Complexity of Linear Regions in Deep Networks

A. Formal Statement of Results for General
Piecewise Linear Activations

In §5] we stated our results in the case of ReLU activation,
and now frame these results for a general piecewise linear
non-linearity. We fix some notation. Let ¢ : R — R be
a continuous piecewise linear function with 7" breakpoints
&= —0 < fl <y < e <§T <§T+1 = 00. That is,
there exist p;, ¢; € R so that

€ [&,&+1]

The analog of Theorem 3] for general ¢ is the following.

= o(t) = qit +pj, ¢j # ¢j+1. (1)

Theorem 6. Let ¢ : R — R be a continuous piecewise
linear function with T breakpoints §& < --- < &r as in
(TI). Suppose N is a fully connected network with input
dimension n;y,, output dimension 1, random weights and
biases satisfying Al and A2 above, and non-linearity ¢.

Let J, .. 4. be the k x ny, Jacobian of the map © —

(z1(2),...,zk(2)),

1/2
Mt @) 2= det (e (@) (e (@)7)

and write py_. ..., for the density of the joint distribution
of the biases b, ,...,b,,. We say a neuron z is good at x
if there exists a path of neurons from z to the output in the
computational graph of N so that each neuron z along this
path is open at x (i.e. ¢' (Z(x) — bz) # 0).

Then, for any bounded, measurable set K C R™» and any
k=1,...,Nn, the average (ni, — k)—dimensional volume

E [VOlninfk(BN,k N K)}

of By i, inside K is, in the notation of (0),

Z Z / [Vis o) ()]da, (12)

distinct neurons 01yt =1
21,0002k iD N

where YZ(E”’ ’gi"")(x) equals

[Tar oz @ posy by (21 () = Gy 20() — &)
(13)
multiplied by the indicator function of the event that z; is
good at x for every j.

Note that if in the definition of ¢ we have that the pos-
sible values ¢'(t) € {qo, ..., qr} do not include 0, then we
may ignore the event that z; are good at x in the definition
of Y(fil sy ).

21432k
Corollary 7. With the notation and assumptions of Theo-

rem[6] suppose in addition that the weights and biases are
independent. Fix k € {1,...,nin} and suppose that for

every collection of distinct neurons z1, . . . , 2, the average
magnitude of the product of gradients is uniformly bounded.:

k
_swp EN[IVE @) < Cha- (14)
input;’a;.} " j=1
Then we have the following upper bounds
E [vol,, _ K
[VO Min k(B./\/]C N )] (15)

vol,, (K)

in

- (#{nezrons}) (T . chmd(]bias)k,

where T is the number of breakpoints in the non-linearity ¢

of N (see (1)) and

Chias = supsup pp_ (D).
z beR

We prove Corollary [7]in §D]and state a final corollary of
Theorem 3

Corollary 8. Suppose N is as in Theorem|[3|and satisfies the
hypothesis (14) in Corollary[7|with constants Ch;as, Cgrad-
Then, for any compact set K C R™» let x© be a uniform
point in K. There exists ¢ > 0 independent of K so that

cT

ChiasCaraa#{neurons}’

E [distance(x, Byr)] >
where, as before, T is the number of breakpoints in the
non-linearity ¢ of .

We prove Corollary [8]in §E]| The basic idea is simple. For
every € > 0, we have

E [distance(x, Byr)] > €P (distance(x, Byr) > €),
with the probability on the right hand side scaling like
1 —vol,,, (Te(Ba) N K)/VOlnin(K),

where T.(Bys) is the tube of radius e around By. We ex-
pect that its volume like evol,, —1(By). Taking e =
¢/#{neurons} yields the conclusion of Corollary 8]

B. Outline of Proof of Theorem

The purpose of this section is to give an intuitive explanation
of the proof of Theorem[3] We fix a non-linearity ¢ : R — R
with breakpoints £ < -+ < &r (as in (TI))) and consider a
fully connected network A with input dimension n;, > 1,
output dimension 1, and non-linearity ¢. For each neuron z
in N/, we write

{(z) := layer index of z (16)
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and set
Sz = {xERnin |Z(I)7bz € {Elv"'7£T}}' (17)
‘We further B
S.:=5.Nn0, (18)
where
L nin | ¥V j=1,...,d I neuron z with
0= {”f ER™™ 1 pi)=jst ¢'<z<z>b2)¢o} :

Intuitively, the set .S, is the collection of inputs for which
the neuron z turns from on to off. In contrast, the set O is
the collection of inputs z € R™» for which A/ is open in
the sense that there is a path from the input to the output
of NV so that all neurons along this path compute are not
constant in a neighborhood . Thus, S, is the set of inputs
at which neuron z switches between its linear regions and
at which the output of neuron z actually affects the function
computed by V.

We remark here that O = () if in the non-linearity ¢ there are
no linear pieces at which the slopes on ¢ equals 0 (i.e. g; # 0
for all j in the definition (TT)) of ¢). If, for example, ¢ is
ReLU, then O need not be empty.

The overall proof of Theorem [3|can be divided into several
steps. The first gives the following representation of Bs.

Proposition 9. Under Assumptions Al and A2 of Theorem
B3] we have, with probability 1,
U 3.

neurons z

The precise proof of Proposition [9] can be found in
below. The basic idea is that if for all y near a fixed
input x € R™» none of the pre-activations z(y) — b,
cross the boundary of a linear region for ¢, then x ¢ By.
Thus, By C Uz S.. Moreover, if a neuron z satisfies
z(x) — b, = S; for some i but there are no open paths
from z to the output of A for inputs near x, then z is
dead at = and hence does not influence A at . Thus, we

expect the more refined inclusion By C |J, S.. Finally, if
T € gz for some z then = € B unless the contribution
from other neurons to VA (y) for y near z exactly cancels
the discontinuity in V z(x). This happens with probability 0.

The next step in proving Theorem [3]is to identify the por-
tions of Br of each dimension. To do this, we write for any
distinct neurons z1, . . ., 2k,

k
Szl,...,zk = m SZj'
j=1

The set §le,zk is, intuitively, the collection of inputs at
which z;(x) —b., switches between linear regions for ¢ and

at which the output of A/ is affected by the post-activations
of these neurons. Proposition[9]shows that we may represent
B as a disjoint union

MNin

By = By,
k=1

where

C

U 5;zl.,...,zk. N U 5;z

distinct neurons
Z1seees Zk

By =

In words, By i, is the collection of inputs in O at which ex-
actly k neurons turn from on to off. The following Proposi-
tion shows that B 1, is precisely the “(n;, — k)-dimensional
piece of Bar” (see (3)).

Proposition 10. Fixk = 1,...,ni,, and k distinct neurons
21,...,2, in N. Then, with probability 1, for every x €
By i there exists a neighborhood in which By i, coincides
with a (ny, — k)—dimensional hyperplane.

We prove Proposition [I0]in §C.2| The idea is that each
Sz ...z, 18 piecewise linear and, with probability 1, at
every point at which exactly the neurons zy, ..., 2, con-
tribute to Bys, its co-dimension is the number of linear
conditions needed to define it. Observe that with prob-
ability 1, the bias vector (b.,,...,b.,. ) for any collec-
tion z1, ..., 241 of distinct neurons is a regular value for
x> (z1(x),...,2k+1(x)). Hence,

Vol —k (Szlwwzk-%—l) = 0.

Proposition[T0|thus implies that, with probability 1,

Vol —1 By k) = Z volp,, —k (521,...,zk> .

distinct neurons
2150092k

The final step in the proof of Theorem 3]is therefore to prove
the following result.

Proposition 11. Let 21, ..., 2y be distinct neurons in N
Then, for any bounded, measurable K C R™»,

E [volmn—k <§z1zk)}

T
- [ ¥ spae)e

Z1,..47’L'k=1
(Siy0nSit) .
where Y, 1L s defined as in (13).

We provide a detailed proof of Proposition [I1]in §C.3] The
intuition is that the image of the volume element dx under
x + z(x) — S; is the volume element

||JZ1,..-,zk (z)|| dx
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from (T3). The probability of an infinitesimal neighborhood
dz of = belonging to a (n;, — k)-dimensional piece of B
is therefore the probability

,zk(x) — Szk)

that the vector of biases (b.,, j = 1,...,k) belongs to
the image of dz under map (z;(z) — S;,,j =1,..., k) for
some collection of breakpoints S;;. The formal argument
uses the co-area formula (see and (30)).

C. Proof of Theorem
C.1. Proof of Proposition [9]

Recall that the non-linearity ¢ : R — R is continuous and

piecewise linear with T" breakpoints {1 < - - - < &7, so that,
with §g = —o0, {ry1 = 00, we have
€ (&, &ir1) = o) =at+p

with ¢; # g;+1. For each x € R™» write

zF ={z]2(x) — b, € (&,&+1) and ¢; # O for some i }
zZ; —{z|z fb € fz,§,+1)andqz—0f0rsomez}
70 = {z | 2(z) — b, = & for some i}

Intuitively, Z ; are the neurons that, at the input x are open
(i.e. contribute to the gradient of the output A/(z)) but do
not change their contribution in a neighborhood of z, Z
are the neurons that are closed, and Zg are the neurons that,
at x, produce a discontinuity in the derivative of /. Thus,
for example, if ¢ = ReLU, then

Zy = {z | sen(z(2) — b2) = #},

We begin by proving that By C J, S, by checking the
contrapositive

x € {+,—,0}.

(U §> C B (19)

~ c
Fix z € (Uz SZ) . Note that ZF are locally constant

in the sense that there exists € > 0 so that for all y with
lly — || < e, we have

Z; CZ;, ZFCZzb, Ziuz)CzZiuz). (20)
Moreover, observe that if in the definition (IT]) of ¢ none of
the slopes ¢; equal 0, then Z, = () for every y. To prove
(T9), consider any path +y from the input to the output in the
computational graph of N. Such a path consists of d + 1

neurons, one in each layer:

v = (20, 2D) ) = .

To each path we may associate a sequence of weights:

ng) := weight connecting zf/j*l) to zgj), Jj=1...,d.
We will also define
T
(4) =
dy (1‘) T zng {z(z) b (])E(fzxfwrl]}

For instance, if ¢ = ReLU, then
(j)(x) = 1.
& {29 (@) ~b. 20}’

and in general only one term in the definition of q(J )( ) is
non-zero for each z. We may write
MNin

d
=> v > [ ww

i=1  paths y:i—out j=1

Sfj )+ constant,

21
Note that if x € (UZ §Z) , then for any path ~ through a

neuron z € Zg, we have
3jst 2V ez,

This is an open condition in light of (20), and hence for all y
in a neighborhood of x and for any path ~ through a neuron
z € Z9 we also have that

Jjst 2V ez,

Thus, since the summand in vanishes identically if
yNZ, # (), we find that for y in a neighborhood of any

€ (UZ §Z) we may write

d
Yo I

paths v:i—out j=1
yczt

MNin

(y) = Z Yi
i=1

ng ) + constant.

(22)
But, again by (20), for any fixed x, all y in a neighborhood
of z and each z € Z}, we have 2 € Z, as well. Thus, in
particular,

z(x) = b, € (&, &41) = 2(y) — bz € (&, &iv1)-

Thus, for y sufficiently close to x, we have for every path in
the sum (22) that

P (y) = ¢ ().

Therefore, the partial derivatives (ON/dy;)(y) are indepen-
dent of y in a neighborhood of = and hence continuous at x.
This proves (I9). Let us now prove the reverse inclusion:

ng C By (23)
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Note that, with probability 1, we have
voly,, (82 NS,) =

for any pair of distinct neurons z1, z5. Note also that since
x — N (z) is continuous and piecewise linear, the set By
is closed. Thus, it is enough to show the slightly weaker

inclusion
Uls:\Us:

z ZHz

C By (24)

since the closure of §Z\ U2 22 Sz equals §z. Fix a neuron z

and suppose = € S\ U . Sz. By definition, we have that
for every neuron Z # z, either

zezZr or z€Z.

This has two consequences. First, by (20), the map y —
z(y) is linear in a neighborhood of . Second, in a neighbor-
hood of z, the set S, coincides with 5. Hence, combining
these facts, near x the set S, coincides with the hyperplane

{z]2(x) —b. =&}

We may take two sequences of inputs 4,7, ¥, on opposite
sides of this hyperplane so that

for some 7. (25)

lim y7 = limy, =2
n—oo n—oo
and
¢/(Z(y:f) - bz) = {qi, (]S/(Z(y;t) - bz) = {qi-1, vnv

where the index ¢ the same as the one that defines the hyper-
plane (23). Further, since B has co-dimension 1 (it is con-
tained in the piecewise linear co-dimension 1 set |, S, for
example), we may also assume that y;", iy~ & Bys. Consider
any path ~ from the input to the output of the computational
graph of A/ passing through z (so that z = 2{) € ). By
construction, for every n, we have

¢ () # a7 (yn)s

and hence, after passing to a subsequence, we may assume
that the symmetric difference

Z;Z AZ;F_ # 0 (26)
of the paths that contribute to the representation for
y, y. is fixed and non-empty (the latter since it always
contains z). For any y ¢ Bjr, we may write, for each
1= 17 «..yNin

22/()— >, qu w. @)

paths v:i—out j=1
yCzZ}f

Substituting into this expression y = y:¥, we find that there
exists a non-empty collection I' of paths from the input to
the output of AV so that

ON 8
?(yn) yn Z aj H C(j)
Yi ~el 7j=1
where
a; € {-1,1}, cﬁyj) € {qo,...,q7}.

Note that the expression above is a polynomial in the
weights of . Note also that, by construction, this polyno-
mial is not identically zero due to the condition (26). There
are only finitely many such polynomials since both a; and

(] ) range over a finite alphabet. For each such non-zero
polynomlal, the set of weights at which it vanishes has
co-dimension 1. Hence, with probability 1, the difference

gﬁf (y+) — —(yn ) is non-zero. This shows that the par-
tial derivatives g—f)f are not continuous at  and hence that
x € By O

C.2. Proof of Proposition[10]

Fix distinct neurons 21, . .., 25 and suppose € S,

,,,,, Zk
but not in S, for any z # 21, ..., zx. After relabeling, we

may assume that they are ordered by layer index:
Uz) < < l(z).

Since z € O, we also have that x ¢ S, for any z #
Z1,...,2. Thus, there exists a neighborhood U of = so
S, NU = { for every z # z1,. .., zk. Thus, there exists a
neighborhood of = on which y — 21 (y) is linear.

Hence, as explained near (23] above, gzl is a hyperplane
near z. We now restrict our inputs to this hyperplane and
repeat this reasoning to see that, near z, the set S, ., is
a hyperplane inside gzl and hence, near z, is the inter-
section of two hyperplanes in R™i». Continuing in this
way shows that in a neighborhood of z, the set S, . .,

is equal to the intersection of k hyperplanes in R™». Thus,
Sorrze\ (Uz Aot Nz) is precisely the intersection of

k hyperplanes in a ne1ghb0rh00d of each of its points. [

C.3. Proof of Proposition [11]

Let z1,...,2; be distinct neurons in N, and fix a com-
pact set K C R"=. We seek to compute the mean of

VOlp,, —k (gm,..-?z:c N K), which we may rewrite as

{z, is good at x} dVOlnin—k' (x) (28)
LNK i=1,....k

{z7 ISgOOddtI dVOln 7k( )
NK

,,,,,,
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where we’ve set

={z|zj(x)=b,;, =&, j=1,...,k}.

Note that the map = — (z1(x), . .., zx(z)) is Lipschitz, and
recall the co-area formula, which says that if ¢» € L!(R")
and g : R” — R™ with m < n is Lipschitz, then

Jod

[ @) 175(@)] dvol, (o),
R’VL
where Jg is the m x n Jacobian of g and

1g(x)]| = det ((Jg(x)) (Ja(x)T)">.

We assumed that the biases b, , . . .,
tional density

S(gzl ’agzk)

21,37k

x) dvoly,_, (z)dt (29)

equals
(30)

b., have a joint condi-

given all other weights and biases. The mean of the term
in (28) corresponding to a fixed & = (&;,,...,&;, ) over the
conditional distribution of b, , ..., b., is therefore

J.

where we’ve abbreviated b = (by,...,b;) as well as
z(x) = (z1(x), ..., zx(x)). This can rewritten as

/ db/ pbz(z(x)_é—)l{z 15gooddlz dVOan k( )
RF {z=b}NK j=1,...,k

Thus, applying the co-area formula (29), (30) shows that
the average of (28) over the conditional distribution of
bz, ,bs; is precisely

/ Y., .z (x)de.
K

Taking the average over the remaining weighs and biases,
we may commute the expectation E [-] with the dz integral
since the integrand is non-negative. This completes the
proof of Proposition [T T} O

b, (b) [

{z] is good atac} dVOlnm—k( )
{z—b=¢}NK

D. Proof of Corollary[7|

We begin by proving the upper bound in (T3). By Theorem
E [vol (By,x N K)] equals

> > [

distinct neurons 21,...,2k i1,...,ix=1

571 ..... glk)

z17

(«)] (@)de,

where, as in (T3), Y}(f,” ,zf”‘)( ) is

121,z (@] oy (21 (2) =

times the indicator function of the even that z; is good
at x for every j. When the weights and biases of N are
independent, we may write pp. ...p. (b1,...,bi) as

( sup  sup pp,
neurons z beR

o) "

Note that

2 () (Larz

where for any v; € R"

Ta. ()T = Gram (V2 (z), ..., Va(a)),

Gram(vi, ..., vg)i; = (vi,v;)

is the associated Gram matrix. The Gram identity says that

1/2
det (le,...,z;c (@) (T . 2 (:I:))T) equals

IVzi(z) Ao A V()]

which is the the k-dimensional volume of the parallelopiped
in R™» spanned by {Vz;(z), j =1,...,k}. We thus have

1/2 k
det (Top,o (#) (e, (2)) H IV

The estimate (I4) proves the upper bound (13). For the
special case of ¢ = ReLU we use the AM-GM inequality
and Jensen’s inequality to write

k

<E

w\r—

k k
[11v2() LT

“-

Il
o

E [IV]].

=

J

Therefore, by Theorem 1 of Hanin & Nica (2018)), there
exist Cp, Cy > 0 so that
C d 1 k
< <cle 22 ) .

This completes the proof of the upper bound in (I3). To
prove the power bound, lower bound in (T3)) we must argue
in a different way. Namely, we will induct on k and use the
following facts to prove the base case k = 1:

k
[11v2(@)
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1. At initialization, for each fixed input x, the random
variables {1(,(;)>5,} } are independent Bernoulli ran-
dom variables with parameter 1/2. This fact is proved
in Proposition 2 of [Hanin & Nica| (2018)). In particular,
the event {z is good at 2}, which occurs when there
exists alayer j € ¢(z) + 1,...,din which z(z) < b,
for every neuron, is independent of {z(z), b.} and
satisfies

d
P(zis good at ) > 1 —22*7”. 31)
j=1

2. At initialization, for each fixed input x, we have

e eyt < el SR

SE [2(2)?] = - —i—Zabj, (32)
j=1

where O'b := Var[biases at layer j]. This is Equation

(11)in the proof of Theorem 5 from Hanin & Rolnick
(2018]).

3. Atinitialization, for every neuron z and each input z,
we have

E[IV2(2))?] =2 (33)
This follows easily from Theorem 1 of Hanin|(2018).

4. At initialization, for each 1 < j < n;, and every
r € RMin

s (e (1)) -

plus O (Eé(z) L ) where n; is the width of the j®
.7

hidden layer and the implied constant depends only on
the 4™ moment of the measure . according to which
weights are distributed. This estimate follows immedi-
ately by combining Corollary 26 and Proposition 28 in
Hanin & Nical (2018).

£(2)
5 1
—-> — 64
2 = TLj

We begin by proving the lower bound in (I3) when k = 1.
We use (31)) to see that E [vol,,,, —1 (Ba N K)] is bounded
below by

(1_2271]) > [ BUT@ (el da

neurons z

Next, we bound the integrand. Fix € R™» and a
parameter 7 > 0 to be chosen later. The integrand
E[||Vz(z)|| pb. (2(x))] is bounded below by

E [[IV2(@)] pb. (2(2)) 1 jz(a)y <n]

> [|;|n<f po. (b )} E [[IV2(@)| 1(jz(2)1<ny] »

which is bounded below by

[mf pb. (b )} [E[Vz@)] = E[IV2(@) L{j2()y5n)]

b]<

Using Cauchy-Schwarz, the term E [[|V2(2) || 1{12(2)[154]
is bounded above by

(EUV=@IPE (@) > )

which using (33) and (32) together with Markov’s inequality,
is bounded above by

1/2

2 ||z 3o
nt /2 Nin ; bj
Next, using Jensen’s inequality twice, we write

log E [[|V2(2) ] > 3 [los (1 V2(2)])]

1 Min 9z 2
= —E |log ( (x))
2 ; a.%'j

Y
|

where in the last inequality we applied (34)). Putting this all
together, we find that exists ¢ > 0 so that

E[|V2(2)] oo, (2(2))] > c [f oo (b >} ,

b]<
where
lal® | n o ) s ro(S9 )
n > 4|l Sho 3=t = 7).
Nin . 7
Jj=1

In particular, we may take

2 d
supgex 17|l +Zag Z] 1y
J
i—1

Nin

for C sufficiently large. This completes the proof of the
lower bound in when £ = 1. To complete the proof
of Corollary|/] suppose we have proved the lower bound in
(T3) for all ReLU networks N and all collections of k£ — 1
distinct neurons. We may assume after relabeling that the
neurons z1, ..., zx are ordered by layer index:

0(z1) <o < L(zp).
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With probability 1, the set S,, C R™~ is piecewise linear,
co-dimension 1 with finitely many pieces, which we denote

by P,. We may therefore rewrite vol,,, _j (gzl ,,,,, 2 N K )
as

ZVOlnin—k (gzz,...,zk NnP,N K) .

We now define a new neural network A,, obtained by
restricting A" to P,. The input dimension for A, equals
nin — 1, and the weights and biases of A, satisfy all the as-
sumptions of Corollary[7] We can now apply our inductive
hypothesis to the & — 1 neurons zs, . . ., 2, in N, and to the
set K N P,. This gives

k—1
> <inf inf pyp, (b)) E [vol,,, —1 (Pa N K)].
z [b|<n

Summing this lower bound over « yields

k-1

> (inf inf pp, (b)) E [Volnm,l (Szl N K)} .
z [b|<n

Applying the inductive hypothesis once more completes the

proof. ]

E. Proof of Corollary

We will need the following observation.

Lemma 12. Fix a positive integer n > 1, and let S C
R™ be a compact continuous piecewise linear submanifold
with finitely many pieces. Define Sog = () and let Sy, be
the union of the interiors of all k-dimensional pieces of
S\(So U ++- U Sk_1). Denote by T.(X) the e—tubular
neighborhood of any X C R". We have

vol, (T:(S)) < an_;ﬁ"—k

where wg := volume of ball of radius 1 in R?.

Proof. Define d to be the maximal dimension of the linear
pieces in S. Let © € T.(S). Suppose = ¢ T.(S}) for all
k =0,...,d— 1. Then the intersection of the ball of radius
¢ around s with S is a ball inside Sq = U C R?. Using the
convexity of this ball, there exists a point y in Sy so that
the vector  — y is parallel to the normal vector to Sy at y.
Hence, z belong to the normal e-ball bundle B.(N*(Sy4))
(i.e. the union of the fiber-wise e-balls in the normal bundle
to Sy). Therefore, we have

voly, (T:(S)) < vol, (B:(N*(S4))) + vol, (T (S<a-1)),

where we abbreviated S<g4_; := Ui;é S} Using that

Vol (B:(N*(S4))) = vola(Sa) vol—a(B(R"™%))
= volg(Sq)e™ Ywp_g

and repeating this argument d — 1 times completes the proof.
O

We are now ready to prove Corollary 2] Let z € K =
[0,1]™» be uniformly chosen. Then, for any £ > 0, using
Markov’s inequality and Lemma([I2] we have

E [distance(z, By)]
> ¢P (distance(x, By) > ¢)
= ¢ (1 — P (distance(x, By) < ¢€))
= (1 = E[voly,, (Tt (Bx))))

> ¢ (1 _ anm_kgnm—k]E [volnmk(BN7k)]>

k=1

v

€ (1 - Z(Ogradcbias€#{neur0ns})k)
k=1
> £ (1 — C'CyradChiasc#{neurons})

for some C’ > 0. Taking € to be a small constant times
1/(Cgraa#{neurons}) completes the proof. O
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