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Abstract
Normalizing flows and autoregressive models
have been successfully combined to produce
state-of-the-art results in density estimation, via
Masked Autoregressive Flows (MAF) (Papa-
makarios et al., 2017), and to accelerate state-
of-the-art WaveNet-based speech synthesis to
20x faster than real-time (Oord et al., 2017),
via Inverse Autoregressive Flows (IAF) (Kingma
et al., 2016). We unify and generalize these ap-
proaches, replacing the (conditionally) affine uni-
variate transformations of MAF/IAF with a more
general class of invertible univariate transforma-
tions expressed as monotonic neural networks.
We demonstrate that the proposed neural autore-
gressive flows (NAF) are universal approxima-
tors for continuous probability distributions, and
their greater expressivity allows them to better
capture multimodal target distributions. Experi-
mentally, NAF yields state-of-the-art performance
on a suite of density estimation tasks and outper-
forms IAF in variational autoencoders trained on
binarized MNIST. 1

1. Introduction
Invertible transformations with a tractable Jacobian, also
known as normalizing flows, are useful tools in many ma-
chine learning problems, for example: (1) In the context
of deep generative models, training necessitates evaluat-
ing data samples under the model’s inverse transformation
(Dinh et al., 2017). Tractable density is an appealing prop-
erty for these models, since it allows the objective of interest
to be directly optimized; whereas other mainstream methods
rely on alternative losses, in the case of intractable density
models (Kingma & Welling, 2014; Rezende et al., 2014), or
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implicit losses, in the case of adversarial models (Goodfel-
low et al., 2014). (2) In the context of variational inference
(Rezende & Mohamed, 2015), they can be used to improve
the variational approximation to the posterior by parameter-
izing more complex distributions. This is important since
a poor variational approximation to the posterior can fail
to reflect the right amount of uncertainty, and/or be biased
(Turner & Sahani, 2011), resulting in inaccurate and un-
reliable predictions. We are thus interested in improving
techniques for normalizing flows.

Recent work by Kingma et al. (2016) reinterprets autore-
gressive models as invertible transformations suitable for
constructing normalizing flows. The inverse transformation
process, unlike sampling from the autoregressive model, is
not sequential and thus can be accelerated via parallel com-
putation. This allows multiple layers of transformations to
be stacked, increasing expressiveness for better variational
inference (Kingma et al., 2016) or better density estimation
for generative models (Papamakarios et al., 2017). Stacking
also makes it possible to improve on the sequential condi-
tional factorization assumed by autoregressive models such
as PixelRNN or PixelCNN (Oord et al., 2016), and thus
define a more flexible joint probability.

We note that the normalizing flow introduced by Kingma
et al. (2016) only applies an affine transformation of each
scalar random variable. Although this transformation is
conditioned on preceding variables, the resulting flow can
still be susceptible to bad local minima, and thus failure to
capture the multimodal shape of a target density; see Figure
1 and 2.

1.1. Contributions of this work

We propose replacing the conditional affine transformation
of Kingma et al. (2016) with a more rich family of trans-
formations, and note the requirements for doing so. We
determine that very general transformations, for instance
parametrized by deep neural networks, are possible. We
then propose and evaluate several specific monotonic neural
network architectures which are more suited for learning
multimodal distributions. Concretely, our method amounts
to using an autoregressive model to output the weights of
multiple independent transformer networks, each of which
operates on a single random variable, replacing the affine
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Figure 1. Energy function fitting using IAF.
Left: true distribution. Center: IAF-affine. Right: IAF-DSF.

Figure 2. Density estimation using MAF.
Left: true distribution. Center: MAF-affine. Right: MAF-DSF.

transformations of previous works.

Empirically, we show that our method works better than
the state-of-the-art affine autoregressive flows of Kingma
et al. (2016) and Papamakarios et al. (2017), both as a
sample generator which captures multimodal target densities
with higher fidelity, and as a density model which more
accurately evaluates the likelihood of data samples drawn
from an unknown distribution.

We also demonstrate that our method is a universal approxi-
mator on proper distributions in real space, which guaran-
tees the expressiveness of the chosen parameterization and
supports our empirical findings.

2. Background
A (finite) normalizing flow (NF), or flow, is an invertible
function fθ : X → Y used to express a transformation be-
tween random variables 2. Since f is invertible, the change
of variables formula can be used to translate between densi-
ties pY (y) and pX(x):

pY (y) =

∣∣∣∣
∂f(x)

∂ x

∣∣∣∣
−1
pX(x) (1)

The determinant of f ’s Jacobian appears on the right hand
side to account for the way in which f can (locally) ex-
pand or contract regions of X , thereby lowering or raising
the resulting density in those regions’ images in Y . Since

2 We use x and y to denote inputs and outputs of a function,
not the inputs and targets of a supervised learning problem.

the composition of invertible functions is itself invertible,
complex NFs are often formed via function composition (or
“stacking”) of simpler NFs.

Normalizing flows are most commonly trained to produce
an output distribution pY (y) which matches a target dis-
tribution (or, more generally, energy function) ptarget(y)
as measured by the KL-divergence KL(pY (y)||ptarget(y)).
When X or Y is distributed by some simple distribution,
such as uniform or standard normal, we call it an unstruc-
tured noise; and we call it a structured noise when the distri-
bution is complex and correlated. Two common settings are
maximum likelihood and variational inference. Note that
these two settings are typically viewed as optimizing differ-
ent directions of the KL-divergence, whereas we provide
a unified view in terms of different input and target distri-
butions. A detailed derivation is presented in the appendix
(See Section A).

For maximum likelihood applications (Dinh et al., 2017;
Papamakarios et al., 2017), ptarget(y) is typically a simple
prior over latent variable y, and f attempts to disentangle
the complex empirical distribution of the data, pX(x) into
a simple latent representation pY (y) matching the prior
(structured to unstructured) 3.

In a typical application of variational inference (Rezende
& Mohamed, 2015; Kingma et al., 2016), ptarget(y) is a
complex posterior over latent variables y, and f transforms
a simple input distribution (for instance a standard normal
distribution) over x into a complex approximate posterior
pY (y) (unstructured to structured). In either case, since pX
does not depend on θ, the gradients of the KL-divergence
are typically estimated by Monte Carlo:

∇θDKL
(
pY (y)||ptarget(y)

)

= ∇θ
∫

Y
pY (y) log

pY (y)

ptarget(y)
dy

=

∫

X
pX(x)∇θ log

pY (y)

ptarget(y)
dx (2)

Applying the change of variables formula from Equation 1
to the right hand side of Equation 2 yields:

Ex∼pX(x)
y=fθ(x)

[
∇θ log

∣∣∣∣
∂fθ(x)

∂ x

∣∣∣∣
−1
pX(x)−∇θ log ptarget(y)

]

(3)

3 It may also be possible to form a generative model from such
a flow, by passing samples from the prior ptarget(y) through f−1,
although the cost of doing so may vary. For example, RealNVP
(Dinh et al., 2017) was devised as a generative model, and its in-
verse computation is as cheap as its forward computation, whereas
MAF (Papamakarios et al., 2017) is designed for density estima-
tion and is much more expensive to sample from. For the NAF
architectures we employ, we do not have an analytic expression
for f−1, but it is possible to approximate it numerically.



Neural Autoregressive Flows

Figure 3. Difference between autoregressive and inverse autore-
gressive transformations (left), and difference between IAF and
MAF (right). Upper left: sample generation of an autoregres-
sive model. Unstructured noise is transformed into structured
noise. Lower left: inverse autoregressive transformation of struc-
tured data. Structured variables are transformed into unstructured
variables. Upper right: IAF-style sampling. Lower right: MAF-
style evaluation of structured data. ε represents unstructured noise
and s represents structured noise.

Thus for efficient training, the following operations must be
tractable and cheap:

1. Sampling x ∼ pX(x)

2. Computing y = f(x)

3. Computing the gradient of the log-likelihood of y =
f(x); x ∼ pX(x) under both pY (y) and ptarget(y)

4. Computing the gradient of the log-determinant of the
Jacobian of f

Research on constructing NFs, such as our work, focuses
on finding ways to parametrize flows which meet the above
requirements while being maximally flexible in terms of the
transformations which they can represent. Note that some
of the terms of of Equation 3 may be constant with respect
to θ 4 and thus trivial to differentiate, such as pX(x) in the
maximum likelihood setting.

Affine autoregressive flows (AAFs) 5, such as inverse au-
toregressive flows (IAF) (Kingma et al., 2016), are one

4 There might be some other parameters other than θ that are
learnable, such as parameters of pX and ptarget in the variational
inference and maximum likelihood settings, respectively.

5 Our terminology differs from previous works, and hence holds
the potential for confusion, but we believe it is apt. Under our
unifying perspective, NAF, IAF, AF, and MAF all make use of the
same principle, which is an invertible transformer conditioned on
the outputs of an autoregressive (and emphatically not an inverse
autoregressive) conditioner.

particularly successful pre-existing approach. Affine autore-
gressive flows yield a triangular Jacobian matrix, so that the
log-determinant can be computed in linear time, as the sum
of the diagonal entries on log scale. In AAFs, the compo-
nents of x and y are given an order (which may be chosen
arbitrarily), and yt is computed as a function of x1:t. Specifi-
cally, this function can be decomposed via an autoregressive
conditioner, c, and an invertible transformer, τ , as 6:

yt
.
= f(x1:t) = τ(c(x1:t−1), xt) (4)

It is possible to efficiently compute the output of c for all
t in a single forward pass using a model such as MADE
(Germain et al., 2015), as pointed out by Kingma et al.
(2016).

In previous work, τ is taken to be an affine transformation
with parameters µ ∈ R, σ > 0 output from c. For instance
Dinh et al. (2017) use:

τ(µ, σ, xt) = µ+ σxt (5)

with σ produced by an exponential nonlinearity. Kingma
et al. (2016) use:

τ(µ, σ, xt) = σxt + (1− σ)µ (6)

with σ produced by a sigmoid nonlinearity. Such transform-
ers are trivially invertible, but their relative simplicity also
means that the expressivity of f comes entirely from the
complexity of c and from stacking multiple AAFs (poten-
tially using different orderings of the variables) 7. However,
the only requirements on τ are:

1. The transformer τ must be invertible as a function of
xt.

2. dyt
dxt

must be cheap to compute.

This raises the possibility of using a more powerful trans-
former in order to increase the expressivity of the flow.

3. Neural Autoregressive Flows
We propose replacing the affine transformer used in previous
works with a neural network, yielding a more rich family of
distributions with only a minor increase in computation and
memory requirements. Specifically,

τ(c(x1:t−1), xt) = DNN(xt; φ = c(x1:t−1)) (7)

6 Dinh et al. (2014) use m and g−1 to denote c and τ , and refer
to them as the “coupling function” and “coupling law”, respec-
tively.

7 Permuting the order of variables is itself a normalizing flow
that does not expand or contract space and can be inverted by
another permutation.
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(a) Neural autoregressive flows (NAF)

(b) DSF (c) DDSF

Figure 4. Top: In neural autoregressive flows, the transforma-
tion of the current input variable is performed by an MLP whose
parameters are output from an autoregressive conditioner model,
ct

.
= c(x1:t−1), which incorporates information from previous

input variables. Bottom: The architectures we use in this
work: deep sigmoidal flows (DSF) and deep dense sigmoidal
flows (DDSF). See section 3.1 for details.

is a deep neural network which takes the scalar xt as in-
put and produces yt as output, and its weights and biases
are given by the outputs of c(x1:t−1)8 (see Figure 4(a)).
We refer to these values φ as pseudo-parameters, in order
to distinguish them from the statistical parameters of the
model.

We now state the condition for NAF to be strictly monotonic,
and thus invertible (as per requirement 1):

Proposition 1. Using strictly positive weights and strictly
monotonic activation functions for τc is sufficient for the
entire network to be strictly monotonic.

Meanwhile, dytdxt
and gradients wrt the pseudo-parameters 9

can all be computed efficiently via backpropagation (as per
requirement 2).

8 We’ll sometimes write τc for τ(c(x1:t−1), ·).
9 Gradients for pseudo-parameters are backpropagated through

the conditioner, c, in order to train its parameters.

Figure 5. Illustration of the effects of traditional IAF (top), and our
proposed NAF (bottom). Areas where the slope of the transformer
τc is greater/less than 1, are compressed/expanded (respectively)
in the output distribution. Inflection points in τc(xt) (middle) can
transform a unimodal p(xt) (left) into a multimodal p(yt) (right);
NAF allows for such inflection points, whereas IAF does not.

Whereas affine transformers require information about mul-
timodality in yt to flow through x1:t−1, our neural autore-
gressive flows (NAFs) are able to induce multimodality
more naturally, via inflection points in τc, as shown in Fig-
ure 5. Intuitively, τc can be viewed as analogous to a cu-
mulative distribution function (CDF), so that its derivative
corresponds to a PDF, where its inflection points yield local
maxima or minima.

3.1. Transformer Architectures

In this work, we use two specific architectures for τc, which
we refer to as deep sigmoidal flows (DSF) and deep dense
sigmoidal flows (DDSF) (see Figure 4(b), 4(c) for an illus-
tration). We find that small neural network transformers of
1 or 2 hidden layers with 8 or 16 sigmoid units perform well
across our experiments, although there are other possibil-
ities worth exploring (see Section 3.3). Sigmoids contain
inflection points, and so can easily induce inflection points
in τc, and thus multimodality in p(yt). We begin by describ-
ing the DSF transformation, which is already sufficiently
expressive to form a universal approximator for probability
distributions, as we prove in section 4.

The DSF transformation resembles an MLP with a single
hidden layer of sigmoid units. Naive use of sigmoid ac-
tivation functions would restrict the range of τc, however,
and result in a model that assigns 0 density to sufficiently
large or small yt, which is problematic when yt can take
on arbitrary real values. We address this issue by applying
the inverse sigmoid (or “logit”) function at the output layer.
To ensure that the output’s preactivation is in the domain
of the logit (that is, (0, 1)), we combine the output of the
sigmoid units via an attention-like (Bahdanau et al., 2015)
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softmax-weighted sums:

yt = σ−1(wT︸ ︷︷ ︸
1×d
·σ( a︸︷︷︸

d×1
· xt︸︷︷︸
1×1

+ b︸︷︷︸
d×1

))) (8)

where 0 < wi,j < 1,
∑
i wi,j = 1, as,t > 0, b ∈ Rd and d

denotes the number of hidden units 10.

Since all of the sigmoid activations are bounded between
0 and 1, the final preactivation (which is their convex com-
bination) is as well. The complete DSF transformation can
be seen as mapping the original random variable to a dif-
ferent space through an activation function, where doing
affine/linear operations is non-linear with respect to the vari-
able in the original space, and then mapping it back to the
original space through the inverse activation.

However, we realize the composition of multiple DSF layers
resembles an MLP with bottleneck as shown by the bottom
left of Figure 4. A more general alternative is the DDSF
transformation, which takes the form of a fully connected
MLP:

h(l+1) =

σ−1( w(l+1)
︸ ︷︷ ︸

dl+1×dl+1

·σ(a(l+1)
︸ ︷︷ ︸
dl+1

� u(l+1)
︸ ︷︷ ︸
dl+1×dl

·h(l)︸ ︷︷ ︸
dl

+b(1+1)
︸ ︷︷ ︸
dl+1

)) (9)

for 1 ≤ l ≤ L where h0 = x and y = hL; d0 = dL = 1.
We also require

∑
j wij = 1,

∑
j ukj = 1 for all i, k, and

all parameters except b to be positive.

We use either DSF (Equation 8) or DDSF (Equation 9) to
define the transformer function τ in Equation 4. To compute
the log-determinant of Jacobian in a numerically stable way,
we need to apply log-sum-exp to the chain rule

∇xy =
[
∇h(L−1)h(L)

] [
∇h(L−2)h(L−1)

]
, · · · ,

[
∇h(0)h(1)

]

(10)

We elaborate more on the numerical stability in parameter-
ization and computation of logarithmic operations in the
supplementary materials.

3.2. Efficient Parametrization of Larger Transformers

Multi-layer NAFs, such as DDSF, require c to output O(d2)
pseudo-parameters, where d is the number of hidden units in
each layer of τ . As this is impractical for large d, we propose
parametrizing τ with O(d2) statistical parameters, but only
O(d) pseudo-parameters which modulate the computation
on a per-unit basis, using a technique such as conditional
batch-normalization (CBN) (Dumoulin et al., 2017). Such
an approach also makes it possible to use minibatch-style

10 Constraints on the variables are enforced via activation func-
tions; w and a are outputs of a softmax, and softplus or exp,
respectively.

matrix-matrix products for the forward and backwards prop-
agation through the graph of τc. In particular, we use a tech-
nique similar to conditional weight normalization (CWN)
(Krueger et al., 2017) in our experiments with DDSF; see
appendix for details.

3.3. Possibilities for Alternative Architectures

While the DSF and DDSF architectures performed well in
our experiments, there are many alternatives to be explored.
One possibility is using other (strictly) monotonic activation
functions in τc, such as leaky ReLUs (LReLU) (Xu et al.,
2015) or ELUs (Clevert et al., 2016). Leaky ReLUs in
particular are bijections on R and so would not require
the softmax-weighted summation and activation function
inversion tricks discussed in the previous section.

Finally, we emphasize that in general, τ need not be ex-
pressed as a neural architecture; it only needs to satisfy the
requirements of invertibility and differentiability given at
the end of section 2.

4. NAFs are Universal Density Approximators
In this section, we prove that NAFs (specifically DSF) can
be used to approximate any probability distribution over
real vectors arbitrarily well, given that τc has enough hidden
units output by generic neural networks with autoregressive
conditioning. Ours is the first such result we are aware of
for finite normalizing flows.

Our result builds on the work of Huang et al. (2017), who
demonstrate the general universal representational capabil-
ity of inverse autoregressive transformations parameterized
by an autoregressive neural network (that transform uni-
form random variables into any random variables in reals).
However, we note that their proposition is weaker than we
require, as there are no constraints on the parameterization
of the transformer τ , whereas we’ve constrained τ to have
strictly positive weights and monotonic activation functions,
to ensure it is invertible throughout training.

The idea of proving the universal approximation theorem
for DSF (1) in the IAF direction (which transforms unstruc-
tured random variables into structured random variables)
resembles the concept of the inverse transform sampling:
we first draw a sample from a simple distribution, such as
uniform distribution, and then pass the sample though DSF.
If DSF converges to any inverse conditional CDF, the re-
sulting random variable then converges in distribution to
any target random variable as long as the latter has positive
continuous probability density everywhere in the reals. (2)
For the MAF direction, DSF serves as a solution to the non-
linear independent component analysis problem (Hyvärinen
& Pajunen, 1999), which disentangles structured random
variables into uniformly and independently distributed ran-
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dom variables. (3) Combining the two, we further show
that DSF can transform any structured noise variable into a
random variable with any desired distribution.

We define the following notation for the pre-logit of the DSF
transformation (compare equation 8):

S(xt, C(x1:t−1)) =

n∑

j=1

wj(x1:t−1)·σ
(
xt − bj(x1:t−1)

τj(x1:t−1)

)

(11)
where C = (wj , bj , τj)

n
j=1 are functions of x1:1−t param-

eterized by neural networks. Let bj be in (r0, r1); τj be
bounded and positive;

∑n
j=1 wj = 1 and wj > 0. See

Appendix F and G for the proof.

Proposition 2. (DSF universally transforms uniform ran-
dom variables into any desired random variables) Let Y be
a random vector in Rm and assume Y has a strictly pos-
itive and continuous probability density distribution. Let
X ∼ Unif((0, 1)m). Then there exists a sequence of func-
tions (Gn)n≥1 parameterized by autoregressive neural net-
works in the following form

G(x)t = σ−1 (S (xt; Ct(x1:t−1))) (12)

where Ct = (atj , btj , τtj)
n
j=1 are functions of x1:t−1, such

that Yn
.
= Gn(X) converges in distribution to Y .

Proposition 3. (DSF universally transforms any random
variables into uniformly distributed random variables) LetX
be a random vector in an open set U ⊂ Rm. Assume X has
a positive and continuous probability density distribution.
Let Y ∼ Unif((0, 1)m). Then there exists a sequence of
functions (Hn)n≥1 parameterized by autoregressive neural
networks in the following form

H(x)t = S (xt; Ct(x1:t−1)) (13)

where Ct = (atj , btj , τtj)
n
j=1 are functions of x1:t−1, such

that Yn
.
= Hn(X) converges in distribution to Y .

Theorem 1. (DSF universally transforms any random vari-
ables into any desired random variables) Let X be a random
vector in an open set U ⊂ Rm. Let Y be a random vector
in Rm. Assume both X and Y have a positive and contin-
uous probability density distribution. Then there exists a
sequence of functions (Kn)n≥1 parameterized by autore-
gressive neural networks in the following form

K(x)t = σ−1 (S (xt; Ct(x1:t−1))) (14)

where Ct = (atj , btj , τtj)
n
j=1 are functions of x1:t−1, such

that Yn
.
= Kn(X) converges in distribution to Y .

5. Related work
Neural autoregressive flows are a generalization of the affine
autoregressive flows introduced by Kingma et al. (2016)

as inverse autoregressive flows (IAF) and further devel-
oped by Chen et al. (2017) and Papamakarios et al. (2017)
as autoregressive flows (AF) and masked autoregressive
flows (MAF), respectively; for details on their relation-
ship to our work see Sections 2 and 3. While Dinh et al.
(2014) draw a particular connection between their NICE
model and the Neural Autoregressive Density Estimator
(NADE) (Larochelle & Murray, 2011), (Kingma et al.,
2016) were the first to highlight the general approach of
using autoregressive models to construct normalizing flows.
Chen et al. (2017) and then Papamakarios et al. (2017) sub-
sequently noticed that this same approach could be used
efficiently in reverse when the key operation is evaluating,
as opposed to sampling from, the flow’s learned output
density. Our method increases the expressivity of these
previous approaches by using a neural net to output pseudo-
parameters of another network, thus falling into the hyper-
network framework (Ha et al., 2017; Bertinetto et al., 2016;
Jia et al., 2016).

There has been a growing interest in normalizing flows
(NFs) in the deep learning community, driven by success-
ful applications and structural advantages they have over
alternatives. Rippel & Adams (2013), Rezende & Mohamed
(2015) and Dinh et al. (2014) first introduced normalizing
flows to the deep learning community as density models,
variational posteriors and generative models, respectively.
In contrast to traditional variational posteriors, NFs can
represent a richer family of distributions without requir-
ing approximations (beyond Monte Carlo estimation of the
KL-divergence). The NF-based RealNVP-style generative
models (Dinh et al., 2017; 2014) also have qualitative ad-
vantages over alternative approaches. Unlike generative
adversarial networks (GANs) (Goodfellow et al., 2014)
and varational autoencoders (VAEs) (Kingma & Welling,
2014; Rezende et al., 2014), computing likelihood is cheap.
Unlike autoregressive generative models, such as pixelC-
NNs (Oord et al., 2016), sampling is also cheap. Unfortu-
nately, in practice RealNVP-style models are not currently
competitive with autoregressive models in terms of like-
lihood, perhaps due to the more restricted nature of the
transformations they employ.

Several promising recent works expand the capabilities of
NFs for generative modeling and density estimation, how-
ever. Perhaps the most exciting example is Oord et al.
(2017), who propose the probability density distillation
technique to train an IAF (Kingma et al., 2016) based on
the autoregressive WaveNet (van den Oord et al., 2016)
as a generative model using another pretrained WaveNet
model to express the target density, thus overcoming the
slow sequential sampling procedure required by the original
WaveNet (and characteristic of autoregressive models in
general), and reaching super-real-time speeds suitable for
production. The previously mentioned MAF technique (Pa-
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Table 1. Using DSF to improve variational inference. We report
the number of affine IAF with our implementation. We note that
the negative log likelihood reported by Kingma et al. (2016) is
78.88. The average and standard deviation are carried out with 5
trials of experiments with different random seeds.

Model -ELBO log p(x)

VAE 85.00± 0.03 81.66± 0.05
IAF-affine 82.25± 0.05 80.05± 0.04
IAF-DSF 81.92± 0.04 79.86± 0.01

Figure 6. Fitting grid of Gaussian distributions using maximum
likelihood. Left: true distribution. Center: affine autoregressive
flow (AAF). Right: neural autoregressive flow (NAF)

pamakarios et al., 2017) further demonstrates the potential
of NFs to improve on state-of-the-art autoregressive density
estimation models; such highly performant MAF models
could also be “distilled” for rapid sampling using the same
procedure as in Oord et al. (2017).

Other recent works also find novel applications of NFs,
demonstrating their broad utility. Loaiza-Ganem et al.
(2017) use NFs to solve maximum entropy problems, rather
than match a target distribution. Louizos & Welling (2017)
and Krueger et al. (2017) apply NFs to express approxi-
mate posteriors over parameters of neural networks. Song
et al. (2017) use NFs as a proposal distribution in a novel
Metropolis-Hastings MCMC algorithm.

Finally, there are also several works which develop new
techniques for constructing NFs that are orthogonal to ours
(Tomczak & Welling, 2017; 2016; Gemici et al., 2016; Du-
venaud et al., 2016; Berg et al., 2018).

Figure 7. Learning curve of MAF-style and IAF-style training. q
denotes our trained model, and p denotes the target.

Figure 8. The DSF model effectively captures the true posterior
distribution over the frequency of a sine wave. Left: The three
observations (marked with red x’s) are compatible with sine waves
of frequency f ∈ 0.0, 0.6, 1.2, 1.8. Right: a histogram of sam-
ples from the DSF approximate posterior (“counts”) and a Kernel
Density Estimate of the distribution it represents (KDE).

6. Experiments
Our experiments evaluate NAFs on the classic applications
of variational inference and density estimation, where we
outperform IAF and MAF baselines. We first demonstrate
the qualitative advantage NAFs have over AAFs in energy
function fitting and density estimation (Section 6.1). We
then demonstrate the capability of NAFs to capture a mul-
timodal Bayesian posterior in a limited data setting (Sec-
tion 6.2). For larger-scale experiments, we show that using
NAF instead of IAF to approximate the posterior distribution
of latent variables in a variational autoencoder (Kingma &
Welling, 2014; Rezende et al., 2014) yields better likelihood
results on binarized MNIST (Larochelle & Murray, 2011)
(Section 6.3). Finally, we report our experimental results on
density estimation of a suite of UCI datasets (Section 6.4).

6.1. Toy energy fitting and density estimation

6.1.1. EXPRESSIVENESS

First, we demonstrate that, in the case of marginally inde-
pendent distributions, affine transformation can fail to fit the
true distribution. We consider a mixture of Gaussian density
estimation task. We define the modes of the Gaussians to
be laid out on a 2D meshgrid within the range [-5,5], and
consider 2, 5 and 10 modes on each dimension. While the
affine flow only produces a single mode, the neural flow
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Table 2. Test log-likelihood and error bars of 2 standard deviations on the 5 datasets (5 trials of experiments). Neural autoregressive flows
(NAFs) produce state-of-the-art density estimation results on all 5 datasets. The numbers (5 or 10) in parantheses indicate the number of
transformations which were stacked; for TAN (Oliva et al., 2018), we include their best results, achieved using different architectures on
different datasets. We also include validation results to give future researchers a fair way of comparing their methods with ours during
development.

Model POWER GAS HEPMASS MINIBOONE BSDS300

MADE MoG 0.40± 0.01 8.47± 0.02 −15.15± 0.02 −12.27± 0.47 153.71± 0.28
MAF-affine (5) 0.14± 0.01 9.07± 0.02 −17.70± 0.02 −11.75± 0.44 155.69± 0.28
MAF-affine (10) 0.24± 0.01 10.08± 0.02 −17.73± 0.02 −12.24± 0.45 154.93± 0.28
MAF-affine MoG (5) 0.30± 0.01 9.59± 0.02 −17.39± 0.02 −11.68± 0.44 156.36± 0.28

TAN (various architectures) 0.48± 0.01 11.19± 0.02 −15.12± 0.02 −11.01± 0.48 157.03± 0.07

MAF-DDSF (5) 0.62± 0.01 11.91± 0.13 −15.09± 0.40 −8.86± 0.15 157.73± 0.04
MAF-DDSF (10) 0.60± 0.02 11.96± 0.33 −15.32± 0.23 −9.01± 0.01 157.43± 0.30

MAF-DDSF (5) valid 0.63± 0.01 11.91± 0.13 15.10± 0.42 −8.38± 0.13 172.89± 0.04
MAF-DDSF (10) valid 0.60± 0.02 11.95± 0.33 15.34± 0.24 −8.50± 0.03 172.58± 0.32

matches the target distribution quite well even up to a 10x10
grid with 100 modes (see Figure 5).

6.1.2. CONVERGENCE

We then repeat the experiment that produces Figure 1 and 2
16 times, smooth out the learning curve and present average
convergence result of each model with its corresponding
standard deviation. For affine flow, we stack 6 layers of
transformation with reversed ordering. For DSF and DDSF
we used one transformation. We set d = 16 for both, L = 2
for DDSF.

6.2. Sine Wave experiment

Here we demonstrate the ability of DSF to capture multi-
modal posterior distributions. To do so, we create a toy
experiment where the goal is to infer the posterior over the
frequency of a sine wave, given only 3 datapoints. We fix
the form of the function as y(t) = sin(2πf · t) and spec-
ify a Uniform prior over the frequency: p(f) = U([0, 2]).
The task is to infer the posterior distribution p(f |T, Y )
given the dataset (T, Y ) = ((0, 5/6, 10/6), (0, 0, 0)), as
represented by the red crosses of Figure 8 (left). We as-
sume the data likelihood given the frequency parameter to
be p(yi|ti, f) = N (yi; yf (ti), 0.125), where the variance
σ2 = 0.125 represents the inherent uncertainty of the data.
Figure 8 (right) shows that DSF learns a good posterior in
this task.

6.3. Amortized Approximate Posterior

We evaluate NAF’s ability to improve variational inference,
in the context of the binarized MNIST (Larochelle & Mur-
ray, 2011) benchmark using the well-known variational au-
toencoder (Kingma & Welling, 2014; Rezende et al., 2014)

(Table 1). Here again the DSF architecture outperforms
both standard IAF and the traditional independent Gaussian
posterior by a statistically significant margin.

6.4. Density Estimation with Masked Autoregressive
Flows

We replicate the density estimation experiments of Papa-
makarios et al. (2017), which compare MADE (Germain
et al., 2015) and RealNVP (Dinh et al., 2017) to their pro-
posed MAF model (using either 5 or 10 layers of MAF) on
BSDS300 (Martin et al., 2001) as well as 4 UCI datasets
(Lichman, 2013) processed as in Uria et al. (2013). Simply
replacing the affine transformer with our DDSF architecture
in their best performing architecture for each task (keeping
all other settings fixed) results in substantial performance
gains, and also outperforms the more recent Transformation
Autoregressive Networks (TAN) Oliva et al. (2018), setting
a new state-of-the-art for these tasks. Results are presented
in Table 2.

7. Conclusion
In this work we introduce the neural autoregressive flow
(NAF), a flexible method of tractably approximating rich
families of distributions. In particular, our experiments show
that NAF is able to model multimodal distributions and
outperform related methods such as inverse autoregressive
flow in density estimation and variational inference. Our
work emphasizes the difficulty and importance of capturing
multimodality, as previous methods fail even on simple toy
tasks, whereas our method yields significant improvements
in performance.
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