
Neural Autoregressive Flows

A. Exclusive KL View of the MLE
Lets assume a change-of-variable model pZ(z) on the ran-
dom variable Z ∈ Rm, such as the one used in Dinh et al.
(2017): z0 ∼ p0(z0) and z = ψ(z0), where ψ is an invert-
ible function and density evaluation of z0 ∈ Rm is tractable
under p0. The resulting density function can be written

pZ(z) = p0(z0)

∣∣∣∣
∂ψ(z0)

∂z0

∣∣∣∣
−1

The maximum likelihood principle requires us to minimize
the following metric:

DKL

(
pdata(z)||pZ(z)

)

= Epdata [log pdata(z)− log pZ(z)]

= Epdata
[
log pdata(z)− log p0(z0)

∣∣∣∣
∂ψ−1(z)

∂ z

∣∣∣∣
]

= Epdata

[
log pdata(z)

∣∣∣∣
∂ψ−1(z)

∂ z

∣∣∣∣
−1
− log p0(z0)

]

which coincides with exclusive KL divergence; to see this,
we take X = Z, Y = Z0, f = ψ−1, pX = pdata, and
ptarget = p0

= EpX

[
log pX(x)

∣∣∣∣
∂f(x)

∂ x

∣∣∣∣
−1
− log ptarget(y)

]

= DKL

(
pY (y)||ptarget(y)

)

This means we want to transform the empirical distribution
pdata, or pX , to fit the target density (the usually unstruc-
tured, base distribution p0), as explained in Section 2.

B. Monotonicity of NAF
Here we show that using strictly positive weights and strictly
monotonically increasing activation functions is sufficient
to ensure strict monotonicity of NAF. For brevity, we write
monotonic, or monotonicity to represent the strictly mono-
tonically increasing behavior of a function. Also, note that
a continuous function is strictly monotonically increasing
exactly when its derivative is greater than 0.

Proof. (Proposition 1)

Suppose we have an MLP with L + 1 layers:
h0, h1, h2, ..., hL, x = h0 and y = hL, where x and y are
scalar, and hl,j denotes the j-th node of the l-th layer.For
1 ≤ l ≤ L, we have

pl,j = wTl,jhl−1 + bl,j (15)

hl,j = Al(pl,j) (16)

for some monotonic activation function Al, positive weight
vector wl,j , and bias bl,j . Differentiating this yields

dhl,j
dhl−1,k

=
dAl(pl,j)

dpl,j
· wl,j,k, (17)

which is greater than 0 since A is monotonic (and hence has
positive derivative), and wl,j,k is positive by construction.
Thus any unit of layer l is monotonic with respect to any
unit of layer l − 1, for 1 ≤ l ≤ L.

Now, suppose we have J monotonic functions fj of the in-
put x. Then the weighted sum of these functions

∑J
j=1 ujfj

with uj > 0 is also monotonic with respect to x, since

d

dx

J∑

j=1

ujfj =
J∑

j=1

uj
dfj
dx

> 0 (18)

Finally, we use induction to show that all hl,j (including y)
are monotonic with respect to x.

1. The base case (l = 1) is given by Equation 17.

2. Suppose the inductive hypothesis holds, which means
hl,j is monotonic with respect to x for all j of layer l.
Then by Equation 18, hl+1,k is also monotonic with
respect to x for all k.

Thus by mathematical induction, monotonicity of hl,j holds
for all l and j.

C. Log Determinant of Jacobian
As we mention at the end of Section 3.1, to compute the
log-determinant of the Jacobian as part of the objective
function, we need to handle the numerical stability. We first
derive the Jacobian of the DDSF (note that DSF is a special
case of DDSF), and then summarize the numerically stable
operations that were utilized in this work.

C.1. Jacobian of DDSF

Again defining x = h0 and y = hL, the Jacobian of each
DDSF transformation can be written as a sequence of dot
products due to the chain rule:

∇xy =
[
∇h(L−1)h(L)

] [
∇h(L−2)h(L−1)

]
, · · · ,

[
∇h(0)h(1)

]

(19)

For notational convenience, we define a few more interme-

Neural Autoregressive Flows

diate variables. For each layer of DDSF, we have

C(l+1)
︸ ︷︷ ︸
dl+1

= a(l+1)
︸ ︷︷ ︸
dl+1

�(u(l+1)
︸ ︷︷ ︸
dl+1×dl

·h(l)︸ ︷︷ ︸
dl

) + b(1+1)
︸ ︷︷ ︸
dl+1

D(l+1)
︸ ︷︷ ︸
dl+1

= w(l+1)
︸ ︷︷ ︸

dl+1×dl+1

·σ(C(l+1)
︸ ︷︷ ︸
dl+1

)

h(l+1)
︸ ︷︷ ︸
dl+1

) = σ−1(D(l+1)
︸ ︷︷ ︸
dl+1

)

The gradient can be expanded as

∇h(l)

(
h(l+1)

)
=

(
∇D

(
σ−1(D(l+1))

)
[:,•]
�

∇σ(C)

(
D(l+1)

)
�

∇C
(
σ(C(l+1))

)
[•,:]
�

∇(u(l+1)h(l))

(
C(l+1)

)
[•,:]

)

[:,:,•]
×−1

∇h(l)

(
u(l+1)h(l)

)
[•,:,:]

where the bullet • in the subscript indicates the dimen-
sion is broadcasted, � denotes element-wise multiplication,
and ×−1 denotes summation over the last dimension after
element-wise product,

=

((
1

D(l+1)(1−D(l+1))

)

[:,•]
�

(
w(l+1)

)
�

(
σ(C(l+1))� (1− σ(C(l+1)))

)
[•,:]
�

(
a(l+1)

)
[•,:]

)

[:,:,•]
×−1

(
u(l+1)

)
[•,:,:]

(20)

C.2. Numerically Stable Operations

Since the Jacobian of each DDSF transformation is chain of
dot products (Equation 19), with some nested multiplicative
operations (Equation 20), we calculate everything in the
log-scale (where multiplication is replaced with addition) to
avoid unstable gradient signal.

C.2.1. LOG ACTIVATION

To ensure the summing-to-one and positivity constraints
of u and w, we let the autoregressive conditioner output
pre-activation u and w , and apply softmax to them. We
do the same for a by having the conditioner output a and

apply softplus to ensure positivity. In Equation 20, we have

logw = logsoftmax(w)

log u = logsoftmax(u)

log σ(C) = logsigmoid(C)

log 1− σ(C) = logsigmoid(−C)

where

logsoftmax(x) = x− logsumexp(x)

logsigmoid(x) = − softplus(−x)

logsumexp(x) = log(
∑

i

exp(xi − x∗)) + x∗

softplus(x) = log(1 + exp(x)) + δ

where x∗ = maxi{xi} and δ is a small value such as 10−6.

C.2.2. LOGARITHMIC DOT PRODUCT

In both Equation 19 and 20, we encounter matrix/tensor
product, which is achived by summing over one dimension
after doing element-wise multiplication. Let M̃1 = logM1

and M̃2 = logM2 be d0 × d1 and d1 × d2, respectively.
The logarithmic matrix dot product ? can be written as:

M̃1?M̃2 =

logsumexpdim=1

((
M̃1

)
[:,:,•]

+
(
M̃2

)
[•,:,:]

)

where the subscript of logsumexp indicates the dimension
(index starting from 0) over which the elements are to be
summed up. Note that M̃1 ? M̃2 = log (M1 ·M2).

D. Scalability and Parameter Sharing
As discussed in Section 3.3, a multi-layer NAF such as
DDSF requires the autoregressive conditioner c to output
many pseudo-parameters, on the order of O(Ld2), where L
is the number of layers of the transformer network (τ), and d
is the average number of hidden units per layer. In practice,
we reduce the number of outputs (and thus the computation
and memory requirements) of DDSF by instead endowing τ
with some learned (non-conditional) statistical parameters.
Specifically, we decompose w and u (the preactivations of
τ ’s weights, see section C.2.1) into pseudo-parameters and
statistical parameters. Take u for example:

u(l+1) = softmaxdim=1(v(l+1) + η
(l+1)
[•,:])

where v(l+1) is a dl+1 × dl matrix of statistical parameters,
and η is output by c. See figure D for a depiction.

The linear transformation before applying sigmoid resem-
bles conditional weight normalization (CWN) (Krueger

Neural Autoregressive Flows

Figure 9. Factorized weight of DDSF. The vi, j are learned param-
eters of the model; only the pseudo-parameters η and a are output
by the conditioner. The activation function f is softmax, so adding
η yields an element-wise rescaling of the inputs to this layer of the
transformer by exp(η).

et al., 2017). While CWN rescales the weight vectors nor-
malized to have unit L2 norm, here we rescale the weight
vector normalized by softmax such that it sums to one and
is positive. We call this conditional normalized weight expo-
nentiation. This reduces the number of pseudo-parameters
to O(Ld).

E. Identity Flow Initialization
In many cases, initializing the transformation to have a min-
imal effect is believed to help with training, as it can be
thought of as a warm start with a simpler distribution. For
instance, for variational inference, when we initialize the
normalizing flow to be an identity flow, the approximate
posterior is at least as good as the input distribution (usually
a fully factorized Gaussian distribution) before the transfor-
mation. To this end, for DSF and DDSF, we initialize the
pseudo-weights a to be close to 1, the pseudo-biases b to be
close to 0.

This is achieved by initializing the conditioner (whose out-
puts are the pseudo-parameters) to have small weights
and the appropriate output biases. Specifically, we ini-
tialize the output biases of the last layer of our MADE
(Germain et al., 2015) conditioner to be zero, and add
softplus−1(1) ≈ 0.5413 to the outputs of which correspond
to a before applying the softplus activation function. We
initialize all conditioner’s weights by sampling from from
Unif(−0.001, 0.001). We note that there might be better
ways to initialize the weights to account for the different
numbers of active incoming units.

4 2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

y

S *
n

S
Sn

Figure 10. Visualization of how sigmoidal functions can univer-
sally approximate an monotonic function in [0, 1]. The red dotted
curve is the target monotonic function (S), and blue solid curve is
the intermediate superposition of step functions (S∗

n) with the pa-
rameters chosen in the proof. In this case, n is 6 and |S∗

n−S| ≤ 1
7

.
The green dashed curve is the resulting superposition of sigmoids
(Sn), that intercepts with each step of S∗

n with the additionally
chosen τ .

F. Lemmas: Uniform Convergence of DSF
We want to show the convergence result of Equation 11. To
this end, we first show that DSF can be used to universally
approximate any strictly monotonic function. The is the
case where x1:t−1 are fixed, which means C(x1:t−1) are
simply constants. We demonstrate it using the following
two lemmas.

Lemma 1. (Step functions universally approximate mono-
tonic functions) Define:

S∗n(x) =

n∑

j=1

wj · s (x− bj)

where s(z) is defined as a step function that is 1 when
z ≥ 0 and 0 otherwise. For any continuous, strictly
monotonically increasing S : [r0, r1] → [0, 1] where
S(r0) = 0, S(r1) = 1 and r0, r1 ∈ R; and given
any ε > 0, there exists a positive integer n, real con-
stants wj and bj for j = 1, ..., n, where

∑n
j wj =

1, wj > 0 and bj ∈ [r0, r1] for all j, such that
|S∗n(x)− S(x)| < ε ∀x ∈ [r0, r1].

Proof. (Lemma 1)

For brevity, we write sj(x) = s(x − bj). For any ε >
0, we choose n = d 1ε e, and divide the range (0, 1) into
n+ 1 evenly spaced intervals: (0, y1), (y1, y2), ..., (yn, 1).
For each yj , there is a corresponding inverse value since
S is strictly monotonic, xj = S−1(yj). We want to set

Neural Autoregressive Flows

S∗n(xj) = yj for 1 ≤ j ≤ n− 1 and S∗n(xn) = 1. To do so,
we set the bias terms bj to be xj . Then we just need to solve
a system of n linear equations

∑n
j′=1 wj′ · sj′(xj) = tj ,

where tj = yj for 1 ≤ j < n, t0 = 0 and tn = 1. We
can express this system of equations in the matrix form as
Sw = t, where:

Sj,j′ = sj′(xj) = δxj≥bj′ = δj≥j′ ,

wj = wj , tj = tj

where δω≥η = 1 whenever ω ≥ η and δω≥η = 0 otherwise.
Then we have w = S−1t. Note that S is a lower triangular
matrix, and its inverse takes the form of a Jordan matrix:
(S−1)i,i = 1 and (S−1)i+1,i = −1. Additionally, tj −
tj−1 = 1

n+1 for j = 1, ..., n − 1 and is equal to 2
n+2 for

j = n. We then have S∗n(x) = tTS−T s(x), where s(x)j =
sj(x); thus

|S∗n(x)− S(x)| = |
n∑

j=1

sj(x)(tj − tj−1)− S(x)|

= | 1

n+ 1

n−1∑

j=1

sj(x) +
2sn(x)

n+ 1
− S(x)|

= |Cy1:n−1(x)

n+ 1
+

2δx≥yn
n+ 1

− S(x)|

≤ 1

n+ 1
<

1

d1/εe ≤ ε (21)

where Cv(z) =
∑
k δz≥vk is the count of elements in a

vector that z is no smaller than.

Note that the additional constraint that w lies on an n− 1
dimensional simplex is always satisfied, because

∑

j

wj =
∑

j

tj − tj−1 = tn − t0 = 1

See Figure 10 for a visual illustration of the proof. Using this
result, we now turn to the case of using sigmoid functions
instead of step functions.

Lemma 2. (Superimposed sigmoids universally approxi-
mate monotonic functions) Define:

Sn(x) =

n∑

j=1

wj · σ
(
x− bj
τj

)

With the same constraints and definition in Lemma 1,
given any ε > 0, there exists a positive integer n,
real constants wj , τj and bj for j = 1, ..., n, where
additionally τj are bounded and positive, such that
|Sn(x)− S(x)| < ε ∀x ∈ (r0, r1).

Proof. (Lemma 2)

Let ε1 = 1
3ε and ε2 = 2

3ε. We know that for this ε1, there
exists an n such that |S∗n − S| < ε1.

We chose the same wj , bj for j = 1, ..., n as the ones used
in the proof of Lemma 1, and let τ1, ..., τn all be the same
value denoted by τ .

Take κ = minj 6=j′ |bj − bj′ | and τ = κ
σ−1(1−ε0) for some

ε0 > 0. Take Γ to be a lower triangular matrix with values
of 0.5 on the diagonal and 1 below the diagonal.

max
j=1,...,n

|Sn(bj)− Γj · w|

= max

∣∣∣∣∣∣
∑

j′

wj′σ

(
bj − bj′

τ

)
−
∑

j′

wj′Γjj′

∣∣∣∣∣∣

= max

∣∣∣∣∣∣
∑

j′

wj′

(
σ

(
bj − bj′

τ

)
− Γjj′

)∣∣∣∣∣∣

< max
∑

j′

wj′ε0 = ε0

The inequality is due to

σ

(
bj − bj′

γ

)
= σ

(
bj − bj′

mink 6=k′ bk − bk′
σ−1(1− ε0)

)

= 0.5 if j = j′

≥ 1− ε0 if j > j′

≤ ε0 if j < j′

Since the product Γ · w represents the half step points of
S∗n at x = bj’s, the result above entails |Sn(x)− S∗n(x)| <
ε2 = 2ε1 for all x. To see this, we choose ε0 = 1

2(n+1) .
Then Sn intercepts with all segments of S∗n except for the
ends. We choose ε2 = 2ε1 since the last step of S∗n is of
size 2

n+1 , and thus the bound also holds true in the vicinity
where Sn intercepts with the last step of S∗n.

Hence,

|Sn(x)− S(x)|
≤ |Sn(x)− S∗n(x)|+ |S∗n(x)− S(x)| < ε1 + ε2 = ε

Now we show that (the pre-logit) DSF (Equation 11) can
universally approximate monotonic functions. We do this by
showing that the well-known universal function approxima-
tion properties of neural networks (Cybenko, 1989) allow us
to produce parameters which are sufficiently close to those
required by Lemma 2.

Lemma 3. Let x1:m ∈ [r0, r1]m where r0, r1 ∈ R. Given
any ε > 0 and any multivariate continuously differentiable

Neural Autoregressive Flows

function 11 S(x1:m)t = St(xt, x1:t−1) for t ∈ [1,m] that is
strictly monotonic with respect to the first argument when
the second argument is fixed, where the boundary values are
St(r0, x1:t−1) = 0 and St(r1, x1:t−1) = 1 for all x1:t−1
and t, then there exists a multivariate function S such that
‖ S(x1:m)− S(x1:m)‖∞ < ε for all x1:m, of the following
form:

S(x1:m)t = St(xt, Ct(x1:t−1))

=

n∑

j=1

wtj(x1:t−1) · σ
(
xt − btj(x1:t−1)

τtj(x1:t−1)

)

where t ∈ [1,m], and Ct = (wtj , btj , τtj)
n
j=1 are func-

tions of x1:1−t parameterized by neural networks, with τtj
bounded and positive, btj ∈ [r0, r1],

∑n
j=1 wtj = 1, and

wtj > 0

Proof. (Lemma 3)

First we deal with the univariate case (for any t) and drop
the subscript t of the functions. We write Sn and Ck to
denote the sequences of univariate functions. We want to
show that for any ε > 0, there exist (1) a sequence of
functions Sn(xt, Ck(x1:t−1)) in the given form, and (2)
large enough N and K such that when n ≥ N and k ≥ K,
| Sn(xt, Ck(x1:t−1)) − S(xt, x1:t−1)| ≤ ε for all x1:t ∈
[r0, r1]t.

The idea is first to show that we can find a sequence of
parameters, Cn(x1:t−1), that yield a good approximation
of the target function, S(xt, x1:t−1). We then show that
these parameters can be arbitrarily well approximated by
the outputs of a neural network, Ck(x1:t−1), which in turn
yield a good approximation of S.

From Lemma 2, we know that such a sequence Cn(x1:t−1)
exists, and furthermore that we can, for any ε, and inde-
pendently of S and x1:t−1 choose an N large enough so
that:

| Sn(xt, Cn(x1:t−1))− S(xt, x1:t−1)| < ε

2
(22)

To see that we can further approximate a given Cn(x1:t−1)
well by Ck(x1:t−1) 12, we apply the classic result of Cy-
benko (1989), which states that a multilayer perceptron
can approximate any continuous function on a compact
subset of Rm. Note that specification of Cn(x1:t−1) =

11 S(·) : [r0, r1]
m → [0, 1]m is a multivariate-multivariable

function, where S(·)t is its t-th component, which is a univariate-
multivariable function, written as St(·, ·) : [r0, r1]×[r0, r1]t−1 →
[0, 1].

12 Note that Cn is a chosen function (we are not assuming its
parameterization; i.e. not necessarily a neural network) that we
seek to approximate using Ck, which is the output of a neural
network.

(wtj , btj , τtj)
n
j=1 in Lemma 2 depends on the quantiles of

St(xt, ·) as a function of x1:t−1; since the quantiles are
continuous functions of x1:t−1, so is Cn(x1:t−1), and the
theorem applies.

Now, S has bounded derivative wrt C, and is thus uniformly
continuous, so long as τ is greater than some positive con-
stant, which is always the case for any fixed Cn, and thus
can be guaranteed for Ck as well (for large enough k). Uni-
form continuity allows us into translate the convergence
of Ck → Cn to convergence of Sn(xt, Ck(x1:t−1)) →
Sn(xt, Cn(x1:t−1)), since for any ε, there exists a δ > 0
such that

‖ Ck(x1:t−1)− Cn(x1:t−1)‖∞ < δ

=⇒ |Sn(xt, Ck(x1:t−1))− Sn(xt, Cn(x1:t−1))| < ε

2
(23)

Combining this with Equation 22, we have for all xt and
x1:t−1, and for all n ≥ N and k ≥ K
∣∣Sn (xt, Ck(x1:t−1))− S(xt, xx1:t−1)

∣∣
≤ |Sn (xt, Ck(x1:t−1))− Sn(xt, Cn(x1:t−1))|+∣∣Sn(xt, Cn(x1:t−1))− S(xt, xx1:t−1)

∣∣

<
ε

2
+
ε

2
= ε

Having proved the univariate case, we add back the subscript
t to denote the index of the function. From the above, we
know that given any ε > 0 for each t, there exist N(t) and
a sequence of univariate functions Sn,t such that for all
n ≥ N(t), | Sn,t−St| < ε for all x1:t. Choosing N =
maxt∈[1,m]N(t), we have that there exists a sequence of
multivariate functions Sn in the given form such that for all
n ≥ N , ‖ Sn−S‖∞ < ε for all x1:m.

G. Proof of Universal Approximation of DSF
Lemma 4. LetX ∈ X be a random variable, andX ⊆ Rm
and Y ⊆ Rm. Given any function J : X → Y and a se-
quences of functions Jn that converges pointwise to J , the
sequence of random variables induced by the transforma-
tions Yn

.
= Jn(X) converges in distribution to Y .

= J(X).

Proof. (Lemma 4)

Let h be any bounded, continuous function on Rm, so
that h ◦ Jn converges pointwise to h ◦ J by continuity
of h. Since h is bounded, then by the dominated con-
vergence theorem, E[h(Yn)] = E[h(Jn(X))] converges
to E[h(J(X)] = E[h(Y)]. As this result holds for any
bounded continuous function h, by the Portmanteau’s
lemma, we have Yn

d−→ Y .

Neural Autoregressive Flows

Proof. (Proposition 2)

Given an arbitrary ordering, let F be the CDFs of Y , de-
fined as Ft(yt, x1:t−1) = Pr(Yt ≤ yt|x1:t−1). According
to Theorem 1 of Hyvärinen & Pajunen (1999), F (Y) is
uniformly distributed in the cube [0, 1]m. F has an upper
triangular Jacobian matrix, whose diagonal entries are con-
ditional densities which are positive by assumption. Let G
be a multivariate and multivariable function where Gt is the
inverse of the CDF of Yt: Gt(Ft(yt, x1:t−1), x1:t−1) = yt.

According to Lemma 3, there exists a sequence of functions
in the given form (Sn)n≥1 that converge uniformly to σ ◦G.
Since uniform convergence implies pointwise convergence,
Gn = σ−1 ◦ Sn converges pointwise to G, by continuity of
σ−1. Since Gn converges pointwise to G and G(X) = Y ,
by Lemma 4, we have Yn

d−→ Y

Proof. (Proposition 3)

Given an arbitrary ordering, let H be the CDFs of X:

y1
.
= H1(x1, ∅) = F1(x1, ∅) = Pr(X1 ≤ x1|∅)

yt
.
= Ht(xt, x1:t−1)

= Ft
(
xt, {Ht−t′(xt−t′ , x1:t−t′−1)}t−1t′=1

)

= Pr(Xt ≤ xt|y1:t−1) for 2 ≤ t ≤ m

Due to Hyvärinen & Pajunen (1999), y1, ...ym are indepen-
dently and uniformly distributed in (0, 1)m.

According to Lemma 3, there exists a sequence of functions
in the given form (Sn)n≥1 that converge uniformly to H .
Since Hn = Sn converges pointwise to H and H(X) = Y ,
by Lemma 4, we have Yn

d−→ Y

Proof. (Theorem 1)

Given an arbitrary ordering, letH be the CDFs ofX defined
the same way in the proof for Proposition 3, and letG be the
inverse of the CDFs of Y defined the same way in the proof
for Proposition 2. Due to Hyvärinen & Pajunen (1999),
H(X) is uniformly distributed in (0, 1)m, so G(H(X)) =
Y . Since Ht(xt, x1:t−1) is monotonic wrt xt given x1:t−1,
and Gt(Ht, H1:t−1) is monotonic wrt Ht given H1:t−1, Gt
is also monotonic wrt xt given x1:t−1, as

∂Gt(Ht, H1:t−1)

∂xt
=
∂Gt(Ht, H1:t−1)

∂Ht

∂Ht(xt, x1:t−1)

∂xt

is always positive.

According to Lemma 3, there exists a sequence of func-
tions in the given form (Sn)n≥1 that converge uniformly
to σ ◦ G ◦ H . Since uniform convergence implies point-
wise convergence, Kn = σ−1 ◦ Sn converges pointwise to

G ◦ H , by continuity of σ−1. Since Kn converges point-
wise to G ◦H and G(H(X)) = Y , by Lemma 4, we have
Yn

d−→ Y

H. Experimental Details
For the experiment of amortized variational inference, we
implement the Variational Autoencoder (Kingma & Welling,
2014). Specifically, we follow the architecture used in
Kingma et al. (2016): the encoder has three layers with
[16, 32, 32] feature maps. We use resnet blocks (He et al.,
2016) with 3 × 3 convolution filters and a stride of 2 to
downsize the feature maps. The convolution layers are fol-
lowed by a fully connected layer of size 450 as a context for
the flow layers that transform the noise sampled from a stan-
dard normal distribution of dimension 32. The decoder is
symmetrical with the encoder, with the strided convolution
replaced by a combination of bilinear upsampling and regu-
lar resnet convolution to double the feature map size. We
used the ELUs activation function (Clevert et al., 2016) and
weight normalization (Salimans & Kingma, 2016) in the en-
coder and decoder. In terms of optimization, Adam (Kingma
& Ba, 2014) is used with learning rate fined tuned for each
inference setting, and Polyak averaging (Polyak & Juditsky,
1992) was used for evaluation with α = 0.998 which stands
for the proportion of the past at each time step. We also
consider a variant of Adam known as Amsgrad (Reddi et al.,
2018) as a hyperparameter. For vanilla VAE, we simply ap-
ply a resnet dot product with the context vector to output the
mean and the pre-softplus standard deviation, and transform
each dimension of the noise vector independently. We call
this linear flow. For IAF-affine and IAF-DSF, we employ
MADE (Germain et al., 2015) as the conditioner c(x1:t−1),
and we apply dot product on the context vector to output a
scale vector and a bias vector to conditionally rescale and
shift the preactivation of each layer of the MADE. Each
MADE has one hidden layer with 1920 hidden units. The
IAF experiments all start with a linear flow layer followed
by IAF-affine or IAF-DSF transformations. For DSF, we
choose d = 16.

For the experiment of density estimation with MAF, we
followed the implementation of Papamakarios et al. (2017).
Specifically for each dataset, we experimented with both 5
and 10 flow layers, followed by one linear flow layer. The
following table specifies the number of hidden layers and
the number of hidden units per hidden layer for MADE:

Table 3. Architecture specification of MADE in the MAF experi-
ment. Number of hidden layers and number of hidden units.

POWER GAS HEPMASS MINIBOONE BSDS300

2× 100 2× 100 2× 512 1× 512 2× 1024

