
Improving the Gaussian Mechanism for Differential Privacy

A. Proofs
In this appendix we present supporting proofs for all the
results mentioned in the main text.

A.1. Proofs from Section 2

Proof of Theorem 2. An simple way to see that (0, δ)-DP is
achievable with Gaussian noise is to recall that (0, δ)-DP is
equivalent to a bound of δ on the total variation (TV) dis-
tance between the output distributions of M(x) and M(x′)
for any neighbouring pair x ' x′. If M(x) is an output per-
turbation mechanism for f(x) with noise Z ∼ N (0, σ2I),
then using Pinsker’s inequality we have

TV(M(x),M(x′)) ≤
√

KL(M(x)|M(x′))
2

=

√
KL(N (f(x), σ2I)|N (f(x′), σ2I))

2

=
‖f(x)− f(x′)‖

2σ
≤ ∆

2σ
.

Thus, we see that a Gaussian perturbation with standard
deviation σ = ∆/2δ is enough to achieve (0, δ)-DP.

Proof of Theorem 4. Note that the proof of Theorem 9
shows that a Gaussian perturbation with σ = ∆/

√
2ε

yields a (ε, δ0(ε))-DP mechanism, where δ0(ε) = Φ(0)−
eεΦ(−

√
2ε). Thus, it is not possible to attain (ε, δ)-DP with

δ < δ0(ε) without increasing the variance of the perturba-
tion.

The result follows by showing that the upper bound for δ
proposed in Theorem 4 is a lower bound for δ0(ε). Since
Φ(0) = 1/2, all we need to show is eεΦ(−

√
2ε) < e−3ε

√
4πε

.

Let Φc(t) = P[N (0, 1) ≥ t] = 1−Φ(t) be the complemen-
tary of the standard Gaussian CDF. The Mill’s ratio for the
Gaussian distribution is the quantity r(t) =

√
2πet

2/2Φc(t).
Bounding the Mill’s ratio is a standard approach to approx-
imate the tail of the Gaussian distribution. A well-known
bound for the Mill’s ratio is Gordon’s inequality r(t) < 1/t
(Gordon, 1941). By using the symmetry Φ(−t) = Φc(t) we
obtain :

eεΦ(−
√

2ε) = eεΦc(
√

2ε) =
e−3ε√

2π
r(
√

2ε) <
e−3ε√

4πε
.

Proof of Lemma 3. Recall that the density of the Gaussian
output perturbation mechanism M(x) = f(x) + Z with
Z ∼ N (0, σ2I) is given by pM(x)(y) = exp(−‖y −
f(x)‖2/2σ2)/

√
2πσ2. Plugging this expression into the

definition of the privacy loss function and performing a

quick computation we get

`M,x,x′(y) =
‖y − f(x′)‖2 − ‖y − f(x)‖2

2σ2

=
‖f(x)− f(x′)‖2

2σ2
+
〈y − f(x), f(x)− f(x′)〉

σ2
.

To compute the privacy loss random variable LM,x,x′ we
need to plug Y = f(x) + Z with Z ∼ N (0, σ2I) in the
above inner product. By observing that 〈Z, f(x)−f(x′)〉 ∼
N (0, σ2‖f(x)− f(x′)‖2) we obtain the distribution of the
privacy loss random variable is given by

LM,x,x′ ∼ N
(‖f(x)− f(x′)‖2

2σ2
,
‖f(x)− f(x′)‖2

σ2

)
.

Therefore, the privacy loss of the Gaussian mechanism has
the form N (η, 2η) for η = D2/2σ2.

A.2. Proofs from Section 3

Proof of Theorem 5. Given a pair of neighbouring datasets
x ' x′ let p = pM(x) and p′ = pM(x′) be the densities of
the output random variables Y = M(x) and Y ′ = M(x′).
Note that given an event E ⊆ Y one can rewrite (1) as
follows:

∫

E

(p(y)− eεp′(y)) ≤ δ . (9)

Defining the event E∗ = {y : p(y) ≥ eεp′(y)} and its
complementary Ē∗ = Y \ E∗, we can partition E into the
sets E+ = E ∩ E∗ and E− = E ∩ Ē∗. Therefore, by the
definition of E∗ we have

∫

E

(p(y)− eεp′(y)) =

∫

E+

(p(y)− eεp′(y))

+

∫

E−

(p(y)− eεp′(y))

≤
∫

E+

(p(y)− eεp′(y))

≤
∫

E∗

(p(y)− eεp′(y)) .

Because (9) has to hold for any eventE and the upper bound
above holds for any event, we conclude that M is (ε, δ)-DP
if and only if

∫

E∗

(p(y)− eεp′(y)) ≤ δ (10)

holds for any x ' x′. To complete the proof we need to
show that (10) is equivalent to (3). Expanding the definition
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of LM,x,x′ we get:

P[LM,x,x′ ≥ ε] = P[log(p(Y )/p′(Y )) ≥ ε]
= P[p(Y ) ≥ eεp′(Y )]

=

∫

Y
1[p(y) ≥ eεp′(y)]p(y)

=

∫

E∗

p(y) .

A similar argument with LM,x′,x also shows:

P[LM,x′,x ≤ −ε] =

∫

E∗

p′(y) .

Putting the last two equations together we obtain see that the
left hand side of (3) equals the left hand side of (10).

Proof of Lemma 6. Note that Lemma 3 shows that the pri-
vacy loss random variables LM,x,x′ and LM,x′x both follow
the same distribution N (η, 2η) with η = D2/2σ2. This
allows us to write the left hand side of (4) in terms of the
Gaussian CDF Φ as follows:

P[LM,x,x′ ≥ ε] = P[N (η, 2η) ≥ ε]

= P
[
N (0, 1) ≥ −η + ε√

2η

]

= P
[
N (0, 1) ≤ η − ε√

2η

]

= Φ

(√
η

2
− ε√

2η

)

= Φ

(
D

2σ
− εσ

D

)
,

where we usedN (η, 2η) = η+N (0, 1)/
√

2η and the sym-
metry P[N (0, 1) ≥ t] = P[N (0, 1) ≤ −t] of the distribu-
tion of the Gaussian distribution around its mean. A similar
argument applied to the left hand side of (5) yields:

P[LM,x′,x ≤ −ε] = Φ

(
−D

2σ
− εσ

D

)
.

Proof of Lemma 7. We prove the result by using Leibniz’s
rule for differentiation under the integral sign to show that
the function of interest has non-negative derivatives. First
note that from the derivation of (4) we have

P[N (η, 2η) ≥ ε] = Φ(a(η)) =
1√
2π

∫ a(η)

−∞
e−y

2/2dy ,

where a(η) =
√
η/2− ε/√2η. Now we can use Leibniz’s

rule to write

d

dη

∫ a(η)

−∞
e−y

2/2dy = e−a(η)
2/2a′(η)

= e−a(η)
2/2

(
1√
8η

+
ε√
8η3

)
.

Similarly, for the second term in the function we have
P[N (η, 2η) ≤ −ε] = Φ(b(η)) where b(η) = −

√
η/2 −

ε/
√

2η. Using Leibniz’s rule again we get

d

dη

∫ b(η)

−∞
e−y

2/2dy = e−b(η)
2/2

(
− 1√

8η
+

ε√
8η3

)
.

Therefore, we see that the derivative of h satisfies:

h′(η) =
1

4
√
πη

(
e−a(η)

2/2 + eεe−b(η)
2/2
)

+
ε

4
√
πη3

(
e−a(η)

2/2 − eεe−b(η)2/2
)

=
1

4
√
πη

(
e−a(η)

2/2 + eεe−b(η)
2/2
)
≥ 0 ,

where we used that a(η)2 + 2ε = b(η)2.

Proof of Theorem 9. Recall that the derivations in Section 3
establish that in order to calibrate a Gaussian perturbation
to achieve (ε, δ)-DP all that is required is find the smallest
σ such that

Φ

(
∆

2σ
− εσ

∆

)
− eεΦ

(
− ∆

2σ
− εσ

∆

)
≤ δ . (11)

To establish the correctness of the analytic Gaussian mech-
anism we begin by observing that the argument in the first
term of (11) changes sign at σ = ∆/

√
2ε, while the ar-

gument for the second terms is always negative. Thus, we
substitute σ = α∆/

√
2ε in the expression above and obtain:

Bε(α) = Φ

(√
ε

2

(
1

α
− α

))
− eεΦ

(
−
√
ε

2

(
1

α
+ α

))
.

To solve the optimization inf{α > 0 : Bε(α) ≤ δ} using
numerical evaluations of Φ it is convenient to consider the
cases α ≥ 1 and α < 1 separately. In the case α ≥ 1 we
define u = (α− 1/α)2/2 and substitute the corresponding
α in Bε to obtain

B−ε (u) = Φ(−√εu)− eεΦ(−
√
ε(u+ 2)) .

Similarly, by taking v = (1/α − α)2/2 in the case α < 1
we obtain

B+
ε (v) = Φ(

√
εv)− eεΦ(−

√
ε(v + 2)) .
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Note that, as expected, these definitions satisfy
limv→∞B+

ε (v) = 1 and limu→∞B−ε (u) = 0, since
the limits correspond to limα→0B(α) = 1 and
limα→∞B(α) = 0, respectively. Furthermore, we
have

B+
ε (0) = B−ε (0) = Φ(0)− eεΦ(−

√
2ε) = δ0(ε) ,

which corresponds to the privacy guarantee (ε, δ0(ε))-DP
obtained by taking σ = ∆/

√
2ε; i.e. α = 1.

These observations motivate the mechanism described in
Algorithm 1. In particular, for δ ≥ δ0(ε) we can achieve
(ε, δ)-DP with α < 1, and the smallest α < 1 such that
Bε(α) ≤ δ corresponds to the largest v ≥ 0 such that
B+
ε (v) ≤ δ. Similarly, for δ < δ0(ε) we require α ≥ 1, and

the smallest α ≥ 1 such that Bε(α) ≤ δ corresponds to the
smallest u ≥ 0 such that B−ε (u) ≤ δ.

A.3. Proofs from Section 4

The proofs in this section are well-known and not part of the
contribution of the current paper. We include these proofs
because they are short and revealing and we hope to be
self-contained as much as possible.

Proof of Theorem 10. Let P be the distribution of f(x) in-
duced by x ∼ π. Let θ ∈ Rd, define its posterior error

r(θ|ŷ) =

∫
‖θ − f(x)‖2dP (f(x)|ŷ).

Take the gradient with respect to θ on both sides and apply
Fubini’s theorem

∂

∂θ
r(θ|ŷ) =

∂

∂θ

∫
‖θ − f(x)‖2dP (f(x)|ŷ)

=2θ − 2

∫
f(x)dP (f(x)|ŷ) = 2(θ − E[f(x)|ŷ]).

Assign the gradient to 0 we get that the minimizer is
E[f(x)|ŷ].

Now, assume ỹBayes is suboptimal, there exists ỹ∗ 6= ỹBayes

such that

E
[
‖f(x)− ỹBayes‖2

]
> E

[
‖f(x)− ỹ∗‖2

]

= E[r(ỹ∗|ŷ)] ≥ E[r(ỹBayes)] = E
[
‖f(x)− ỹBayes‖2

]
.

which is a contradiction.

Proof of Theorem 11. Note that ‖ŷ‖2
w2+σ2 follows a χ2 distri-

bution with degree of freedom d. The likelihood function

p(‖ŷ‖2|w2) ∝ (
‖ŷ‖2

w2 + σ2
)d/2−1e

− ‖ŷ‖2
2(w2+σ2) .

The gradient w.r.t. w2 of the log-likelihood, we get

− d/2− 1

w2 + σ2
+

‖y‖2
2(w2 + σ2)2

.

Assigning it to 0, we get the maximum likelihood estimate
w2 = ‖y‖2

k−2 − σ2. Substituting it into ỹBayes = (w2/(w2 +

σ2))ŷ produces ỹJS as stated and the calculation of its MSE
is straightforward.

B. Additional Experiments
Here we present additional experimental results. Figure 3
provides more plots for the setups explored in Sections 5.1
and 5.2. The next two sections present further experiments
on a sparse histogram denoising task and on the New York
City taxi dataset.

B.1. Denoising for Histogram Release

We evaluate the accuracy of our new Gaussian perturbation
mechanisms on a second task involving private histogram re-
lease. In this problem the dataset x = (x1, . . . , xn) contains
elements xi ∈ [d] from a finite set with d. The deterministic
functionality is the empirical histogram y = f(x) ∈ Rd
where yj = (1/n)

∑n
i=1 I[xi = j]. In this case the global

L2 sensitivity ∆2 =
√

2/n and a global L1 sensitivity
∆1 = 2/n (with respect to replacing one individual in a
dataset by another arbitrary individual).

For this task, each dataset is sampled from a multinomial
distribution with parameters sampled from a symmetric
Dirichlet with α = 1/d. The parameters are resampled for
each individual experiment. The choice of α guarantees that
the resulting histograms are highly sparse (Telgarsky, 2013).
Our setup follows the same structure as the one for the ex-
periments from previous section. The results are presented
in Figure 4. We observe that in this problem the Laplace
mechanism is better than the classical Gaussian mechanism,
and in the setting ε = 1 it is even better than the analytic
Gaussian mechanism, with and without denoising. How-
ever, as we decrease ε the utility of the analytic Gaussian
mechanism becomes better than that of the Laplace mecha-
nism, and denoising provides a significant advantage over
mechanisms without denoising. Finally, we note that due
to the sparsity of the underlying datapoint, denoising via
soft thresholding provides better utility in this case than
denoising via shrinking.

B.2. New York City Taxi Heat Maps

Here we present a second qualitative experiment with the
New York City taxi dataset. The difference with the previ-
ous experiment is that we use data for a different time of
the same day, leading to a different structure in the activi-
ties around the city; see Figure 2. This illustrates that the
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Figure 3. Left plot: Comparing the classical Gaussian mechanism (cGM) and the analytic Gaussian mechanism (aGM) in terms of gain in
variance as a function of δ. Two rightmost plots: Mean estimation experiments showing L2 error between the private mean estimate and
the non-private empirical mean as a function of the dimension d with ε = 1 and ε = 0.1. Dataset size is fixed to n = 500 and privacy
parameter is set to δ = 10−4.
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Figure 4. Histogram release experiments showing L1 error between the private histogram and the non-private empirical histogram as
a function of the dimension d. Dataset size is fixed to n = 500 and privacy parameter is set to δ = 10−4. The first three panels
correspond to ε = 1, 0.1, 0.01 (left to right). The rightmost panel displays the two denoised mechanisms (aGM-JS and aGM-TH) in the
high-dimensional case.

selected denoising methods are adaptive to the structure of
the underlying data.

Furthermore, Figure 6 presents quantitative results where
we compare the mean square error (MSE) of cGM, aGM
as well as the aforementioned denoising techniques. As we
can see, on the real datasets, aGM always improves over
cGM by a constant factor and denoising techniques are able
to leverage bias-variance trade-off and improve the recovery
in MSE further. The benefits of denoising range from orders
of magnitude (in the case when ε is tiny) to a small constant
factor (when ε is moderate). In the low-privacy regime (e.g.,
ε > 5), soft-thresholding performs a little worse than not
using it at all. This is the expected cost of adaptivity and it
does appear in its error bound.
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Figure 5. Illustration of the denoising in differentially private release of NYC taxi density during 12:00 - 13:00 pm Sept 24, 2014.
Comparing to the figure in the midnight of Figure 2, the figures look structurally different. More activities center around the midtown and
upper west sides.
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Figure 6. Experiments for releasing NYC taxi heat maps. The plots compare the MSE of the reeased heat map as a function of the privacy
loss parameter ε. We take ∆ = 5 and δ = 10−6 for all experiments. The wavelet basis is generated using Sharpnack et al. (2013) and the
soft-thresholding’s hyperparameter is chosen as σ

√
2 log d.


