferring the raw observations (rui) into two sep-

arate magnitudes with distinct interpretations: prefer-

ences (pui) and confidence levels (cui). This better re-

flect the nature of the data and is essential to improv-

ing prediction accuracy, as shown in the experimental

study (Sec. 6).

2. An algorithm that addresses all possible (n · m) user-

item combinations in a linear running time, by exploit-

ing the algebraic structure of the variables.

5 Explaining recommendations

It is well accepted [10] that a good recommendation

should be accompanied with an explanation, which is a

short description to why a specific product was recom-

mended to the user. This helps in improving the users’

trust in the system and their ability to put recommenda-

tions in the right perspective. In addition, it is an invalu-

able means for debugging the system and tracking down

the source of unexpected behavior. Providing explana-

tions with neighborhood-based (or, “memory-based”) tech-

niques is straightforward, as recommendations are directly

inferred from past users’ behavior. However, for latent fac-

tor models explanations become trickier, as all past user

actions are abstracted via the user factors thereby block-

ing a direct relation between past user actions and the out-

put recommendations. Interestingly, our alternating least

squares model enables a novel way to compute explana-

tions. The key is replacing the user-factors by using Eq.

(4) : xu = (Y T CuY + λI)−1Y T Cup(u). Thus, the pre-

dicted preference of user u for item i, p̂ui = yT
i xu, be-

comes: yT
i (Y T CuY + λI)−1Y T Cup(u). This expression

can be simplified by introducing some new notation. Let us

denote the f × f matrix (Y T CuY + λI)−1 as Wu, which

should be considered as a weighting matrix associated with

user u. Accordingly, the weighted similarity between items

i and j from u’s viewpoint is denoted by su
ij = yT

i Wuyj .

Using this new notation the predicted preference of u for

item i is rewritten as:

p̂ui =
∑

j:ruj>0

su
ijcuj (7)

This reduces our latent factor model into a linear model

that predicts preferences as a linear function of past actions

(ruj > 0), weighted by item-item similarity. Each past ac-

tion receives a separate term in forming the predicted p̂ui,

and thus we can isolate its unique contribution. The actions

associated with the highest contribution are identified as the

major explanation behind the recommendation. In addition,

we can further break the contribution of each individual past

action into two separate sources: the significance of the re-

lation to user u – cuj , and the similarity to target item i –

su
ij .

This shares much resemblance with item-oriented neigh-

borhood models, which enables the desired ability to ex-

plain computed predictions. If we further adopt this view-

point, we can consider our model as a powerful pre-

processor for a neighborhood based method, where item

similarities are learnt through a principled optimization pro-

cess. In addition, similarities between items become depen-

dent on the specific user in question, reflecting the fact that

different users do not completely agree on which items are

similar.

Giving explanation through (7) involves solving a linear

system (Y T CuY + λI)−1yj , followed by a matrix vector

product, and can be done in time O(f2nu + f3), assuming

that Y T Y is precomputed.

6 Experimental study

Data description Our analysis is based on data from a

digital television service. We were able to collect data on

about 300,000 set top boxes. All data was collected in ac-

cordance with appropriate end user agreements and privacy

policies. The analysis was done with data that was aggre-

gated and/or fully anonymized. No personally identifiable

information was collected in connection with this research.

We collected all channel tune events for these users, in-

dicating the channel the set-top box was tuned into, and a

time stamp. There are approximately 17,000 unique pro-

grams which aired during a four week period. The training

data contains rui values, for each user u and program i,
which represent how many times user u watched program

i (related is the number of minutes that a given show was

watched - for all of our analysis we focus on show length

based units). Notice that rui is a real value, as users may

watch parts of shows. After aggregating multiple watches

of the same program, the number of non-zero rui values is

about 32 million.

In addition, we use a similarly constructed test set, which

is based on all channel tune events during the single week

following a 4-week training period. Our system is trained

using the recent 4 weeks of data in order to generate pre-

dictions of what users will watch in the ensuing week. The

training period of 4 weeks is chosen based on an experi-

mental study which showed that a shorter period tends to

deteriorate the prediction results, while a longer period does

not add much value (since television schedules change sea-

sonally, long training periods do not necessarily have an

advantage, even though we found that our core model is

robust enough to avoid being contaminated by the season-

ality). The observations in the test set are denoted by rt
ui

(distinguished with a superscript t).

One characteristic of television watching is the tendency

to repetitively watch the same programs every week. It is

much more valuable to a user to be recommended programs

that she has not watched recently, or that she is not aware

of. Thus, in our default setting, for each user we remove

the “easy” predictions from the test set corresponding to the

shows that had been watched by that user during the training

period. To make the test set even more accurate, we toggle

to zero all entries with rt
ui < 0.5, as watching less than half

of a program is not a strong indication that a user likes the

program. This leaves us with about 2 million non-zero rt
ui

values in the test set.

The tendency to watch the same programs repeatedly

also makes rui vary significantly over a large range. While

there are a lot of viewing events close to 0 (channel flip-

ping), 1, 2 or 3 (watching a film or a couple of episodes of a

series), there are also some viewing events that accumulate

to hundreds (have the DVR recording the same program for

many hours per day over a period of 4 weeks). Therefore

we employ the log scaling scheme (6) with ǫ = 10−8.

One other important adjustment is needed. We observe

many cases where a single channel is watched for many

hours. It is likely that the initial show that was tuned into is

of interest to the viewer, while the subsequent shows are of

decreasing interest. The television might simply have been

left on while the viewer does something else (or sleeps!).

We call this a momentum effect, and programs watched due

to momentum are less expected to reflect real preference. To

overcome this effect, we down-weight the second and sub-

sequent shows after a channel tuning event. More specifi-

cally, for the t-th show after a channel tune, we assign it a

weighting e−(at−b)

1+e−(at−b) . Experimentally we found a = 2 and

b = 6 to work well and is intuitive: the third show after

the channel tune gets its rui value halved, by the fifth show

without a channel change, rui is reduced by 99%.

Evaluation methodology We evaluate a scenario where

we generate for each user an ordered list of the shows,

sorted from the one predicted to be most preferred till the

least preferred one. Then, we present a prefix of the list to

the user as the recommended shows. It is important to real-

ize that we do not have a reliable feedback regarding which

programs are unloved, as not watching a program can stem

from multiple different reasons. In addition, we are cur-

rently unable to track user reactions to our recommenda-

tions. Thus, precision based metrics are not very appropri-

ate, as they require knowing which programs are undesired

to a user. However, watching a program is an indication of

liking it, making recall-oriented measures applicable.

We denote by rankui the percentile-ranking of program

i within the ordered list of all programs prepared for user

u. This way, rankui = 0% would mean that program i is

predicted to be the most desirable for user u, thus preceding

all other programs in the list. On the other hand, rankui =
100% indicates that program i is predicted to be the least

preferred for user u, thus placed at the end of the list. (We

opted for using percentile-ranks rather than absolute ranks

in order to make our discussion general and independent of

the number of programs.) Our basic quality measure is the

expected percentile ranking of a watching unit in the test

period, which is:

rank =

∑

u,i rt
uirankui

∑

u,i rt
ui

(8)

Lower values of rank are more desirable, as they indicate

ranking actually watched shows closer to the top of the rec-

ommendation lists. Notice that for random predictions, the

expected value of rankui is 50% (placing i in the middle of

the sorted list). Thus, rank > 50% indicates an algorithm

no better than random.

Evaluation results We implemented our model with dif-

ferent number of factors (f), ranging from 10 to 200. In ad-

dition, we implemented two other competing models. The

first model is sorting all shows based on their popularity, so

that the top recommended shows are the most popular ones.

This naive measure is surprisingly powerful, as crowds tend

to heavily concentrate on few of the many thousands avail-

able shows. We take this as a baseline value.

The second model is neighborhood based (item-item),

along the lines described in Sec. 3.1. We explored many

variants of this scheme, and found the following two deci-

sions to yield best results: (1) Take all items as “neighbors”,

not only a small subset of most similar items. (2) Use cosine

similarity for measuring item-item similarity. Formally, for

an item i let us arrange within ri ∈ R
m the rui values as-

sociated with all m users. Then, sij =
rT

i rj

‖ri‖‖rj‖
. The pre-

dicted preference of user u for show i is:
∑

j sijruj . As a

 8

 10

 12

 14

 16

 18

 20 40 60 80 100 120 140 160 180 200

E
xp

ec
te

d
pe

rc
en

til
e

ra
nk

in
g

(%
)

#factors

Popularity
Neighborhood

Factor

Figure 1. Comparing factor model with popu-
larity ranking and neighborhood model.

side remark, we would like to mention that we recommend

very different settings for neighborhood based techniques

when applied to explicit feedback data.

Figure 1 shows the measured values of rank with dif-

ferent number of factors, and also the results by the popu-

larity ranking (cyan, horizontal line), and the neighborhood

model (red, horizontal line). We can see that based only on

popularity, we can achieve rank = 16.46%, which is much

lower than the rank = 50% that would be achieved by a

random predictor. However, a popularity based predictor is

clearly non-personalized and treats all users equally. The

neighborhood based method offers a significant improve-

ment (rank = 10.74%) achieved by personalizing recom-

mendations. Even better results are obtained by our fac-

tor model, which offers a more principled approach to the

problem. Results keep improving as number of factors in-

creases, till reaching rank = 8.35% for 200 factors. Thus,

we recommend working with the highest number of factors

feasible within computational limitations.

We further dig into the quality of recommendations, by

studying the cumulative distribution function of rankui.

Here, we concentrate on the model with 100 factors,

and compare results to the popularity-based and the

neighborhood-based techniques, as shown in Fig. 2. We

asked the following: what is the distribution of percentiles

for the shows that were actually watched in the test set? If

our model does well, all of the watched shows will have low

percentiles. From the figure, we see that a watched show

is in the top 1% of the recommendations from our model

about 27% of the time. These results compare favorably to

the neighborhood based approach, and are much better than

the baseline popularity-based model.

Here we would like to comment that results get much

better had we left all previously watched programs in the

test set (without removing all user-program events that

already occurred in the training period). Predicting re-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

5%4%3%2%1%

pr
ob

ab
ili

ty

top %

Popularity
Neighborhood

Factor
w/ prev. watched

Figure 2. Cumulative distribution function of
the probability that a show watched in the

test set falls within top x% of recommended

shows.

watching a program is much easier than predicting a first

time view of a program. This is shown by the black dot-

ted line in the figure, which evaluates our algorithm when

previously watched shows are not taken out of the test set.

Although suggesting a previously watched show might not

be very exciting, it does come useful. For example, our

system informs users on which programs are running to-

day that might interest them. Here, users are not looking to

be surprised, but for being reminded not to miss a favorite

show. The high predictive accuracy of retrieving previously

watched shows comes handy for this task.

We would also like to evaluate our decision to trans-

form the raw observations (the rui values), into distinct

preference-confidence pairs (pui, cui). Other possible mod-

els were studied as well. First, we consider a model which

works directly on the given observations. Thus, our model

(3) is replaced with a factor model that strives to minimize:

min
x⋆,y⋆

∑

u,i

(rui − xT
u yi)

2 + λ1

(

∑

u

‖xu‖
2 +

∑

i

‖yi‖
2

)

(9)

Notice that this is a regularized version of the dense SVD

algorithm, which is an established approach to collabora-

tive filtering [18]. Results without regularization (λ1 = 0)

were very poor and could not improve upon the popularity

based model. Better results are achieved when the model

is regularized – here, we used λ1 = 500 for regularizing

the model, which proved to deliver best recommendations.

While results consistently outperform those of the popu-

larity model, they were substantially poorer even than the

neighborhood model. For example, for 50 factors we got

rank = 13.63%, while 100 factors yield rank = 13.40%.

This relatively low quality is not surprising as earlier we

argued that taking rui as raw preferences is not sensible.

Therefore, we also tried another model, which factorizes

the derived binary preference values, resulting in:

min
x⋆,y⋆

∑

u,i

(pui − xT
u yi)

2 + λ2

(

∑

u

‖xu‖
2 +

∑

i

‖yi‖
2

)

(10)

The model was regularized with λ2 = 150. Results are

indeed better than those of model (9), leading to rank =
10.72% with 50 factors and rank = 10.49% with 100

factors. This is slightly better than the results achieved

with the neighborhood model. However, this is still ma-

terially inferior to our full model, which results in rank =
8.93%−8.56% for 50 – 100 factors. This shows the impor-

tance of augmenting (10) with confidence levels as in (3).

We now analyze the performance of the full model (with

100 factors) on different types of shows and users. Dif-

ferent shows receive significantly varying watching time in

the training data. Some shows are popular and watched a

lot, while others are barely watched. We split the positive

observations in the test set into 15 equal bins, based on in-

creasing show popularity, We measured the performance of

our model in each bin, ranging from bin 1 (least popular

shows) to bin 15 (most popular shows). As Fig. 3 (blue line)

shows, there is a big gap in the accuracy of our model, as

it becomes much easier to predict popular programs, while

it is increasingly difficult to predict watching a non popu-

lar show. To some extent, the model prefers to stay with

the safe recommendations of familiar shows, on which it

gathered enough data and can analyze well. Interestingly,

this effect is not carried over to partitioning users accord-

ing to their watching time. Now, we split users into bins

based on their overall watching time; see Fig. 3 (red line).

Except for the first bin, which represents users with almost

no watching history, the model performance is quite similar

for all other user groups. This was somewhat unexpected,

as our experience with explicit feedback datasets was that

as we gather more information on users, prediction qual-

ity significantly increases. The possible explanation to why

the model could not do much better for heavy watchers is

that those largely represent heterogeneous accounts, where

many different people are watching the same TV.

Finally, we demonstrate the utility of our recommenda-

tion explanations. Explanations for recommendations are

common for neighbor methods since the system can al-

ways return the nearest neighbors of the recommended item.

However, there is no previous work discussing how to do

explanations for matrix decomposition methods, which in

our experience outperform the neighbor based methods. Ta-

ble 1 shows three recommended shows for one user in our

study. Following the methods in Section 5, we show the top

five watched shows which explain the recommended show

(shown in bold). These explanations make sense: the reality

show So You Think You Can Dance is explained by other re-

 0

 5

 10

 15

 20

 25

 30

 35

 40

15131197531

E
xp

ec
te

d
pe

rc
en

til
e

ra
nk

in
g

(%
)

bin #

show popularity
user watching time

Figure 3. Analyzing the performance of the
factor model by segregating users/shows

based on different criteria.

ality shows, while Spider-Man is explained by other comic-

related shows and Life in the E.R. is explained by medical

documentaries. These common-sense explanations help the

user understand why certain shows are recommended, and

are similar to explanations returned by neighbor methods.

We also report the total percent of the recommendation ac-

counted for by the top 5. In this case, the top five shows

only explain between 35 and 40% of the recommendation,

indicating that many other watched shows give input to the

recommendations.

7 Discussion

In this work we studied collaborative filtering on datasets

with implicit feedback, which is a very common situation.

One of our main findings is that implicit user observations

should be transformed into two paired magnitudes: pref-

erences and confidence levels. In other words, for each

user-item pair, we derive from the input data an estimate

to whether the user would like or dislike the item (“pref-

erence”) and couple this estimate with a confidence level.

This preference-confidence partition has no parallel in the

widely studied explicit-feedback datasets, yet serves a key

role in analyzing implicit feedback.

We provide a latent factor algorithm that directly ad-

dresses the preference-confidence paradigm. Unlike ex-

plicit datasets, here the model should take all user-item pref-

erences as an input, including those which are not related to

any input observation (thus hinting to a zero preference).

This is crucial, as the given observations are inherently bi-

ased towards a positive preference, and thus do not reflect

well the user profile. However, taking all user-item values

as an input to the model raises serious scalability issues –

the number of all those pairs tends to significantly exceed

the input size since a typical user would provide feedback

So You Think You Can Dance Spider-Man Life In The E.R.

Hell’s Kitchen Batman: The Series Adoption Stories

Access Hollywood Superman: The Series Deliver Me

Judge Judy Pinky and The Brain Baby Diaries

Moment of Truth Power Rangers I Lost It!

Don’t Forget the Lyrics The Legend of Tarzan Bringing Home Baby

Total Rec = 36% Total Rec = 40% Total Rec = 35%

Table 1. Three recommendations with explanations for a single user in our study. Each recommended show is recom-

mended due to a unique set of already-watched shows by this user.

only on a small fraction of the available items. We address

this by exploiting the algebraic structure of the model, lead-

ing to an algorithm that scales linearly with the input size

while addressing the full scope of user-item pairs without

resorting to any sub-sampling.

An interesting feature of the algorithm is that it allows

explaining the recommendations to the end user, which is

a rarity among latent factor models. This is achieved by

showing a surprising and hopefully insightful link into the

well known item-oriented neighborhood approach.

The algorithm was implemented and tested as a part of a

large scale TV recommender system. Our design method-

ology strives to find a right balance between the unique

properties of implicit feedback datasets and computational

scalability. We are currently exploring modifications with a

potential to improve accuracy at the expense of increasing

computational complexity. As an example, in our model we

decided to treat all user-item pairs associated with a zero

preference with the same uniform confidence level. Since

the vast majority of pairs is associated with a zero prefer-

ence, this decision saved a lot of computational effort. How-

ever, a more careful analysis would split those zero values

into different confidence levels, perhaps based on availabil-

ity of the item. In our television recommender example, the

fact that a user did not watch a program might mean that

the user was not aware of the show (it is on an ’unusual’

channel or time of day), or that there is another favorite

show on concurrently, or that the user is simply not inter-

ested. Each of these correspond to different scenarios, and

each might warrant a distinctive confidence level in the “no

preference” assumption. This leads us to another possible

extension of the model – adding a dynamic time variable

addressing the tendency of a user to watch TV on certain

times. Likewise, we would like to model that certain pro-

gram genres are more popular in different times of the day.

This is part of an ongoing research, where the main chal-

lenge seems to be how to introduce an added flexibility into

the model while maintaining its good computational scala-

bility.

Finally, we note that the standard training and test setup

is designed to evaluate how well a model can predict fu-

ture user behavior. However, this is not the purpose of a

recommender system, which strives to point users to items

that they might not have otherwise purchased or consumed.

It is difficult to see how to evaluate that objective without

using in depth user study and surveying. In our example,

we believe that by evaluating our methods by removing the

“easy” cases of re-watched shows, we somehow get closer

to the ideal of trying to capture user discovery of new shows.

References

[1] G. Adomavicius and A. Tuzhilin, “Towards the Next

Generation of Recommender Systems: A Survey of

the State-of-the-Art and Possible Extensions”, IEEE

Transactions on Knowledge and Data Engineering 17

(2005), 634–749.

[2] R. Bell and Y. Koren, “Scalable Collaborative Fil-

tering with Jointly Derived Neighborhood Interpola-

tion Weights”, IEEE International Conference on Data

Mining (ICDM’07), pp. 43–52, 2007.

[3] R. Bell, Y. Koren and C. Volinsky, “Modeling Relation-

ships at Multiple Scales to Improve Accuracy of Large

Recommender Systems”, Proc. 13th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and

Data Mining, 2007.

[4] J. Bennet and S. Lanning, “The Netflix Prize”, KDD

Cup and Workshop, 2007. www.netflixprize.

com.

[5] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet Al-

location”, Journal of Machine Learning Research 3

(2003), 993–1022.

[6] M. Deshpande, G. Karypis, “Item-based top-N recom-

mendation algorithms”, ACM Trans. Inf. Syst. 22 (2004)

143-177.

[7] S. Funk, “Netflix Update: Try This At Home”,

http://sifter.org/˜simon/journal/20061211.html, 2006.

[8] D. Goldberg, D. Nichols, B. M. Oki and D. Terry, “Us-

ing Collaborative Filtering to Weave an Information

Tapestry”, Communications of the ACM 35 (1992), 61–

70.

[9] J. L. Herlocker, J. A. Konstan, A. Borchers and John

Riedl, “An Algorithmic Framework for Performing

Collaborative Filtering”, Proc. 22nd ACM SIGIR Con-

ference on Information Retrieval, pp. 230–237, 1999.

[10] J. L. Herlocker, J. A. Konstan, and J. Riedl. “Explain-

ing collaborative filtering recommendations”, In Pro-

ceedings of the 2000 ACM Conference on Computer

Supported Cooperative Work, ACM Press, pp. 241-250,

2000.

[11] T. Hofmann, “Latent Semantic Models for Collabora-

tive Filtering”, ACM Transactions on Information Sys-

tems 22 (2004), 89–115.

[12] Z. Huang, D. Zeng and H. Chen, “A Compari-

son of Collaborative-Filtering Recommendation Algo-

rithms for E-commerce”, IEEE Intelligent Systems 22

(2007), 68–78.

[13] G. Linden, B. Smith and J. York, “Amazon.com Rec-

ommendations: Item-to-item Collaborative Filtering”,

IEEE Internet Computing 7 (2003), 76–80.

[14] D.W. Oard and J. Kim, “Implicit Feedback for Rec-

ommender Systems”, Proc. 5th DELOS Workshop on

Filtering and Collaborative Filtering, pp. 31–36, 1998.

[15] A. Paterek, “Improving Regularized Singular Value

Decomposition for Collaborative Filtering”, Proc. KDD

Cup and Workshop, 2007.

[16] R. Salakhutdinov, A. Mnih and G. Hinton, “Re-

stricted Boltzmann Machines for Collaborative Filter-

ing”, Proc. 24th Annual International Conference on

Machine Learning, pp. 791–798, 2007.

[17] R. Salakhutdinov and A. Mnih, “Probabilistic Matrix

Factorization”, Advances in Neural Information Pro-

cessing Systems 20 (NIPS’07), pp. 1257–1264, 2008.

[18] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl,

“Application of Dimensionality Reduction in Recom-

mender System – A Case Study”, WEBKDD’2000.

[19] B. Sarwar, G. Karypis, J. Konstan and J. Riedl, “Item-

based Collaborative Filtering Recommendation Algo-

rithms”, Proc. 10th International Conference on the

World Wide Web, pp. 285-295, 2001.

[20] G. Takacs, I. Pilaszy, B. Nemeth and D. Tikk, “Major

Components of the Gravity Recommendation System”,

SIGKDD Explorations 9 (2007), 80–84.

