Separating Functional
and Parallel Correctness
using Nondeterministic
Sequential Specifications

Jacob Burnim, George Necula, Koushik Sen
University of California, Berkeley

HotPar '10, Berkeley, CA June 14, 2010

Parallel Programming is Hard

» Key Culprit: Nondeterministic
interleaving of parallel threads.

Painful to reason simultaneously about
parallelism and functional correctness.

» Goal: Decompose efforts in addressing
parallelism and functional correctness.

Allow programmers to reason about
functional correctness sequentially.

Independently show correctness of parallelism.

Our Approach

» Goal: Decompose efforts in addressing
parallelism and functional correctness.

Functional
specification

Parallel
program

Our Approach

» Goal: Decompose efforts in addressing
parallelism and functional correctness.

w.. Program/
Parallel " specification NFunctional
program . T gpecification

== 4 e // \—’—//f/

Our Approach

» Goal: Decompose efforts in addressing
parallelism and functional correctness.

Parallelism Correctness.
Prove independently of

complex & sequential
function correctness.

Parallel
program

Program /
specification

Functional
specification

Our Approach

» Goal: Decompose efforts in addressing
parallelism and functional correctness.

Parallelism Correctness.
Prove independently of

Want to be able to
reason about functional

complex & sequential
function correctness.

correctness without
parallel interleavings.

Sequential

program /
specification

Functional
specification

Parallel
program

Our Approach

» Use sequential but nondeterministic
specification for a program’s parallelism.
User annotates intended nondeterminism.

Nondeterministi

Parallel 2
program

- e

— L..-/’/—/— | e

Our Approach

» Use sequential but nondeterministic
specification for a program’s parallelism.
User annotates intended nondeterminism.

Can address functional
correctness without

Parallelism correct if
adds no unintended

nondeterminism. parallel interleavings.

Nondeterministic
sequential
program/spec

Functional
specification

Parallel
program

Outline

» Overview
» Motivating Example

» Nondeterministic Sequential (NDSEQ)
Specifications for Parallel Correctness

» Proving Parallel Correctness
» Future Work

» Conclusions

9

Motivating Example

» Goal: Find minimum-cost solution.
Simplified branch-and-bound benchmark.

for (w in queue):
if (lower_bnd(w) >= best):
continue
cost = compute cost(w)
if cost < best:
best = cost
best soln=w

|0

Motivating Example

» Goal: Find minimum-cost solution.
» Simplified branch-and-bound benchmark.

Input: List of

ﬁ;)r (w in queue: possible solutions.
if (lower _bnd(w) >= best):
continue

cost = compute_cost(w) Output: Solution from
If cost < best: :

best = cost input queue with

_ best_soln=w minimum cost.

Motivating Example

» Goal: Find minimum-cost solution.
Simplified branch-and-bound benchmark.

/ for (w in queue): |
if (lower _bnd(w) >= best):
continue
cost = compute_cost(w)
iIf cost < best:
best = cost

. best_soln=w solution w. Expensive.

12

Computes cost of

Motivating Example

» Goal: Find minimum-cost solution.
Simplified branch-and-bound benchmark.

Computes cheap lower

for (W in queue): bound on cost of w.

if (lower_bnd(w) >= best).
continue

cost = compute_cost(w)

if cost < best:
best = cost

. best_soln=w solution w. Expensive.
|3

Computes cost of

Motivating Example

» Goal: Find minimum-cost solution.
» Simplified branch-and-bound benchmark.

j Computes cheap lower
/for (W in queue): bound on cost of w.

if (lower_bnd(w) >= best).
continue Prune when w cannot

cost = compute_cost(w) have minimum-cost.
iIf cost < best:

best = cost Computes cost of
. best_soln =w solution w. Expensive.

|4

Motivating Example

queue: NEY bound: 1 (b) bound: 0 (c) bound: 5
cost: 9

best: ©

best soln: ¢

cost: 2 cost: 3

/ for (w in queue): |
If (lower_bnd(w) >= best):
continue
cost = compute cost(w)
if cost < best:
best = cost

\\ best soln =w /

|5

Motivating Example

b bound: 0 bound: 5
(b) cost: 3 (c) cost: 9

queue: (a) bound: 1
best; o
best soln: ¢

/ for (w in queue): prune?(a)

if (lower_bnd(w) >= best):
___continue ,
cost = compute cost(w)
If cost < best:
best = cost

\ best soln =w /

|6

cost: 2

Motivating Example

(b) bound: 0 (c) bound: 5

t: 2 :
best: 2 COS cost: 3

cost: 9

best soln: e=—
for (w in queue):
If (lower_bnd(w) >= best):
continue UpciieiE)

(" cost = compute_cost(w)
If cost < best:
best = cost

\ best soln=w)

|7

Motivating Example
(b) bound: O

queue: [§E) 28:?%1
best: 2 '

(c) bound: 5

cost: 3 cost: 9

best soln: e=—
if (lower _bnd(w) >= best):
continue update(a)
cost = compute cost(w) prune?(b)
if cost < best:

best = cost

K best_soln = w J

|18

Motivating Example
(b) bound: O

queue: [§E) 28:{_“12”
best: 2 '

(c) bound: 5

cost: 3 cost: 9

best soln: e=——
" for (w in queue):
if (lower _bnd(w) >= best):
continue update(a)

* cost = compute cost(w)

iIf cost < best:
best = cost update(b)

\ best soln=w /

19

prune?(b)

Motivating Example
(b) bound: O

queue: [§E) ngtr-]dz: 1
best: 2 '
best soln: e=—

*for (w in queue):
~ if (lower_bnd(w) >= best):
pdate

cost = compute cost(w) prune?(b)
if cost < best:
best = cost update(b)

k best soln = w j
20

(c) bound: 5

cost: 3 cost: 9

Motivating Example
(b) bound: O

queue: [§E) 28:?%1
best: 2 '

(c) bound: 5

cost: 3 cost: 9

best soln:
" for (w in queue):
if (lower _bnd(w) >= best):
continue update(a)
cost = compute cost(w) prune?(b)
if cost < best:
best = cost update(b)

k best soln = w j

21

Motivating Example

» Goal: Find minimum-cost solution.
Simplified branch-and-bound benchmark.

for (w in queue):
if (lower_bnd(w) >= best):
continue
cost = compute cost(w)
if cost < best:
best = cost
best soln=w

22

Motivating Example

How do we
parallelize this code?

for (w in queue):
if (lower_bnd(w) >= best):
continue
cost = compute cost(w)
if cost < best:
best = cost
best soln =w

23

Parallelizing our Example

» Goal: Find min-cost solution in parallel.
Simplified branch-and-bound benchmark.

parallel-for (w in queue):
if (lower_bnd(w) >= best):
continue
cost = compute_cost(w)
atomic:
if cost < best:
best = cost
best soln =w

Parallelizing our Example

» Goal: Find min-cost solution in parallel.
Simplified branch-an

Loop iterations can be
run in parallel.

/parallel-for (w in queue):
if (lower_bnd(w) >= best):
continue
cost = compute cost(w)
atomic:

if cost < best: Updates to best
best = cost / are atomic.

best soln =w

25

Prove Parallelism Correct?

» Claim: Parallelization is correct.
If there are any bugs, they are sequential.
Want to prove parallelization correct.

parallel-for (w in queue):
if (lower_bnd(w) >= best):
continue
cost = compute_cost(w)
atomic:
if cost < best:
best = cost
best soln =w

26

Prove Parallelism Correct?

» Claim: Parallelization is correct.
If there are any bugs, they are sequential.

p ldea: Specify that parallel version
gives same result as sequential.

COST = CoMmpUTe CoSTW)
atomic:
if cost < best:
best = cost
best soln =w

Parallel-Sequential Equivalence?

. bound: 1 bound: 0 bound: 5
gg:: eo; C) cost: 2 (b) cost: 2 (c) cost: 9

best soln: ¢

/ parallel-for (w in queue):
if (lower_bnd(w) >= best):
continue
cost = compute cost(w)
atomic:
if cost < best:
best = cost

_ bestsoln=w

28

Parallel-Sequential Equivalence?

. bound: O bound: 5
queue. (b) cost: 2 (c) cost: 9
best: 2

best soln:

/ parallel-for (w in queue):
if (lower_bnd(w) >= best):
continue update(a)
cost = compute cost(w)
atomic:
if cost < best:
best = cost

_ bestson=w /

29

prune?(a)

Parallel-Sequential Equivalence?

: bound 0 bound: 5
best: 2
best soln:
/ parallel-for (w in queue): brune?(a)
if (lower_bnd(w) >= best): '
continue update(a)
cost = compute cost(w) -
atomic: prune?(b)
if cost < best: update(b)

best = cost

\ best_soln=w

30

Parallel-Sequential Equivalence?

. bound: O bound: 5
queue. (b) cost: 2 (c) cost: 9
best: 2

best soln:

/ parallel-for (w in queue):
if (lower_bnd(w) >= best):
continue
cost = compute cost(w)
atomic:
if cost < best:
best = cost

\ best_soln=w

31

Parallel-Sequential Equivalence?

: bound: O bound: 5
©) o'
best: 2 ,
best_soln: »
i e —
Sequential program EEEEC
always finds prune?(b)
best _soln = (a). update(b)
| Sl prune?(c
\\ _ . V2 Prune’?(

32

Parallel-Sequential Equivalence?

. bound: 1 bound: 0 bound: 5
gg:: eo; C) cost: 2 (b) cost: 2 (c) cost: 9

best soln: ¢

/ parallel-for (w in queue):
if (lower_bnd(w) >= best):
continue
cost = compute cost(w)
atomic:
if cost < best:
best = cost

_ bestsoln=w

33

Parallel-Sequential Equivalence?

. bound: 1 bound: 0 bound: 5
gg:: eo; C) cost: 2 (b) cost: 2 (c) cost: 9

best soln: ¢

/ parallel-for (w in queue):
if (lower_bnd(w) >= best):
continue
cost = compute cost(w)
atomic:
if cost < best:
best = cost

_ bestsoln=w

34

prune?(a)

Parallel-Sequential Equivalence?

queue: NEY bound: 1 (b) bound: 0 (c) bound: 5

best: 2 SRl & cost: 2 cost: 9
best soln:
pa rallel-for (W in queue):“\‘* une?(a
if (lower_bnd(w) >= best):
continue prune?(b)
cost = compute_cost(w)
atomic: update(b)
if cost < best:
best = cost

\ best_soln=w

35

Parallel-Sequential Equivalence?
queue: NEY bound: 1 (b) bound: 0 (c) bound: 5

best: 2 SRl & cost: 2 cost: 9
best soln:
'/’pa rallel-for (w in queue):\‘* m—e
if (lower_bnd(w) >= best):
continue prune?(b)
cost = compute_cost(w)
atomic: update(b)
if cost < best:
best = cost

\ best_soln=w

36

Parallel-Sequential Equivalence?

. bound: 1 bound: 0 bound: 5
queue: IC) cost: 2 (b) cost: 2 (c) cost: 9

best: 2
best soln:
“parallel-for (w in queue);‘“ m——
if (lower_bnd(w) >= best):
continue prune?(b)
cost = compute_cost(w)
atomic: update(b)

iIf cost < best:
| best = cost |
. bestsoln=w UpeleE)

37

Parallel-Sequential Equivalence?

: bound: 1 bound: O bound: 5
best: 2 .
best_soln: ¢+ —
g R —
Parallel version
can also find
best_soln = (b).
\\ _ . 4

38

Parallel-Sequential Equivalence?

» Parallel and sequential not equivalent.
Claim: But parallelism is correct.

parallel-for (w in queue):
if (lower_bnd(w) >= best):
continue
cost = compute_cost(w)
atomic:
if cost < best:
best = cost
best soln =w

Parallel-Sequential Equivalence?

» Parallel and sequential not equivalent.
Claim: But parallelism is correct.

Some nondeterminism is okay.

Specification for the parallelism
must indicate intended or
algorithmic nondeterminism.
"if cost < best: |

best = cost
best soln =w

NDSEQ Specification

» Use nondeterministic sequential (NDSEQ)
version of program as spec for parallelism.

parallel-for (w in queue): nondet-for (w in queue):
if (lower _bnd(w) >= best): if (lower _bnd(w) >= best):
continue continue
cost = compute_cost(w) cost = compute_cost(w)
atomic:
if cost < best: if cost < best:
best = cost best = cost
best_soln = w ~ best_soln=w

NDSEQ Specification

Allow sequential code to

Vers perform iterations in a allelism.
nondeterministic order.

/ parallel-for (w in queue): =/ nondet-for (w in queue);

if (lower _bnd(w) >= best): if (lower _bnd(w) >= best):
continue continue
cost = compute_cost(w) cost = compute_cost(w)
atomic:
if cost < best: if cost < best:
best = cost best = cost

\ best soln =w / \ best soln =w J

42

NDSEQ Specification

» Specifies:
For every parallel execution, there must exist
an NDSEQ execution with the same result.

parallel-for (w in queue): nondet-for (w in queue):
if (lower _bnd(w) >= best): if (lower _bnd(w) >= best):
continue continue
cost = compute_cost(w) cost = compute_cost(w)
atomic:
if cost < best: if cost < best:
best = cost best = cost
best_soln =w / _ best _soln=w

Parallel-NDSEQ Equivalence?

) bound: 5

. bound: 1 bound: 0
ueue: a b
N (@) (b) cost: 9

t: 2 :
best: 2 COS cost: 2

best soln:

(c

Parallel:

» No equivalent

i) sequential execution.

» An equivalent
NDSEQ execution?

update(a)

44

Parallel-NDSEQ Equivalence?

. bound: 1 bound: O bound: 5
eue: a
828:2 a) cost: 2 (b) cost: 2 (c) cost: 9

best soln:

Parallel: NDSEQ:
prune?(b

update(b)

prune?(a

prune?(b
Equivalent.

update(b prune?(a

prune?(c update(a

update(a

prune?(c)

45

NDSEQ Specification

Does this NDSEQ specification really
capture correctness of the parallelism?

parallel-for (w in queue): nondet-for (w in queue):
if (lower _bnd(w) >= best): if (lower _bnd(w) >= best):
continue continue
cost = compute_cost(w) cost = compute_cost(w)
atomic:
if cost < best: if cost < best:
best = cost best = cost
best soln =w best soln=w

Recall: Our Approach

» Use sequential but nondeterministic
specification for a program’s parallelism.
User annotates intended nondeterminism.

Can address functional
correctness without

Parallelism correct if
adds no unintended

nondeterminism. parallel interleavings.

Nondeterministic
but sequential
program/spec

Functional
specification

Parallel
program

Recall: Our Approach

» Use sequential but nondeterministic
specification for a program’s parallelism.
User annotates intended nondeterminism.

Can address functional
correctness without

Prove independently
of complex functional

parallel interleavings.

correctness.

'Nondeterministic
but sequential
program/spec

Functional
specification

Parallel
program

Parallel-NDSEQ Equivalence?

. bound: 2 bound: 2 bound: 5
eue:
ggsttf - C) cost: 2 (b) cost: 2 (c) cost: 9

best soln: ¢

/ parallel-for (w in queue):
if (lower_bnd(w) >= best):
continue
cost = compute cost(w)
atomic:
if cost < best:
best = cost

. bestsoln=w

49

Parallel-NDSEQ Equivalence?

. bound: 2 bound: 2 bound: 5
eue:
828: - C) cost: 2 (b) cost: 2 (c) cost: 9

best soln: ¢

/ parallel-for (w in queue):
if (lower_bnd(w) >= best):
continue prune?(b)
cost = compute_cost(w)
atomic:
if cost < best:
best = cost

\ best_soln=w

50

prune?(a)

Parallel-NDSEQ Equivalence?

(b) bound: 2

queue: [E) ngtr_‘dziz
best: 2 '

(c) bound: 5

cost: 2 cost: 9

best_soln: e=—
“parallel-for (w in queue): une?(a
if (lower_bnd(w) >= best):
continue prune?(b)
cost = compute cost(w)
atomic: update(a)
if cost < best:
best = cost

\ best soln=w /

51

Parallel-NDSEQ Equivalence?

(b) bound: 2 (c) bound: 5

queue: [§E) ngtr_‘dz:z
best: 2 .

cost: 2 cost: 9

best soln; e=——
“parallel-for (w in queue). —
if (lower_bnd(w) >= best):
continue prune?(b)

cost = compute cost(w)
atomic: update(a)
if cost < best: update(b)
best = cost

\ best_soln=w

52

Parallel-NDSEQ Equivalence?

bound: 2
cost: 2

(b) bound: 2 (c) bound: 5

queue: [E)

cost: 2 cost: 9

best: 2
best soln: e=——
“parallel-for (w in queue): —y
iIf (lower_bnd(w) >= best):
continue prune?(b)
cost = compute_cost(w)
atomic: update(a)
if cost < best: update(b)

| best = cost |
_ bestson=w

53

Parallel-NDSEQ Equivalence?

bound: 2 bound: 2 bound: 5
gz:tu 92 C) cost: 2 (b) cost: 2 (c) cost: 9

best soln:

Parallel code can] Prune?(a)
avoid pruning by / prune?(b)

interleaving iterations. / update(a)

NDSEQ version must update(b)

.,\\ prune ?lther (a) orﬁb)./
54

Parallel-NDSEQ Equivalence?

bound: 2 bound: 2 bound: 5
gz:tu 92 C) cost: 2 (b) cost: 2 (c) cost: 9

best soln:

Parallel code can] Prune?(a)
avoid pruning by / prune?(b)

interleaving iterations. / update(a)

NDSEQ should have update(b)

.,\\ freedoin to not prtirje.)
= _

NDSEQ Specification

Allows NDSEQ version to

nondeterministically not prune
when pruning is possible.

/ parallel-for (w in queue): |/ nondet-for (w in queue):
if (lower_bnd(w) >= best): if (lower_bnd(w) >= best):
continue if (*): continue
cost = compute cost(w) cost = compute cost(w)
atomic:
if cost < best: if cost < best:
best = cost best = cost

\ best_soln = w / \ best_soln = w /

56

NDSEQ Specification

» Claim: NDSEQ code a good specification
for the correctness of the parallelism.

parallel-for (w in queue): nondet-for (w in queue):
if (lower_bnd(w) >= best): if (lower_bnd(w) >= best):
continue if (*): continue
cost = compute cost(w) cost = compute_cost(w)
atomic:
if cost < best: if cost < best:
best = cost best = cost
best soln =w best soln=w

Recall: Our Approach

» Use sequential but nondeterministic
specification for a program’s parallelism.
User annotates intended nondeterminism.

Can address functional
correctness without

Prove parallel correctness
independent of complex

functional correctness. parallel interleavings.

Nondeterministic
but sequential
program/spec

Functional
specification

Parallel
program

NDSEQ Functional Correctness

» Claim: much easier
Consider recursive Boolean programs
Consider Model Checking: Reachability

Parallel Programs

pushdown system with multiple stacks
Undecidable [Ramalingam '00]

Nondeterministic sequential programs

pushdown systems
Decidable [Finkel et al. '97, Bouajjani et al. '97, and others]

59

Outline

» Overview
» Motivating Example

» Nondeterministic Sequential (NDSEQ)
Specifications for Parallel Correctness

» Proving Parallel Correctness
» Future Work

» Conclusions

60

NDSEQ Specification

» Specifies:
For every parallel execution, there exists an
NDSEQ execution with the same result.

parallel-for (w in queue): nondet-for (w in queue):
if (lower_bnd(w) >= best): if (lower_bnd(w) >= best):
if (*): continue if (*): continue
cost = compute cost(w) cost = compute_cost(w)
atomic: atomic:
if cost < best: if cost < best:
best = cost best = cost
best soln =w / \ best soln =w

Proving NDSEQ Equivalence
» Prove: For every parallel execution, there is
an NDSEQ one yielding the same result.

Parallel:
prune?(a)

prune?(b)

update(b)

prune?(c

update(a)
best_soln: (b)
62

Proving NDSEQ Equivalence

» Prove: For every parallel execution, there is
an NDSEQ one yielding the same result.

Parallel: NDSEQ:
prune?(a prune?(b)

update(b

prune?(b)
update(b)

prune?(c)

prune?(b)

prune?(c prune?(a)

update(a)
best soln: (b) best _soln: (b)

update(a)

63

Proving NDSEQ Equivalence

» Prove: For every parallel execution, there is
an NDSEQ one yielding the same result.

Parallel: NDSEQ:
prune?(a)

prune?(b

update(b

II

prune?(b
update(b) prune?(c)

prune?(c prune?(a)

update(a)
best soln: (b) best _soln: (b)

update(a)

64

Proving NDSEQ Equivalence

> Can we prove that such a

L rearrangement is always possible?

Parallel: NDSEQ:
prune?(a)

prune?(b

update(b

II

prune?(b
update(b) prune?(c)

prune?(c prune?(a)

update(a)
best soln: (b) best _soln: (b)

update(a)

65

Proving NDSEQ Equivalence

» Is it always possible to move a prune?
check later in a parallel execution
without changing the result?

prune?(a) prune?(b)

prune?(b) update(b)
——
——

update(a)

update(a)

66

Proving NDSEQ Equivalence

» Is it always possible to move a prune?
check later in a parallel execution
without changing the result?

Yes — if the check does not prune.

prune?(a) prune?(b)

prune?(b) update(b)
——
——

update(a)

update(a)

67

Proving NDSEQ Equivalence

» (1) Can prune?(x) move past prune?(y).

state: O,
| L}

if (lower_bnd(x) >= best):

if (*): continue

) —

if (lower_bnd(y) >= best):
if (*): continue

state: O,
68

Proving NDSEQ Equivalence

» (1) Can prune?(x) move past prune?(y).

state: O, state: O,
if (lower_bnd(x) >= best): if (lower_bnd(y) >= best):
if (*): continue | if (*): continue
if (lower_bnd(y) >= best): if (lower _bnd(x) >= best):
if (*): continue ~if (*): continue

state: O, state: O,
69

Proving NDSEQ Equivalence

» (2) Can prune?(x) move past update?(y).

state: O,
| L}

if (lower_bnd(x) >= best);
if (*): continue
—

best =~
best soln =~

state: O,
70

Proving NDSEQ Equivalence

» (2) Can prune?(x) move past update?(y).

state: O, state: O,
if (lower_bnd(x) >= best): best =*
if (*): continue best soln ="~
best="* if (lower_bnd(x) >= best):
best soln ="~ | ~if (*): continue

state: O, state: O,
71

Proving NDSEQ Equivalence

» This is proof by reduction [Lipton "75].

[EImas, et al., POPL 09] has proved
atomicity by reduction with SMT solvers.

parallel-for (w in queue):
if (lower _bnd(w) >= best): Right-
if (*): continue mover
cost = compute_cost(w)
atomic: Atomic
if cost < best:
best = cost

best_soln = w
Py

Outline

» Overview
» Motivating Example

» Nondeterministic Sequential (NDSEQ)
Specifications for Parallel Correctness

» Proving Parallel Correctness

» Future Work + Conclusions

73

Future Work

» Prove parallel-NDSEQ equivalence for
real benchmarks.
Automated proofs using SMT solving.

» Combine with tools for verifying sequential
programs with nondeterminism.

Model checking techniques (e.g., CEGAR)

» Also interested in dynamically checking
NDSEQ specifications.

74

NDSEQ and Debugging

» Given parallel execution exhibiting error:

Can we produce an NDSEQ trace exhibiting
the same wrong behavior?

If so, bug is sequential and programmer can
debug on a sequential (but NDSEQ) trace.

Can we efficiently produce NDSEQ trace
given static proof of parallel correctness?

» Dynamically checking NDSEQ specs?

|deally, efficiently: (1) finds equivalent
NDSEQ trace, or (2) localizes parallel bug.

75

76

Questions?

Email jburnim@cs.berkeley.edu

