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Abstract

The Dirichlet process mixture (DPM) is a
widely used model for clustering and for non-
parametric Bayesian density estimation. Un-
fortunately, like in many statistical models,
exact inference in a DPM is intractable, and
approximate methods are needed to perform
efficient inference. While most attention has
been placed on Markov chain Monte Carlo
(MCMC) (Escobar and West, 1995; Neal,
2000; Rasmussen, 2000), variational Bayesian
(VB) (Blei and Jordan, 2005) and collapsed
variational methods (Kurihara, Welling and
Teh, 2007), Heller and Ghahramani (2005)
recently introduced a new class of approx-
imation for DPMs based on Bayesian hier-
archical clustering (BHC). These tree-based
combinatorial approximations efficiently sum
over exponentially many ways of partitioning
the data and offer a novel lower bound on the
marginal likelihood of DPMs. In this paper
we make the following contributions: (1) We
show empirically that the BHC lower bounds
are substantially tighter than the bounds
given by VB and by collapsed variational
methods on synthetic and real datasets. (2)
We show that BHC offers a better predictive
performance on these datasets. (3) We im-
prove the tree-based lower bounds with an
algorithm that efficiently sums contributions
from alternative trees. (4) We present a fast
approximate method for BHC. Our results
suggest that our approximate inference meth-
ods and lower bounds may be useful not only
in DPMs but in other models as well.

Appearing in Proceedings of the 12th International Confe-
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2009, Clearwater Beach, Florida, USA. Volume 5 of JMLR:
W&CP 5. Copyright 2009 by the authors.

1 Introduction

Nonparametric Bayesian methods have become ex-
tremely popular due to their ability to flexibly model
data. Whereas traditional parametric methods restrict
the form of a model by fixing the number of parame-
ters, nonparametric models allow the model complex-
ity to grow with the number of data points and provide
wide support for data from a large family of distribu-
tions. The Bayesian approach to nonparametric data
modeling avoids overfitting by placing a prior on the
model parameters and considering the posterior dis-
tribution in the limit as the number of parameters be-
comes infinite. One such prior over infinitely many
parameters is provided by the Dirichlet process (DP)
(Ferguson, 1973).

The DP defines a nonparametric distribution over dis-
tributions, and can therefore be used to define flexi-
ble priors over unknown distributions. A property of
the distributions drawn is that they are discrete, so
draws from these distributions in turn yield repeated
values. Values drawn from a DP exhibit a “rich get
richer” property, where values which have been com-
monly observed in past draws are more likely to be
observed in future draws. This generally leads to the
number of observed values being much smaller than
the number of draws. Thus DPs can be utilized as a
prior for clustering data if these drawn values are in-
terpreted as cluster memberships for each data point.
From this construction we can get the Dirichlet pro-
cess mixture model (DPM) (Antoniak, 1974), which
will be reviewed in detail in Section 2.

The DPM can be seen as an infinite mixture model
in that instead of using a fixed number of mixture
components (or clusters), it allows a countably infi-
nite number of mixture components to model the data.
Moreover, the DPM does not require model selection
to determine the number of components in the mix-
ture model, it automatically infers this from the data
by allowing data points to be assigned to new clus-
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ters and not restricting membership to existing mix-
ture components. One drawback of the DPM is that
it is generally intractable since it considers exponen-
tially many O(nn) ways of partitioning n data points
into clusters. Rasmussen (2000) and Escobar and West
(1995) provide a detailed analysis of DPMs with Gaus-
sian components and an MCMC algorithm for sam-
pling from partitionings of the data. Blei and Jordan
(2005) describe a variational Bayesian (VB) approach
which optimizes a lower bound on the marginal likeli-
hood of a DPM and they compare it thoroughly with
standard MCMC methods (e.g. Gibbs sampler) show-
ing a significant decrease in running time. Kurihara et
al. (2007) also introduce a class of collapsed variational
approximate methods for DPMs by using a truncated
stick-breaking construction and a finite mixture model
with a symmetric Dirichlet prior.

Heller and Ghahramani (2005) developed Bayesian hi-
erarchical clustering (BHC) as a new hierarchical clus-
tering method and approximate inference algorithm
for DPMs and proved that BHC yields a new com-
binatorial lower bound on the marginal likelihood of
a DPM. In this paper, we empirically compare BHC
to VB and the collapsed variational methods on small
synthetic datasets where the exact marginal likelihood
of a DPM can be computed. We then compare these
on three real-world datasets. We also compare the pre-
dictive performance of BHC to the other algorithms.
Furthermore, we develop a new algorithm which con-
structs alternative tree structures to BHC and show
that this method tightens the BHC lower bound on
the marginal likelihood of a DPM. Finally, we present
a fast approximate method for BHC based on a Bayes
K-means algorithm and show that it gives significant
speedups in the runtime.

The paper is organized as follows. Section 2 briefly
reviews the DP mixture models. Section 3 reviews
the BHC algorithm. Section 4 derives the alternative
tree algorithm. Section 5 introduces a fast approxi-
mate method for BHC. Sections 6 and 7 discuss the
empirical results and present conclusions.

2 Dirichlet Process Mixture Models

We briefly review Dirichlet process mixture models by
starting with a finite mixture model and taking the
limit as the number of mixture components goes to
infinity, as in Neal (2000) and Rasmussen (2000). We
start from a finite mixture model with C components:

p(x(i)|φ) =

C
∑

j=1

p(x(i)|θj)p(ci = j|p) (1)

where ci ∈ {1, . . . , C} is a cluster assignment for data
point i, p are the parameters of a multinomial dis-

tribution with p(ci = j|p) = pj , θj are the param-
eters of the jth component, and φ = (θ1, . . . , θC ,p).
Let the parameters of each component have conjugate
priors (e.g. Normal-Inverse-Wishart priors for Normal
continuous data) p(θ|β) (where β are the hyperparam-
eters of the conjugate distribution) and the multino-
mial parameters also have a conjugate, Dirichlet prior,

p(p|α) = Γ(α)
Γ(α/C)C

∏C
j=1 p

α/C−1
j , where α is the con-

centration parameter. The marginal likelihood of the
mixture model for a data set D = {x(1) . . . ,x(n)} is:

p(D|α, β) =

∫

[

n
∏

i=1

p(x(i)|φ)

]

p(φ|α, β) dφ (2)

where p(φ|α, β) = p(p|α)
∏C

j=1 p(θj |β). This can be
re-written as:

p(D|α, β) =
∑

c

p(c|α)p(D|c, β) (3)

where c = (c1, . . . , cn) and p(c|α) =
∫

p(c|p)p(p|α)dp.
The quantity (3) is well-defined even in the limit C →
∞. The number of possible ways of partitioning n

points remains finite although the number of possible
settings of c diverges as C → ∞. Let V denote the
set of all possible partitioning of n points, we can re-
write (3) as:

p(D|α, β) =
∑

v∈V

p(v|α)p(D|v, β) (4)

Finally, it is not hard to show that the marginal like-
lihood of a DPM as can be explicitly written as:

p(D|α, β) =
∑

v∈V

αmv

∏mv

ℓ=1 Γ(nv
ℓ )

[

Γ(n+α)
Γ(α)

]

mv
∏

ℓ=1

p(Dv
ℓ |β) (5)

where V is the set of all possible partitionings of D, n

is the number of data points in D, mv is the number
of clusters in partitioning v, and nv

ℓ is the number of
points in cluster ℓ of partitioning v, and p(Dv

ℓ |β) =
∫

[

∏

i∈Dv

ℓ

p(x(i)|θℓ)
]

p(θℓ|β) dθℓ.

3 Bayesian Hierarchical Clustering

and Combinatorial Lower Bounds

In this section, we review the Bayesian hierarchical
clustering algorithm following Heller and Ghahramani
(2005). BHC provides a new fast approximate in-
ference method for Dirichlet process mixture mod-
els. Rather than summing over all possible parti-
tions of the data using MCMC, BHC builds a binary
tree (dendrogram) and provides a lower bound on the
marginal likelihood of a DPM by summing over expo-
nentially many clusterings of the data in polynomial
time (O(n2)).
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Consider a data set D = {x(1), . . . ,x(n)} and tree T

where Di ⊂ D is the set of data points at the leaves of
the sub-tree Ti of T . BHC is similar to traditional
agglomerative clustering (Duda and Hart, 1973) in
that it is a one-pass, bottom-up agglomerative method
which initializes n clusters (leaves of the hierarchy)
each containing a single data point Di = {x(i)}. It
then iteratively merges pairs of clusters to construct
the hierarchy. The main difference between BHC
and traditional hierarchical clustering methods is that
BHC uses a statistical hypothesis test to choose which
clusters to merge, instead of a distance metric.

In considering each merge, two hypotheses are com-
pared. The first hypothesis (Hk

1) is that all the data in
Dk were generated independently and identically from
the same probabilistic model, p(x|θ) with unknown pa-
rameters θ (e.g. a Gaussian with θ = (µ, Σ)). We com-
pute the probability of dataDk underHk

1 by specifying
some prior over the parameters of the model (if we use
conjugate priors the following integral is tractable):

p(Dk|Hk
1) =

∫

p(Dk|θ)p(θ|β)dθ

=

∫

[

∏

x
(i)∈Dk

p(x(i)|θ)
]

p(θ|β)dθ (6)

The alternative hypothesis (Hk
2) would be that Dk has

two or more clusters in it. Summing over the exponen-
tially many possible ways of dividing Dk into two or
more clusters is intractable. However, if we restrict
ourselves to clusterings that partition the data in a
manner that is consistent with the sub-trees Ti and Tj

(see Figure 1(a) on the concept of tree-consistent parti-
tions), we can efficiently sum over exponentially many
alternative clusterings using recursion. The probabil-
ity of the data under the alternative hypothesis is then
simply p(Dk|Hk

2) = p(Di|Ti)p(Dj |Tj). The marginal
probability of the data in any sub-tree Tk is computed
as follows:

p(Dk|Tk) = πkp(Dk|Hk
1) + (1− πk)p(Di|Ti)p(Dj |Tj) (7)

where πk
def
= p(Hk

1). Note that this equation is defined
recursively, there the first term considers the hypoth-
esis that there is a single cluster in Dk and the second
term efficiently sums over all other clusterings in Dk

which are consistent with the tree structure. At each
iteration, BHC merges the two clusters that have the
highest posterior probability of the merged hypothesis

rk
def
= p(Hk

1 |Dk) which is defined by the Bayes rule:

rk =
πkp(Dk|Hk

1)

p(Dk|Tk)
(8)

The quantity πk, which can also be computed bottom
up as the tree is built, is defined to be the relative prior

Figure 1: (a) An example tree with 4 data points. A
tree-consistent clustering is given by cutting the hi-
erarchy at any level. The clusterings (1 2 3)(4) and
(1 2)(3)(4) are tree-consistent partitions of this data.
The clustering (1)(2 3)(4) is not tree-consistent. (b)
An example of the alternative tree algorithm. Tk is
a generic subtree under internal node k in the BHC
tree. Tk(1) and Tk(2) are two alternative subtrees ob-
tained from relocating or swapping the branches under
Tk. Thus we obtain two alternative trees to the BHC
tree from relocations at a single node. Meanwhile, the
marginal probability of the data under the alternative
trees tightens the BHC lower bound.

mass in a DPM with hyperparameter α, of the parti-
tion where all data points are in one cluster, versus all
the other partitions consistent with the subtrees. As

shown in Heller and Ghahramani (2005), πk = αΓ(nk)
dk

where dk = αΓ(nk) + dleftk
drightk

, right (left) refer
to the children of internal node k, and at the leaves,
di = α, πi = 1. BHS automatically infers the number
of clusters by cutting the tree at rk < 0.5.

Heller and Ghahramani (2005) described in detail
the clustering performance of BHC and quantita-
tively compared it to traditional hierarchical clustering
methods. They also proved that for any binary tree
Tk with the data points Dk at its leaves, BHC gives a
lower bound on the marginal likelihood of a DPM:

dkΓ(α)

Γ(nk + α)
p(Dk|Tk) ≤ p(Dk|α, β) (9)

where the left hand side of the inequality is the BHC
lower bound, p(Dk|Tk) is the BHC approximation to
the marginal likelihood of a DPM, and p(Dk|α, β) is
the exact marginal likelihood of a DPM given by Equa-
tion 5. An important question, which we address in
Section 6.1.1 is how well the BHC lower bound (9)
compares to the class of variational lower bounds for
DPMs. BHC also offers a predictive distribution for
new test points which is discussed in detail in Heller
and Ghahramani (2005). We will compare its predic-
tive performance to those of the class of variational
methods in Section 6.1.2.
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Figure 2: (a) An example with 9 data points in 3 equi-
distant clusters each with 3 equi-distant data points.
The top row shows 3 hierarchies: the first is from BHC
and the rest are from the alternative tree algorithm
with relocations at the root of tree. The bottom row
shows the corresponding clusterings. (b) The distri-
bution on the lower bound increment from relocations
at each internal node. The magnitude of the incre-
ment reflects the uncertainty of the clustering. Note
the values at node 13, 14, 15 and 17 indicate raised
uncertainty when clustering equi-distant clusters.

4 Alternative Tree Algorithm

BHC is a greedy algorithm which yields a single bi-
nary tree and may not capture uncertainty associated
with alternative clusterings of the data (Figure 2(a)).
In this section, we present a new algorithm which con-
structs alternative tree structures to the one given by
BHC. Importantly, we can use this algorithm to im-
prove the BHC lower bound described in Section 3 and
account for alternative clusterings of the data.

Our algorithm uses the original BHC tree as a starting
point and alters its subtrees by relocating the branches
(we can also think of a relocation as a swap of the
branches under an internal node) as illustrated in Fig-
ure 1(b). Thus for any node that has more than

2 leaves we obtain 2 alternative trees (trees under
nodes with less than or equal to 2 leaves remain un-
changed). We perform these relocations at one node
at a time and keep the rest of the tree unchanged,
iterating this process from a user-specified node up-
ward on the path to the root of the entire tree. By
relocating at a single node for each iteration we can
efficiently compute the additional marginal probabil-
ity of the data under the resulting alternative subtrees.
Moreover, over all iterations the additional probabil-
ity mass is propagated to the root of the tree which
yields an improved BHC lower bound of the DPM.
While the original BHC lower bound sums over ex-
ponentially many tree-consistent partitions, the new
lower bound considers alternative trees and efficiently
sums over partitions which are not present in the orig-
inal BHC tree. The computational complexity of our
algorithm is O(log(n)), and for a balanced tree with n

data points at its leaves (i.e. n−1 internal nodes), our
algorithm gives n − 2 alternative tree structures (i.e.
trees under nodes at the bottom level are not altered,
and trees under nodes at one level up yield n

2 possible
alternatives, and so on), which can be computed as
follows:

lim
n→∞

(0 +
n

2
+

n

4
+ ... +

n

2log2(n)−1
) = n− 2.

Consider relocating branch Tklr
from being a sibling

of Tkll
to being a sibling of Tkr

in a general sub-
tree Tk (see Figure 1(b)). This gives Tj(1) under new
node j(1) (note that the total number of nodes is con-
served), and alternative subtree Tk(1). Similarly, re-
locating Tkll

gives Tj(2) and alternative subtree Tk(2).
We want to compute the additional probability of the
data Dk under these alternative trees (i.e. p(Dk|Tk(1))
and p(Dk|Tk(2))) which offer partitions that are not
present in the original BHC tree. Since we have al-
ready represented all partitionings where the data Dk

under Tk are in one cluster in the BHC tree , we only
have to consider the non-merged hypothesis. So for
Tk(1) we have (analogously with equation (7)):

p(Dk|Tk(1)) = p(Dj(1)|Tj(1))p(Dkll
|Tkll

) (10)

where the quantities p(Dj(1)|Tj(1)) = p(Dj(1)|Hj(1)
1 )

initialize: i = k

while i < R (root) do

p(Di+1|Ti+1) = p(Dl(i+1)
|Tl(i+1)

)p(Dr(i+1)
|Tr(i+1)

)
di+1 = dl(i+1)

dr(i+1)

i← i + 1
end while

Figure 3: Message propagation from node k of subtree
Tk to root R of the entire tree.
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(i.e. merged hypothesis, see (6)) and p(Dkll
|Tkll

) have
already been computed in constructing the BHC tree.
The priors on merging can also be obtained:

dk(1) = dj(1)dkll
(11)

where dj(1) = αΓ(nj(1)), and dkll
remains unchanged

as computed in BHC. This gives πk(1) = 0 and
πj(1) = 1. The computation of p(Dk|Tk(2)) and dk(2)

is analogous. We can now propagate the quanti-
ties p(Dk|Tk(1)), dk(1), p(Dk|Tk(2)) and dk(2) (treating
them as messages) from node k to the root of tree R

(see Figure 3). Note that by relocating in two ways un-
der an internal node we obtain 2 alternative trees and
2 sets of messages (i.e. {p(Droot|Troot(1)), droot(1)} and
{p(Droot|Troot(2)), droot(2)}) at the root of tree. The
idea is that we can add the additional marginal prob-
ability of the data under these alternative trees to the
marginal probability under the BHC tree and hence
increase the total marginal likelihood and improve the
BHC lower bound as discussed in Section 3.

We can now compute the improvement in the BHC
lower bound that results from the alternative trees.
Specifically, if we denote Tk(i) as one alternative tree
to Tk, then its corresponding contribution to the in-
crement of the original BHC lower bound δLB(i) can
be defined as follows (using equation (9)):

δLB(i) =
dk(i)Γ(α)

Γ(nk + α)
p(Dk|Tk(i)) (12)

Theorem 1 For any binary tree Tk with the data
points Dk at its leaves, the following is a new lower
bound on the marginal likelihood of a DPM:

dkΓ(α)

Γ(nk + α)
p(Dk|Tk) +

∑

i∈N

δLB(i) ≤ p(Dk|α, β)

where the first term on the left hand side of the inequal-
ity is the original BHC lower bound as in (9), and the
second term is the sum of increments in lower bound
from set N of alternative trees to Tk.

Proof The proof follows from the fact that (1) we sum
over all partitions that are consistent with the set of
alternative trees and (2) each alternative tree is unique
in that it results from a single change in the original
BHC tree, hence there is no accumulated change or
double counting of partitionings of the data.

The general alternative tree algorithm is summarized
in Figure 4. Our algorithm is valid for any start-
ing node l. Note that although there can be many
ways of generating alternative tree structures, our al-
gorithm has the advantages that (1) by confining to
local changes in the tree we are able to efficiently com-
pute and propagate the probabilities in a manner that

is consistent with the original BHC algorithm (2) given
(1) we can effectively improve the BHC lower bound
on the marginal likelihood of a DPM with very few
additional computations (3) we further accommodate
uncertainty in the clusterings of BHC which have al-
ready been shown to be of high quality (Heller and
Ghahramani, 2005).

input: starting node l, outputs from BHC: tree,
p(Dk|Tk), dk & p(Dk|Hk

1) for k = l, ..., R(root)
initialize: i = l

while i < R do

if number of leaves under node i > 2 then

Change subtree under i (in two ways)
Compute p(Di|Ti) & di for 2 alternative
subtrees

else

Retain p(Di|Ti) & di from original BHC
end if

Propagate message {p(Di|Ti),di} from i to R

Store p(DR|TR) and dR for 2 subtrees under i

i← i + 1
end while

output: alternative trees to original BHC tree
and a new lower bound

Figure 4: Alternative Tree Algorithm

5 Fast Bayes K-Means BHC

BHC is a greedy algorithm with O(n2) complexity.
Heller and Ghahramani (2005) describe two fast algo-
rithms for BHC which reduce its complexity to O(n)
and O(n log n). Here we develop a new approximate
method called Bayes K-means BHC. We first intro-
duce Bayes K-means, which is similar to ME algorithm
(Kurihara and Welling, 2008). Our algorithm is like
traditional K-means, but instead of using Euclidean
distance, we use marginal likelihood as the criterion
for cluster assignment. Moreover, our algorithm uses
DPM as the generative model and greedily chooses a
clustering configuration that maximizes the marginal
likelihood by marginalizing over the parameters at
each iteration (using Dirichlet-Multinomial conjugacy
and DPM priors, we can compute marginal likelihood
from Equation 3). We start by randomly sampling
k points (e.g. k =

√
n) and assigning them to their

own clusters. We then iteratively assign each of the
remaining points to one of the existing clusters or cre-
ate their own new cluster by considering the marginal
likelihood over different clusterings, e.g. suppose we
want to assign (k + 1)th point, we would compute the
marginal likelihood for k clustering configurations re-
sulted from tentatively assigning the point to each of
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Figure 5: Comparison of marginal likelihood approxi-
mate among BHC, VB and collapsed variational meth-
ods (’O-CSB’ and ’O-CDP’ are collapsed variational
methods with truncated stick-breaking and a finite
mixture model with symmetric Dirichlet prior). The
top row are 3 synthetic Gaussian datasets: Set I has 2
separate mixtures; Set II has 2 close mixtures; Set III
has 1 mixture. The bottom row corresponds to 3 real
datasets: iris, abalone and wine data.

k clusters in turn, and for the case that the point is as-
signed to a new cluster. We then choose the clustering
that gives the highest marginal likelihood. Once all
points have been assigned, we further merge the clus-
ters by greedily optimizing the global marginal like-
lihood. Note that our algorithm automatically infers
the number of clusters. Bayes K-means BHC then
follows two steps. First, it partitions the data into
a number of clusters via Bayes K-means. Second, it
runs BHC on these clusters and constructs a hierar-
chical tree. The complexity of Bayes K-means BHC is
approximately O(nk + k2) (k < n). We show empir-
ically in Section 6.3 that it gives large speedups and
good approximation to BHC.

6 Results

6.1 Empirical Comparison

6.1.1 Comparison on Marginal Likelihood

We compared the marginal likelihood approximate for
DPMs from BHC to those from variational Bayesian
approximations (VB) (Blei and Jordan, 2005) and two
collapsed variational approximations (Kurihara et al.,
2007) i.e. the variational method with truncated stick-
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Figure 6: Comparison of predictive performance
among BHC, VB and collapsed variational methods
on the same synthetic and real datasets as laid out in
Figure 5.

breaking construction, and one with a finite mixture
model using a symmetric Dirichlet prior. We used op-
timal cluster label reordering for the collapsed meth-
ods as this was shown to produce tighter lower bounds
than those without. We first compared these algo-
rithms on 3 small synthetic datasets where the exact
marginal likelihood of a DPM could be computed. We
then compared on 3 large real-world datasets. Due to
space limitations, we do not review VB and the col-
lapsed variational methods here. Detailed description
of these and comparisons of VB to MCMC (e.g. Gibbs
sampling) can be found in Blei and Jordan (2005).

We generated 3 two-dimensional Gaussian datasets:
Set I has two separate Gaussian mixture components
which are far apart from each other without any over-
lapping points; Set II has two closely-neighboring mix-
ture components which also have no overlaps; Set III
has only one mixture component1. We chose very
small datasets (3 to 9 points) so that we were able to
compare the marginal likelihoods of BHC and of the
class of variational approximate methods to the ex-
act marginal likelihood of a DPM. We varied the data
size from 3 to 9 and used fixed data points. Figure 5
shows the results. We found that in all 3 data sets
BHC was closer to the exact likelihood than all of the
variational methods (truncation level K = 10). More-

1Set I: µ1 = (2, 2), σ2

1 = 0.5 and µ2 = (8, 8), σ2

2 = 0.5;
Set II: µ1 = (5, 5), σ2

1 = 0.5 and µ2 = (7, 5), σ2

2 = 0.5; Set
III: σ

2 = 0.5, where µ and σ
2 denote mean and variance of

a 2-D Gaussian distribution.
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over, BHC gave a deterministic lower bound whereas
the estimates of the variational methods varied at each
run due to local optima resulting from random ini-
tializations. We verified empirically that the BHC
lower bound was never greater than the exact likeli-
hood, and also noted that the BHC approximation (i.e.
P (D|Troot)) is also very close to the exact likelihood
and BHC lower bound.

Although computing the exact marginal likelihood of
a DPM on large datasets would be infeasible, we com-
pared the BHC lower bound to the variational methods
over 3 real-world real-valued datasets. The datasets
we used were the iris (150 examples, 3 classes, 4 at-
tributes), abalone (600 examples, 25 classes, selected
5 continuous attributes) and wine (120 examples, 4
classes, selected 6 continuous attributes) data from
the UCI repository. We again varied the data size
with fixed data points in these experiments and set
the truncation level of variational methods K = 20, 40
and 20 respectively for the 3 datasets. Figure 5 shows
the results. We found that the BHC lower bounds
were higher (and hence tighter) than the mean lower
bounds of all variational methods in the three exam-
ples (in fact, BHC was often better than the best runs
of the variational methods).

6.1.2 Comparison on Predictive Performance

We compared the predictive performance among BHC,
VB and the class of collapsed variational approxima-
tions using the same synthetic and real datasets as de-
scribed in Section 6.1.1. For the synthetic datasets, we
held out 1 point as the test data and repeatedly per-
muted this for each data size. For the real datasets, we
randomly chose a small amount (about 10%) at each
data size as the holdout and trained on the rest. Fig-
ure 6 shows the results. We found that in all datasets
BHC generally gave better predictive accuracy than
the other algorithms.

6.2 Evaluating the New Alternative Tree

BHC Lower Bound

We applied the alternative tree algorithm over similar
synthetic and real-world datasets as in Section 6.1 and
three more real-world binary datasets, and compared
the new lower bound to the original BHC lower bound.

Figure 7 (top row) shows the results on the synthetic
datasets. We set the starting node for relocations as
the lowest internal node and varied the data size from
3 to 9 with randomly sampled points at each size, com-
puting the exact likelihoods for these small data sets.
We found that the new lower bound was closer to the
exact likelihood than the original lower bound. We
also verified the computation of the new lower bound

by noting that the differences between the exact likeli-
hood and new lower bound were zero for 3 data points.
For 3 points, the alternative tree algorithm sums over
all partitions, so it computes the exact likelihood.

We also applied our algorithm on 3 real-world real-
valued (middle row in Figure 7) and 3 more bi-
nary datasets: (1) digits (0-9, 300 examples, 64 at-
tributes); (2) CMU 20 newsgroups (300 examples, 500
attributes); (3) spambase (200 examples, 2 classes, 57
attributes) (bottom row in Figure 7). In these exam-
ples we set the starting node for relocations close to
the root of the tree because we found empirically that
swaps at high levels had much higher gains in marginal
likelihood than those at lower levels. We varied the
data size and selected random samples at each size.
We note that in all these datasets there was a gen-
eral improvement on the lower bound. We also note
that the degree of improvement can be data depen-
dent. While log differences of 0.4 to 0.8 on the binary
data may seem modest, they indicate that the parti-
tions in the alternative tree capture 50% to 120% as
much posterior mass as the original BHC tree.

Finally, we ran our algorithm on a synthetic Gaussian
dataset (Figure 2(a)) and explored the alternative clus-
terings that it offers. We set the starting node as the
lowest internal node. We note that the increment in
lower bound based on relocations at each internal node
reflects the degree of uncertainty in that particular
clustering. Moreover, the distribution of increments
at different internal nodes allows us to evaluate which
relocations yield effective alternative clusterings and
identify good alternative tree structures (Figure 2(b)).

6.3 Comparing Bayes K-Means BHC and

BHC

We ran Bayes K-means BHC and original BHC on the
iris, abalone and wine datasets as in Section 6.1. We
generated random samples at varied data sizes for re-
peated runs in each set. The inferred number of clus-
ters from Bayes K-means for the three sets at their
largest data size are on average 4, 31 and 5 respec-
tively (real number of classes are 3, 25 and 4). Figure 8
compares the likelihood and runtime of the two algo-
rithms. We note that the approximate method offers
significant speedups (e.g. for 600-point abalone set, the
speedup is about 30-fold). Furthermore, the approxi-
mate on marginal likelihood from Bayes K-means BHC
to that from BHC (and to BHC lower bound) is also
close. As we have shown in Section 6.1 that both BHC
approximate and lower bound give accurate estimates
to the exact marginal likelihood of a DPM, our result
suggests that K-Means BHC can potentially be used
to give very fast approximation for DPMs.
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Figure 7: Comparison of new and original BHC
lower bounds. The top row are 3 synthetic Gaussian
datasets. The middle row are 3 real datasets: iris,
abalone and wine. The bottom row are 3 real binary
datasets: digits, CMU newsgroups and spambase.

7 Conclusions

We empirically compared BHC to variational Bayes
and collapsed variational methods for DPMs and
showed that BHC gives significantly better approxi-
mations to DPMs in most instances. Moreover, BHC
gives a deterministic combinatorial lower bound to the
marginal likelihood of a DPM and is shown to give
a better predictive performance than the other algo-
rithms. We developed a novel alternative tree algo-
rithm which offers alternative tree structures to BHC
and allows for a tightening of the BHC lower bound
to a DPM. Our algorithm finds sensible alternative
trees by examining their contribution to the marginal
likelihood. Finally, we presented a fast approximate
method which gives fast and good approximations to
BHC. In future, we would like to explore whether the
combinatorial lower bounds which we have shown here
to work well for DPMs, can be the basis of approxi-
mate inference algorithms for other models.
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