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Abstract
Kernel density estimation (KDE) is a popular
nonparametric density estimation method. We
(1) derive finite-sample high-probability density
estimation bounds for multivariate KDE under
mild density assumptions which hold uniformly
in x ∈ Rd and bandwidth matrices. We ap-
ply these results to (2) mode, (3) density level
set, and (4) class probability estimation and at-
tain optimal rates up to logarithmic factors. We
then (5) provide an extension of our results un-
der the manifold hypothesis. Finally, we (6) give
uniform convergence results for local intrinsic di-
mension estimation.

1. Introduction
KDE (Rosenblatt, 1956; Parzen, 1962) is a foundational as-
pect of nonparametric statistics. It is a powerful method to
estimate the probability density function of a random vari-
able. Moreover, it is simple to compute and has played
a significant role in a very wide range of practical appli-
cations. Its convergence properties have been studied for a
long time with most of the work dedicated to its asymptotic
behavior or mean-squared risk (Tsybakov, 2008). How-
ever, there is still a surprising amount not yet fully under-
stood about its convergence behavior. In this paper, we
focus on the uniform finite-sample facet of KDE conver-
gence theory. We handle the multivariate KDE setting in
Rd which allows a d × d bandwidth matrix H. This gen-
eralizes the scalar bandwidth h > 0 i.e. H = h2I. Such
a generalization is significant to multivariate statistics e.g.
Silverman (1986); Simonoff (1996).

Our work begins by using VC-based Bernstein-type uni-
form convergence bounds to attain finite-sample rates for
a fixed unknown density f over Rd (Theorem 1). These
bounds hold with high-probability under general assump-
tions on f and the kernel i.e. we only require f to be
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bounded as well as decay assumptions on the kernel func-
tions. Moreover, these bounds hold uniformly over Rd and
bandwidth matrices H.

We then show the versatility of our results by applying it to
the related areas of KDE rates under `∞, mode estimation,
density level-set estimation, and class probability estima-
tion. We then extend our analysis to the manifold setting.
Finally, we provide uniform finite-sample results for local
intrinsic dimension estimation. Each of these contributions
are significant on their own.

2. Contributions and Related Works
`∞ bounds for KDE: It must first be noted that bounding
|f̂h − f |∞ where f̂h is the KDE of f for scalar h > 0
is a more difficult problem than for example bounding the
mean-squared error Ef [(f̂h − f)2]. Gine & Guillon (2002)
and Einmahl & Mason (2005) give asymptotic convergence
results on KDE for |f̂h − Ef f̂h|∞. In their work about
density clustering, Rinaldo & Wasserman (2010) extends
the results of the former to obtain high-probability finite-
sample bounds. This is to our knowledge the strongest and
most general uniform finite-sample result about KDE thus
far.

We show a general bound of form |f̂h(x) − f(x)| . εx +√
log n/nhd where εx is a function of the kernel and the

smoothness of f at x which holds with probability 1− 1/n
uniformly over x ∈ Rd and h (Theorem 1). An almost
direct consequence is that if we take f to be α-Hölder con-
tinuous then under the optimal choice for h ≈ n−1/(2α+d),
we have |f̂h−f |∞ . n−α/(2α+d) with probability 1−1/n
(Theorem 2). This matches the known lower bound (Tsy-
bakov, 2008).

When comparing our finite-sample results to that of Ri-
naldo & Wasserman (2010), there are a few notable differ-
ences. Our results hold uniformly across bandwidths and
the probability that the bounds hold are independent of the
bandwidth (in fact, holds with probability 1 − 1/n). Our
results also extends to general bandwidth matrix H.

This can be significant to analyze KDE-based procedures
with adaptive bandwidths– i.e. when the bandwidths
change depending on the region. Then the need for bounds
which hold simultaneously over bandwidth choices be-
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comes clear. Such an example includes adaptive or vari-
able KDE (Terrell & Scott, 1992; Botev et al., 2010) which
extends KDE to bandwidths that vary over the data space.

Thus our result for uniform finite-sample KDE bounds can
be seen as a refinement to existing results.

Mode estimation Estimating the modes of a distribution
has a long history e.g. Parzen (1962); Chernoff (1964);
Eddy (1980); Silverman (1981); Cheng (1995); Abraham
et al. (2004); Li et al. (2007); Dasgupta & Kpotufe (2014);
Genovese et al. (2015); Jiang & Kpotufe (2017). The
modes can be viewed as the central tendancies of a distri-
bution and this line of work has played a significant role in
areas such as clustering, image segmentation, and anomaly
detection.

Much of the early work focused on the estimator
argmaxx∈Rd f̂h(x). While many useful insights have come
from studying this, it is difficult to algorithmically com-
pute. Abraham et al. (2004) turned to the simple estima-
tor argmaxx∈X f̂h(x) and showed that it behaves asymp-
totically as argmaxx∈Rd f̂h(x) where X is the data. In this
paper, we show that this estimator is actually a rate-optimal
estimator of the mode under finite samples with appropri-
ate bandwidth choice. This would not have been possible
without the appropriate bounds on KDE. This approach is
similar to that of Dasgupta & Kpotufe (2014), who apply
their k-NN density estimation bounds to show that the k-
NN analogue of the estimator is rate-optimal.

Another approach to mode estimation that must be noted
is mean-shift (Fukunaga & Hostetler, 1975; Cheng, 1995;
Comaniciu & Meer, 2002; Arias-Castro et al., 2016), which
is a popular clustering algorithm amongst practitioners
based on performing a gradient-ascent of the KDE. Its theo-
retical analysis however is still far from complete; the diffi-
culty comes from analyzing KDE’s ability to estimate gra-
dients. Here we are focused on density estimation rather
than density derivative estimation so our results do not ap-
pear immediately applicable to mean-shift.

Density level-set estimation The problem of density-level
set estimation has been extensively studied e.g. Carmichael
et al. (1968); Hartigan (1975); Cuevas & Fraiman (1997);
Tsybakov (1997); Cadre (2006); Rigollet & Vert (2009);
Singh et al. (2009); Rinaldo & Wasserman (2010); Stein-
wart (2011); Jiang (2017). It involves estimating {x :
f(x) ≥ λ} for some λ > 0 and density f based on sam-
ples drawn from f . This turns out to be one of the earliest
and still currently most popular means of modeling clusters
in the context of density-based clustering. The level-sets
also influenced much of the work on hierarchical cluster-
ing (Chaudhuri & Dasgupta, 2010).

Naturally, we must use some density estimator to get a han-
dle on λ. It turns out that in order to obtain the most gen-

eral uniform recovery bounds (e.g. finite-sample Hausdorff
rates (Singh et al., 2009)), one also needs similar uniform
density estimation bounds. The strongest known results
thus far use density estimators that are often impractical
(e.g. histogram density estimator) in order to obtain these
theoretical rates over a practical one such as KDE. Much
of the work, especially ones using more practical density
estimators have focused on bounding metrics such as sym-
metric set difference, which are computed as an expecta-
tion over f . This is considerably weaker than the Haus-
dorff metric, which imposes a uniform guarantee over each
estimated point and each point in the level-set.

We show that a simple KDE-based estimator is consistent
under the Hausdorff metric; moreoever when the band-
width is appropriately chosen, it attains the minimax op-
timal rate established by Tsybakov (1997).

Class probability estimation Class probability estimation
involves estimating the probability distribution over a set
of classes for a given input. In other words, it is an ap-
proach to classification which involves first estimating the
marginal density f(Y |X) (where X is the observation and
Y is its category) and then choosing the category with high-
est probability. This density-based approach to classifica-
tion has been studied in many places under nonparamet-
ric assumptions. e.g. Rigollet (2007); Chaudhuri et al.
(2009). However, there are still aspects about its conver-
gence properties that haven’t been fully understood. In the
current work, we give uniform rates on the approximation
of f(Y |X). Much of the related work assume the binary
classification case and derive a hard classifier based on the
marginal density and compare the risk between that and
the Bayes-optimal classifier. Our work differs in that we
give uniform bounds on the recovery of the marginal den-
sity, which is a considerably stronger notion of consistency.
This is important in situations where a worst-case bound on
classifier performance is required.

Density Estimation on Manifolds Density estimation on
manifolds has received much less attention than the full-
dimensional counterpart. However, understanding density
estimation in situations where the intrinsic dimension can
be much lower than the ambient dimension is becoming
ever more important: modern systems are able to capture
data at an increasing resolution while the number of de-
grees of freedom stays relatively constant. One of the lim-
iting aspects of density-based approaches is their perfor-
mance in high dimensions. It takes an exponential in di-
mension number of samples to estimate the density – this
is the so-called curse of dimensionality. Here we give re-
sults whose rates of convergence depend on the dimension
of the manifold dM compared to a much higher ambient di-
mension d; thus the convergence properties become much
more attractive under the manifold hypothesis.
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Local Intrinsic Dimension Estimation Many learning al-
gorithms require the intrinsic dimension as an input in order
to take advantage of the lower dimensional structure that
arises. There has been much work on estimating the intrin-
sic dimension of the data given finite samples e.g. (Kégl,
2003). However, the more interesting problem of estimat-
ing the local intrinsic dimension has received much less at-
tention. The bulk of the work in this area e.g. (Costa et al.,
2005; Houle, 2013; Amsaleg et al., 2015) provide inter-
esting estimators, but are unable to establish strong finite-
sample guarantees under nonparametric assumptions. In
this paper, we consider a simple notion of local intrinsic
dimension based on the doubling dimension and utilize a
simple estimator. We then give a uniform finite-sample
convergence result for the estimator under nonparametric
assumptions. To the best of our knowledge, this is perhaps
the strongest finite-sample result obtained this far for this
problem.

3. Background and Setup
Definition 1. Let f be a probability density over Rd with
corresponding distribution F . Let X = {X1, ..., Xn} be n
i.i.d. samples drawn from it and letFn denote the empirical
distribution w.r.t. X . i.e. Fn(A) = 1

n

∑n
i=1 1{Xi ∈ A}.

We only require that f is bounded.

Assumption 1. ||f ||∞ <∞.

Definition 2. Define kernel function K : Rd → R≥0 where
R≥0 denotes the non-negative real numbers such that∫

Rd
K(u)du = 1.

We make the following mild regularity assumptions on K.

Assumption 2. (Spherically Symmetric and non-
increasing) There exists non-increasing function
k : R≥0 → R≥0 such that K(u) = k(|u|) for u ∈ Rd.

Assumption 3. (Exponential Decays) There exists
ρ, Cρ, t0 > 0 such that for t > t0,

k(t) ≤ Cρ · exp(−tρ).

Remark 1. These assumptions allow the popular kernels
such as Gaussian, Exponential, Silverman, uniform, trian-
gular, tricube, Cosine, and Epanechnikov.

Assumption 3 implies the next result which will be useful
later on. The proof is elementary and is omitted.

Lemma 1. For all m > 0, we have∫
Rd
K(u)|u|mdu <∞.

Definition 3 (Bandwidth matrix). H is a valid bandwidth
matrix if it is a positive definite and symmetric d×dmatrix.
H0 is a unit bandwidth matrix if it is a valid bandwidth
matrix and |H0| = 1.

Let σ1(H0) ≥ · · · ≥ σd(H0) > 0 be the eigenvalues of
H0.

Remark 2. In the scalar bandwidth case, H0 = I.

Remark 3. It will be useful later on that if H = h2H0

where H0 is a unit bandwidth, then for u ∈ Rd,√
σd(H0) · h · |u| ≤ |H1/2u| ≤

√
σ1(H0) · h · |u|.

Definition 4 (Kernel Density Estimation). Given a kernel
K and h > 0 and H0, the KDE for H := h2H0 is given
by

f̂H(x) :=
1

n
· |H|−d/2

n∑
i=1

K
(
H−1/2(x−Xi)

)
=

1

n · hd
n∑
i=1

K

(
H0
−1/2(x−Xi)

h

)
.

4. Uniform Convergence Bounds
The following is a paraphrase of Bousquet et al. (2004),
which was given in Chaudhuri & Dasgupta (2010).
Lemma 2. Let G be a class of functions from X to {0, 1}
with VC dimension d < ∞, and F a probability distri-
bution on X . Let E denote expectation with respect to F .
Suppose n points are drawn independently at random from
F; let En denote expectation with respect to this sample.
Then with probability at least 1− 1/n, the following holds
for all g ∈ G:

−min{βn
√

Eng, β
2
n + βn

√
Eg}

≤ Eg − Eng ≤ min{β2
n + βn

√
Eng, βn

√
Eg},

where βn ≥
√

4(d+ 3) log 2n/n.

Chaudhuri & Dasgupta (2010) takes G to be the indicator
functions over balls. Dasgupta & Kpotufe (2014) uses this
to provide similar bounds for the k-NN density estimator
as in this paper. Here, we extend this idea to ellipsoids
by taking G = B (the indicator functions over ellipsoids),
which has VC dimension (d2 + 3d)/2 as determined by
Akama & Irie (2011).
Lemma 3. Define ellipsoid BH0(x, r) := {x′ ∈ Rd :

|H0
−1/2(x − x′)| ≤ r}, and B := {BH0(x, r) : x ∈

Rd, r > 0,H0 is a unit bandwidth}. With probability at
least 1 − 1/n, the following holds uniformly for every
B ∈ B and γ ≥ 0:

F(B) ≥ γ ⇒ Fn(B) ≥ γ − βn
√
γ − β2

n,

F(B) ≤ γ ⇒ Fn(B) ≤ γ + βn
√
γ + β2

n,
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where βn = 8d
√

log n/n.

Remark 4. We could have alternatively used a fixed con-
fidence δ so that our results would hold with probability at
least 1 − δ. This would only require a modification of βn
(e.g. by taking βn = 4d

√
2(log n+ log(1/δ))/n). In this

paper, we have simply taken δ = 1/n.

5. KDE Bound
Define the following which characterizes how much the
density can respectively decrease and increase from x in
B(x, r).
Definition 5.

ǔx(r) := f(x)− inf
x′∈B(x,r)

f(x′).

ûx(r) := sup
x′∈B(x,r)

f(x′)− f(x).

The first are general upper and lower bounds for f̂H.

Theorem 1. [Uniform Upper and Lower Bounds for f̂H]
Let vd be the volume of the unit ball in Rd. Then the follow-
ing holds uniformly in x ∈ Rd, ε > 0, unit bandwidths H0,
and h > (log n/n)1/d with probability at least 1 − 1/n.
Let H := h2H0.

f̂H(x) > f(x)− ε− C
√

log n

n · hd
,

if
∫

Rd K(u) · ǔx(h|u|/
√
σd(H0))du < ε, and

f̂H(x) < f(x) + ε+ C

√
log n

n · hd
,

if
∫

Rd K(u) · ûx(h|u|/
√
σd(H0))du < ε, where C =

8d
√
·vd · ||f ||∞

(∫∞
0
k(t) · td/2dt+ 1

)
+ 64d2 · k(0).

Remark 5. The conditions on ǔx(h|u|/√σd) and
ûx(h|u|/√σd) can be interpreted as a bound on
their expectations over the probability measure K (i.e.∫

Rd K(u)du = 1). These conditions can be satisfied by
taking h sufficiently small.

Remark 6. The parameter ε allows us the amount of slack
in the estimation errors. This is useful in a few aspects.
Oftentimes, we don’t require tight bounds, especially when
reasoning about low density regions thus having a large ε
allows us to satisfy the conditions more easily. In the case
that we want tight bounds, the additive error controlled by
the pointwise smoothness of the density can be encoded in
ε, so to not require global smoothness assumptions.

Remark 7. Besides the ||f ||∞ factor, the value of C at the
end of the theorem statement is a quantity which can be
known without any a priori knowledge of f . We can bound
||f ||∞ in terms of known quantities given smoothness as-
sumptions near argmaxxf(x). This is used in later results
where knowing a value of C is important.

In order to prove Theorem 1, we first define the following
two functions which serve to approximateK as a step-wise
linear combination of uniform kernels.
Definition 6. Let ∆ > 0.

K∆(u) :=

∞∑
j=0

(k(j∆)− k((j + 1)∆)) · 1 {|u| < j∆} ,

K∆(u) :=

∞∑
j=0

(k(j∆)− k((j + 1)∆)) · 1 {|u| < (j + 1)∆} .

Then it is clear that the following holds for all ∆ > 0.

K∆(u) ≤ K(u) ≤ K∆(u).

The next Lemma is useful in computing the expectations of
functions over the kernel measure.

Lemma 4. Suppose g is an integrable function over R≥0

and let vd denote the volume of a unit ball in Rd. Then∫
Rd
K(u)g(|u|)du = vd ·

∫ ∞
0

k(t) · tdg(|u|)du.

Proof of Lemma 4. Let Sd = 2πd/2/Γ(d/2) denote the
surface area of the unit ball in Rd.∫

Rd
K(u)g(|u|)du = Sd

∫ ∞
0

k(t) · td−1 · g(|t|)dt

=
Sd
d

∫ ∞
0

(k(t) · g(|t|))tddt = vd

∫ ∞
0

(k(t) · g(|t|))tddt,

where the second last equality follows from integration by
parts and the last follows from the fact that vd = Sd/d.

The following follows immediately from Lemma 4.

Corollary 1.∫
Rd
K(u)ǔx(h|u|)du = vd ·

∫ ∞
0

k(t) · td · ǔx(ht)dt,∫
Rd
K(u)ûx(h|u|)du = vd ·

∫ ∞
0

k(t) · td · ûx(ht)dt.

Proof of Theorem 1. Assume that the event that Lemma 3
holds, which occurs with probability at least 1 − 1/n. We
first show the lower bound for f̂H(x). Define

f̂∆,H(x) :=
1

n · hd
n∑
i=1

K∆

(
H0
−1/2(x−Xi)

h

)
.

It is clear that f̂H(x) ≥ f̂∆,H(x) for all x ∈ Rd. Let us use
the following shorthand ∆k,j := k(j∆). We have

f̂∆,H(x) =
1

hd

∞∑
j=0

(∆k,j −∆k,j+1) · Fn (BH0(x, jh∆)) .
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We next get a handle on each Fn (BH0(x, jh∆)). We have

F (BH0(x, jh∆)) ≥ vd · (jh∆)
d · Fj ,

where Fj := max{0, f(x)− ǔx(jh∆/
√
σd(H0))}. Thus,

by Lemma 3, we have

Fn (BH0(x, jh∆))

≥ vd · (jh∆)d · Fj − βn
√
vd · (jh∆)d/2 ·

√
Fj − β2

n

≥ vd · (jh∆)d · Fj − βn
√
vd · ||f ||∞ · (jh∆)d/2 − β2

n.

Therefore,

f̂∆,h(x)

≥ vd
∞∑
j=0

(∆k,j −∆k,j+1)(j∆)d · f(x)

− vd
∞∑
j=0

(∆k,j −∆k,j+1)(j∆)d · ǔx

(
jh∆√
σd(H0)

)

−
βn
√
vd · ||f ||∞
hd/2

·
∞∑
j=0

(∆k,j −∆k,j+1)(j∆)d/2

− β2
n

k(0)

hd
.

We handle each term separately. For the first term, we have

lim
∆→0

vd

∞∑
j=0

(∆k,j −∆k,j+1)(j∆)d

= vd

∫ ∞
0

k(t)tddt = 1.

where the last equality follows from Lemma 4. Next, we
have

lim
∆→0

vd

∞∑
j=0

(∆k,j −∆k,j+1)(j∆)d · ǔx

(
jh∆√
σd(H0)

)

= vd

∫ ∞
0

k(t) · td · ǔx(th/
√
σd(H0))dt < ε.

Finally, we have

lim
∆→0

∞∑
j=0

(∆k,j −∆k,j+1)(j∆)d/2

=

∫ ∞
0

k(t) · td/2dt <∞.

Thus, taking ∆→ 0 we get

f̂H(x) ≥ f(x)− ε−
βn
√
vd · ||f ||∞
hd/2

·
∫ ∞

0

k(t) · td/2dt

− β2
n

k(0)

hd
.

This gives us the lower bound. Next we derive an upper
bound. Let us redefine

f̂∆,H(x) :=
1

n · hd
n∑
i=1

Km

(
x−Xi

h

)
.

It is clear that f̂H(x) ≤ f̂∆,H(x) for all x ∈ Rd and

f̂∆,H(x)

=
1

hd

∞∑
j=0

(∆k,j −∆k,j+1) · Fn (BH0(x, (j + 1)h∆)) .

We next get a handle on each Fn (BH0(x, jh∆)). We have

F(BH0(x, jh∆)) ≤ vd · (jh∆)d · Fj

where Fj = min{||f ||∞, f(x) + û(jh∆/
√
σd(H0))}.

Thus by Lemma 3 we have

Fn (BH0(x, jh/m))

≤ vd(jh∆)dFj + βn(jh∆)d/2
√
vd · Fj + β2

n.

Using this, we now have

f̂∆,H(x)

≤ vd
∞∑
j=0

(∆k,j −∆k,j+1)((j + 1)ε)d · f(x)

+ vd

∞∑
j=0

(∆k,j −∆k,j+1)((j + 1)∆)d · ûx

(
(j + 1)h∆√
σd(H0)

)

+
βn
√
vd · ||f ||∞
hd/2

·
∞∑
j=0

(∆k,j −∆k,j+1)((j + 1)∆)d/2

+ β2
n

k(0)

hd
.

We proceed the same way as the other direction. Thus tak-
ing ∆→ 0 we get

f̂∆,H(x) ≤ f(x) + ε+
βn
√
vd · ||f ||∞
hd/2

·
∫ ∞

0

k(t) · td/2dt

+ β2
n

k(0)

hd
.

The result follows.

6. Sup-norm Bounds for KDE
Theorem 2. [`∞ bound for α-Hölder continuous func-
tions] If f is Hölder-continuous (i.e. |f(x) − f(x′)| ≤
Cα|x − x|α for x, x′ ∈ Rd and 0 < α ≤ 1), then there
exists positive constant C ′ ≡ C ′(C,Cα, α,K) such that
the following holds with probability at least 1 − 1/n uni-
formly in h > (log n/n)1/d and unit bandwidths H0. Let
H := h2H0.

sup
x∈Rd

|f̂H(x)− f(x)| < C ′ ·

(
hα

σd(H0)α/2
+

√
log n

n · hd

)
.
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Remark 8. Taking h = n−1/(2α+d) in the above r.h.s. op-
timizes the rates to n−α/(2α+d) (ignoring log factors).
Remark 9. We can attain similar results (although not
uniform in bandwidth) by a straightforward application
of Theorem 3.1 of Sriperumbudur & Steinwart (2012) or
Proposition 9 of Rinaldo & Wasserman (2010).

7. Mode Estimation Results
The goal of this section is to utilize the KDE to estimate
the mode of a uni-modal distribution from its samples. We
borrow the estimator from Abraham et al. (2004)

x̂ := argmaxx∈X f̂H(x),

where H := h2I.

We adopt the mode estimation framework assumptions
from Dasgupta & Kpotufe (2014) which are summarized
below.
Definition 7. x0 is a mode of f if f(x) < f(x0) for all
x ∈ B(x0, r)\{x0} for some r > 0.
Assumption 4. • f has a single mode x0.

• f is twice differentiable in a neighborhood around x0.

• f has a negative-definite Hessian at x0.

These assumptions lead to the following.
Lemma 5 ((Dasgupta & Kpotufe, 2014)). Let f satisfy As-
sumption 4. Then there exists Ĉ, Č, r0, λ > 0 such that the
following holds.

Č · |x0 − x|2 ≤ f(x0)− f(x) ≤ Ĉ · |x0 − x|2

for all x ∈ Ax where A0 is a connected component of {x :
f(x) ≥ λ} and A0 contains B(x0, r0).

We obtain the following result for the estimation error of x̂.
Theorem 3. Suppose that Assumptions 1, 2, 3, 4 hold.
Choose h such that (log n)2/ρ ·h→ 0 and log n/(nhd)→
0 as n → ∞. Then, for n sufficiently large depending on
d, ||f ||∞,K, Ĉ, Č, r0 the following holds with probability
least 1− 1/n.

|x̂− x0|2 ≤ max

{
32Ĉ

Č
(log n)4/ρ · h2, 17 · C

√
log n

n · hd

}
.

Remark 10. Taking h = n−1/(4+d) optimizes the above
expression so that |x̂− x0| . n−1/(4+d) (ignoring log fac-
tors) which matches the lower bound rate for mode estima-
tion as established in Tsybakov (1990).
Remark 11. This result can be extended to multi-modal
distributions as done by Dasgupta & Kpotufe (2014) by us-
ing the connected components of nearest neighbor graphs
at appropriate empirical density levels to isolate the modes
away from each other.

8. Density Level Set Estimation Results
In this section, we estimate the density level set Lf (λ) :=
{x : f(x) ≥ λ} where λ > 0 is given. We make the fol-
lowing standard regularity assumptions e.g. (Singh et al.,
2009). To simplify the analysis, let us take H = h2I. It is
clear that the results that follow can be extended to arbitrary
H0.
Assumption 5 (β-regularity). Let 0 < β < ∞. There ex-
ists 0 < λ0 < λ and Čβ , Ĉβ , r̄ > 0 such that the following
holds for x ∈ Lf (λ0)\Lf (λ).

Čβ · d(x, Lf (λ))β ≤ λ− f(x) ≤ Ĉβ · d(x, Lf (λ))β ,

where d(x,A) := infx′∈A{|x − x′|}. and B(Lf (λ), r̄) ⊆
Lf (λ0) where B(A, r) := {x : d(x,A) ≤ r}.

Then we consider following estimator.

L̂f :=

{
x ∈ X : f̂H(x) > λ− C̃

√
log n

n · hd

}
.

where C̃ is obtained by taking C and replacing the ||f ||∞
factor by 1+5 maxx∈Xn0

f̂H(x) whereXn0
is a fixed sam-

ple of size n0. Then, C̃ can be viewed as a constant w.r.t.
n and can be known without any a priori knowledge of f
while ensuring that C̃ ≥ max{1, 2C}.

We use the following Hausdorff metric.
Definition 8 (Hausdorff Distance).

dH(A,B) := max{sup
x∈A

d(x,B), sup
x∈B

d(x,A)}.

Theorem 4. Suppose that Assumptions 1, 2, 3, 5 hold and
that f is α-Hölder continuous for some 0 < α ≤ 1. Choose
h such that (log n)2/ρ · h → 0 and log n/(nhd) → 0
as n → ∞. Then, for n sufficiently large depending on
d,C, C̃,K, Ĉβ , Čβ , β, r̄ the following holds with probabil-
ity least 1− 1/n.

dH(L̂f , Lf (λ)) ≤ C ′′
(

(log n)2/ρ · h+

(
log n

n · hd

)1/(2β)
)
,

where C ′′ ≡ C ′′(C, C̃, Ĉβ , Čβ , C̃, β).
Remark 12. Choosing h = n−β/(2β+d) gives us a density-
level set estimation rate of O(n−1/(2β+d)). This matches
the lower bound (ignoring log factors) determined by Tsy-
bakov (1997).
Remark 13. This result can be extended so that we can re-
cover each component separately (i.e. identify which points
correspond to which connected components of Lf (λ)).
Similar to the mode estimation result, this can be done us-
ing nearest neighbor graphs at the appropriate level to iso-
late the connected components of Lf (λ) away from each
other. This has been done extensively in the related area of
cluster tree estimation e.g. (Chaudhuri & Dasgupta, 2010).
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Remark 14. The global α-Hölder continuous assumption
is not required and is only here for simplicity. Smoothness
in a neighborhood around a maximizer of f is sufficient so
that for n0 large enough, C̃ ≥ 2C.

9. Class Probability Estimation Results
We consider the setting where we have observations from
compact subset X ⊂ Rd and labels y ∈ {1, ..., L}. Given
a label y, an instance x ∈ Rd has density fy(x) where
fy is w.r.t. the uniform measure on Rd. Instance-label
pairs (X,Y ) are thus drawn according to a mixture distri-
bution where Y is chosen from {1, ..., L} with correspond-
ing probabilities π1, ..., πL (i.e.

∑L
j=1 πj = 1) and then X

is chosen according to fY .

Then given x ∈ X , we can define the marginal distribution
as follows.

g(x) := (g1(x), ..., gL(x)),

gy(x) := f(Y = y|X = x) =
πyfy(x)∑
j πjfj(x)

.

The goal of class probability estimation is to learn g based
on samples (x1, y1), ..., (xn, yn). We define our estimator
naturally as follows. Let f̂h,y be the KDE of fy w.r.t. to
bandwidth matrix H = h2I.

ĝh(x) := (ĝh,1(x), ..., ĝh,L(x)),

ĝh,y(x) :=
π̂y f̂h,y(x)∑
j π̂j f̂h,j(x)

and π̂y :=
1

n

n∑
j=1

1[y = yi].

We make the following regularity assumption on fy .

Assumption 6. (α-Hölder densities) For each y ∈
{1, ..., L} and x ∈ Rd we have

|fy(x)− fy(x′)| ≤ Cα|x− x′|α,

where 0 < α ≤ 1.

We state the result below:

Theorem 5. Suppose that Assumptions 1, 2, 3, 6 hold.
Then for n sufficiently large depending on miny πy , there
exists positive constants C ′′ ≡ C ′′(L,C,Cα, α,K) and
C̃ ≡ C̃(miny πy, L) such that the following holds with
probability at least 1−C̃/n uniformly in h > (log n/n)1/d.

sup
x∈Rd

||ĝh(x)− g(x)||∞ ≤ C ′′ ·

(
hα +

√
log n

n · hd

)
.

Remark 15. This corresponds to an optimized rate of
Õ(n−α/(2α+d)). This matches the lower bounds up to
log factors for misclassification as established in related

works e.g. Audibert et al. (2007); Chaudhuri & Dasgupta
(2014). Note that misclassification rate for a hard classifier
is a slightly different but very related to what is done here,
which is directly estimating the marginal density.

10. Extension to Manifolds
We make the following regularity assumptions which are
standard among works in manifold learning e.g. (Baraniuk
& Wakin, 2009; Genovese et al., 2012; Balakrishnan et al.,
2013).

Assumption 7. F is supported on M where:

• M is a dM -dimensional smooth compact Riemannian
manifold without boundary embedded in compact sub-
set X ⊆ RD.

• The volume of M is bounded above by a constant.

• M has condition number 1/τ , which controls the cur-
vature and prevents self-intersection.

Let f be the density of F with respect to the uniform mea-
sure on M .

In this section, we assume that our density estimator is w.r.t.
to dM instead of the ambient dimension d.

f̂H(x) :=
1

n · hdM

n∑
i=1

K

(
H0
−1/2(x−Xi)

h

)
.

Remark 16. It is then the case that we must know the in-
trinsic dimension dM . There are numerous known tech-
niques for doing so e.g. (Kegl, 2002; Levina & Bickel,
2004; Hein & Audibert, 2005; Farahmand et al., 2007).

Next, we need the following guarantee on the volume of
the intersection of a Euclidean ball and M ; this is required
to get a handle on the true mass of the ball under F in
later arguments. The upper and lower bounds follow from
Chazal (2013) and Lemma 5.3 of Niyogi et al. (2008). The
proof can be found in (Jiang, 2017).

Lemma 6 (Ball Volume). If 0 < r < min{τ/4dM , 1/τ},
and x ∈M then

1− τ2r2 ≤ voldM (B(x, r) ∩M)

vdM r
dM

≤ 1 + 4dMr/τ,

where voldM is the volume w.r.t. the uniform measure on
M .

We then give analogues to Theorem 1 and Theorem 2.

Theorem 6. [Manifold Case Uniform Upper
and Lower Bounds for f̂H] There exists CM ≡
CM (dM , d,K, ||f ||∞, τ) such that the following holds
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uniformly in x ∈ M , ε > 0, unit bandwidths H0, and
h > (log n/n)1/dM with probability at least 1 − 1/n. Let
H := h2H0.

f̂H(x) > f(x)− ε− CM

(
h2 +

√
log n

n · hdM

)
,

if
∫

Rd K(u) · ǔx(h|u|/
√
σd(H0))du < ε, and

f̂H(x) < f(x) + ε+ CM

(
h+

√
log n

n · hdM

)
,

if
∫

Rd K(u) · ûx(h|u|/
√
σd(H0))du < ε.

Remark 17. The extra h2 and h term in the lower and
upper bounds respectively come from the approximation of
the volume of the full-dimensional balls w.r.t. the uniform
measure on M in Lemma 6.

Proof Sketch of Theorem 6. The proof mirrors that of the
full dimensional case so we only highlight the differences.
For the lower bound, instead of

F (BH0(x, jhδ)) ≥ vd · (jhδ)d · Fj ,

we have

F (BH0(x, jhδ)) ≥ vdM (jhδ)
dM Fj(1− τ2(jhδ)2)

= vdM (jhδ)
dM Fj − hdM+2vdM τ

2||f ||∞ (jδ)
dM+2

.

The first term can be treated in the same way as before,
while the second term contributes in an extra term with an
h2 factor after taking the total summation.

For the upper bound, instead of

F(BH0(x, jhδ)) ≤ vd · (jhδ)d · Fj ,

we have

F(BH0(x, jhδ)) ≤ vdM · (jhδ)dM · Fj(1 + 4dM (jhδ)/τ).

Similary, this contributes an extra term with an h factor
after taking the total summation.

Theorem 7. [Manifold Case `∞ bound for α-Hölder con-
tinuous functions] If f is Hölder-continuous (i.e. |f(x) −
f(x′)| ≤ Cα|x − x|α for x, x′ ∈ Rd with 0 <
α ≤ 1), then there exists positive constant C ′M ≡
C ′M (||f ||∞, Cα, α,K, τ, dM , d, σd(H0)) such that the fol-
lowing holds with probability at least 1− 1/n uniformly in
h satisfying (log n/n)1/dM < h < 1.

sup
x∈M
|f̂H(x)− f(x)| < C ′M ·

(
hα +

√
log n

n · hdM

)
.

11. Local Intrinsic Dimension Estimation
In this section, we only assume a distribution F on Rd

whose support is defined asX := {x ∈ Rd : F(B(x, h)) >
0 ∀h > 0} and X is assumed to be compact. We use the
following notion of intrinsic dimension, which is based on
the doubling dimension and adapted from previous works
such as Houle (2013).

Definition 9. For x ∈ X , define the following local intrin-
sic dimension wherever the quantity exists

ID(x) := lim
h→0

log2

(
F(B(x, 2h))

F(B(x, h))

)
.

We can then define our estimator of local intrinsic dimen-
sion at x ∈ X as follows:

ÎDn,h(x) := log2

(
Fn(B(x, 2h))

Fn(B(x, h))

)
.

The following is a uniform convergence result for
ÎDn,h(x).

Theorem 8. Define the following

IDh(x) := log2

(
F(B(x, 2h))

F(B(x, h))

)
.

Suppose that h > 0 and n satisfy βn <
1
10 infx′∈X

√
F(B(x′, h)). Then the following holds

with probability at least 1− 1/n uniformly in x ∈ X .

|ÎDn,h(x)− IDh(x)| ≤ 6βn

infx′∈X
√
F(x′, 2h)

.

Remark 18. The r.h.s. goes to 0 as n → ∞. More-
over, if IDh(x) converges to ID(x) uniformly in x ∈ X ,
then simultaneously taking h → 0 and n → ∞ such that

βn·
(

infx′∈X
√
F(x′, 2h)

)−1

→ 0 gives us a finite-sample
uniform convergence rate for local intrinsic dimension es-
timation.

Remark 19. If we assume a global intrinsic di-
mension d0 and a density, the condition βn <
1
10 infx′∈X

√
F(B(x′, h)) can be interpreted as logn

nhd0
→ 0

and the r.h.s. of the bound is on the order of
√

logn
nhd0

.

In fact, this result is similar to the uniform convergence
results for the KDE for estimating the smoothed density.

e.g. |f̂h − fh|∞ = O

(√
logn
nhd

)
when (ignoring some log

factors) nhd → ∞ where fh is the density convolved with
the uniform kernel with bandwidth h. It is interesting that
an analogous result comes up when estimating the intrinsic
dimension with our notion of smoothed ID.
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Appendix

A. Proofs of Supporting Results
Proof of Lemma 3. Suppose that F(B) ≥ γ. Then we have by Lemma 2:

F(B)−Fn(B) ≤ β2
n + βn

√
Fn(B)⇒ (

√
Fn(B))2 + βn

√
Fn(B)− (γ − β2

n) ≥ 0.

This is a quadratic equation with respect to
√
Fn(B). Thus, we have by the quadratic formula the following (note that if

γ < β2
n then the result is trivial so suppose otherwise).

√
Fn(B) ≥ −βn

2
+

√
γ − 3

4
β2
n.

It follows that

Fn(B) ≥ γ − βn
√
γ − β2

n,

as desired. On the other hand, suppose that F(B) ≤ γ. Then the result immediately follows from the following due to
Lemma 2.

F(B)−Fn(B) ≥ −β2
n − βn

√
F(B),

as desired.

B. Proof of KDE Sup-norm Result
Proof of Theorem 2. We have for each x ∈ Rd and r ≥ 0,

ǔx(r), ûx(r) ≤ Cαrα.

Thus, ∫
Rd
K(u)ǔx(h|u|/

√
σd(H0))du = vd

∫ ∞
0

k(t)tdǔx(th/
√
σd(H0))dt ≤ vd · Cαhα

σd(H0)α/2

∫ ∞
0

k(t)td+αdt.

The same holds for ûx. Taking

ε =
vd · Cαhα

σd(H0)α/2

∫ ∞
0

k(t)td+αdt

and applying Theorem 1 gives us the result.

C. Proof of Mode Estimation Result
Proof of Theorem 3. Assume the event that Lemma 3 holds. Define

r̃2 := max

{
32Ĉ

Č
(log n)4/ρ · h2, 17 · C

√
log n

n · hd

}
.

Define rn := inf{r > 0 : B(x0, r) ∩X 6= ∅}. The proof shares a similar overall goal as in (Dasgupta & Kpotufe, 2014),
which is to show that

inf
x∈B(x0,rn)

f̂H(x) > sup
x∈Rd\B(x0,r̃)

f̂H(x).

It is clear that this will imply the result. We start by upper bounding the RHS. We have

sup
x∈A0\B(x0,r̃/2)

f(x) ≤ f(x0)− Č · (r̃/2)2 := F̂ .
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Thus for any x ∈ Rd\B(x0, r̃), we have ûx(r) ≤ F̂ − f(x) when r ≤ r̃/2. Then we have∫
Rd
K(u)ûx(h|u|)du ≤ F̂ − f(x) + vd

∫ ∞
r̃/(2h)

k(t) · td · ûx(ht)dt

≤ F̂ − f(x) + vd

∫ ∞
(logn)2/ρ

k(u)td · ûx(ht)dt ≤ F̂ − f(x) +
vd
n
||f ||∞.

The second inequality follows from r̃ ≥ 2(log n)2/ρ · h. The third inequality follows from
∫∞
t0
k(t)tddt < exp(−tρ/20 ) for

sufficiently large t0 in light of Assumption 3 and taking n sufficiently large depending on d,K and ρ so that (log n)2/ρ > t0.
Thus, taking ε = F̂ − f(x) + vd

n ||f ||∞ for each x ∈ Rd\B(x0, r̃), Theorem 1 implies

sup
x∈Rd\B(x0,r̃)

f̂H(x) < f(x0)− Č · (r̃/2)2 +
vd
n
||f ||∞ + C

√
log n

n · hd
.

Next we look to lower bound infx∈B(x0,rn) f̂H(x). We have

inf
x∈B(x0,τ r̃)

f(x) ≥ f(x0)− Ĉ · (τ r̃)2 := F̌ .

Thus, for x ∈ B(x0, rn) we have ǔx(r) ≤ f(x) − F̌ for r < τ r̃/2 where τ = Č
8Ĉ

and we will show later that that
rn < τr̃/2. Now we have∫

Rd
K(u)ǔx(h|u|)du ≤ f(x)− F̌ + vd

∫ ∞
τr̃/(2h)

k(t) · td · ǔx(ht)dt ≤ f(x)− F̌ +
vd
n
||f ||∞.

where the last inequality is attained by proceeding similarly as before. Now, taking ε = f(x) − F̌ + vd
n ||f ||∞ for all

x ∈ B(x0, rn), we get

inf
x∈B(x,rn)

f̂H(x) ≥ f(x0)− Ĉ(τ r̃)2 − vd
n
||f ||∞ − C

√
log n

n · hd
.

Thus, it suffices to have

f(x0)− Ĉ(τ r̃)2 − vd
n
||f ||∞ − C

√
log n

n · hd
> f(x0)− Č · (r̃/2)2 +

vd
n
||f ||∞ + C

√
log n

n · hd
.

We get that the above holds when

r̃2 ≥ 16vd
n
||f ||∞ + 16 · C

√
log n

n · hd
.

For n sufficiently large depending on d, n, ||f ||∞, C the first term can be absorbed into the second term which is of larger
order and thus it suffices to take

r̃2 ≥ 17 · C
√

log n

n · hd
,

which holds from our definition of r̃. It remains to take n sufficiently large so that r̃ < r0 (which can be done since r̃ → 0
as n→∞) and to show that τ r̃/2 > rn. For the latter, this is equivalent to showing Fn(B(x0, τ r̃/2)) > 0. We have

F(B(x0, τ r̃/2)) ≥ vd(τ r̃/2)d(f(x0)− Ĉ(τ r̃/2)2) ≥ 3β2
n,

where the last inequality holds for n sufficiently large depending on ρ, d, C, Ĉ, Č, f(x0) since r̃d is of larger order than
β2
n ≈ log n/n and note that r̃ → 0 as n→∞. The result follows immediately by Theorem 3.
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D. Proof of Level Set Estimation Result
Proof of Theorem 4. Assume the event that Lemma 3 holds. Choose n0 sufficiently large such that C̃ ≥ 2C. This
follows from Theorem 2. There are two directions to show. First, that maxx∈L̂f d(x, Lf (λ)) ≤ r̃ and second,

supx∈Lf (λ) d(x, L̂f ) ≤ r̃. We start with the first. It suffices to show that

sup
x∈Rd\B(Lf (λ),r̃)

f̂H(x) < λ− C̃
√

log n

n · hd
.

We have

sup
x∈Lf (λ0)\B(Lf (λ),r̃/2)

f(x) ≤ λ− Čβ · (r̃/2)β := F̂ .

Thus for any x ∈ Rd\B(Lf (λ), r̃), we have ûx(r) ≤ F̂ − f(x) when r ≤ r̃/2. Then we have∫
Rd
K(u)ûx(h|u|)du ≤ F̂ − f(x) + vd

∫ ∞
r̃/(2h)

k(t) · td · ûx(ht)dt

≤ F̂ − f(x) + vd

∫ ∞
(logn)2/ρ

k(u)td · ûx(ht)dt ≤ F̂ − f(x) +
vd
n
||f ||∞.

he second inequality follows from r̃ ≥ 2(log n)2/ρ · h. The third inequality follows from
∫∞
t0
k(t)tddt < exp(−tρ/20 )

for sufficiently large t0 in light of Assumption 3 and taking n sufficiently large depending on d,K and ρ. Thus, taking
ε = F̂ − f(x) + vd

n ||f ||∞ for each x ∈ Rd\B(Lf (λ), r̃), Theorem 1 implies

sup
x∈Rd\B(Lf (λ),r̃)

f̂H(x) < λ− Čβ · (r̃/2)β +
vd
n
||f ||∞ + C

√
log n

n · hd
.

We see that the second-to-last term is of smaller order than the last. Thus for n sufficiently large, it suffices to have

r̃ ≥ 2 ·

(
2 · (C + C̃)

Čβ

)1/β

·
(

log n

n · hd

)1/(2β)

,

which holds based on the definition of r̃. This would give us the desired

sup
x∈Rd\B(Lf (λ),r̃)

f̂H(x) < λ− C̃
√

log n

n · hd
.

We now handle the other direction. Defining rn := supx∈Lf (λ) infx′∈X |x− x′|, it suffices to show for all x0 ∈ Lf (λ),

inf
x∈B(x0,rn)

f̂H(x) ≥ λ− C̃
√

log n

n · hd
.

We have

inf
x∈B(x0,τ r̃)

f(x) ≤ f(x0)− Ĉβ · (τ r̃)β := F̌ .

Thus, for x ∈ B(x0, rn) we have ǔx(r) ≤ f(x)− F̌ for r < τ r̃/2 where τ > 0 is chosen such that rn < τr̃/2. Now we
have ∫

Rd
K(u)ǔx(h|u|)du ≤ f(x)− F̌ + vd

∫ ∞
τr̃/(2h)

k(t) · td · ǔx(ht)dt ≤ f(x)− F̌ +
vd
n
||f ||∞.
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where the last inequality is attained by proceeding similarly as before. Now, taking ε = f(x) − F̌ + vd
n ||f ||∞ for all

x ∈ B(x0, rn), we get

inf
x∈B(x,rn)

f̂H(x) ≥ λ− Ĉβ(τ r̃)β − vd
n
||f ||∞ − C

√
log n

n · hd
.

Now choose

τ =
1

2

(
Čβ

4 · Ĉβ · (C + C̃)

)1/β

.

Thus for n sufficiently large we have

inf
x∈B(x,rn)

f̂H(x) ≥ λ− 2 · C
√

log n

n · hd
≥ λ− C̃

√
log n

n · hd
.

All that remains is showing that τ r̃/2 < rn. This can be done in the same way as in the proof of Theorem 3, so it holds for
n sufficiently large depending on C, C̃, Ĉβ , Čβ , d, β, λ. Finally, take n sufficiently large such that r̃ < r̄.

E. Proof of Class Probability Estimation Result
Proof of Theorem 5. By Bernstein’s inequality, for n sufficiently large depending on miny πy , there exists constant C1 ≡
C1(miny πy, L) such that

P

(
|π̂y − πy| ≤

log n√
n

)
≥ 1− C1

n2
.

Thus, by union bound with probability at least 1− LC1/n
2,

max
y
|π̂y − πy| ≤

log n√
n
.

Next, for n sufficiently large depending on miny πy , Theorem 2 implies that the following holds with probability at least
1− 2L/(n ·miny πy).

sup
x∈Rd,y∈{1,...,L}

|f̂h,y(x)− fy(x)| ≤ C ′ ·

(
hα +

√
log n

n · hd

)
.

Next, we bound |π̂y f̂h,y(x)− πyfy(x)|. By triangle inequality,

|π̂y f̂h,y(x)− πyfy(x)| ≤ |π̂y f̂h,y(x)− π̂yfy(x)|+ |π̂yfy(x)− πyfy(x)|

≤ 2|f̂h,y(x)− fy(x)|+ ||fy||∞|π̂y − πy|

≤ 2C ′

(
hα +

√
log n

n · hd

)
+

log n√
n
≤ (2C ′ + 1)

(
hα +

√
log n

n · hd

)
.

Letting F := maxy ||fy||∞, it follows that

sup
x∈Rd,y∈{1,...,L}

|π̂y f̂h,y(x)− πyfy(x)| ≤ (2C ′ + 1)

(
hα +

√
log n

n · hd

)

Let ε(h) := (2C ′ + 1)

(
hα +

√
logn
n·hd

)
. Then, we have

ĝy(x) =
π̂y f̂h,y(x)∑
j π̂j f̂h,j(x)

≥ πyfy(x)− ε(h)∑
j π̂j f̂h,j(x) + L · ε(h)

≥ πyfy(x)− ε(h)∑
j π̂j f̂h,j(x)

− L · ε(h) ≥ gy(x)− (L+ 2)ε(h).

We can similarly obtain an upper bound for ĝy(x). These hold uniformly in x and y with probability at least 1−C1/n
2 −

2L/(n ·miny πy), and the result follows for n sufficiently large.
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F. Proof of Local Intrinsic Dimension Estimation Result
Proof of Theorem 8. We have by Lemma 3

Fn(B(x, 2h))

Fn(B(x, h))
≤
F(B(x, 2h)) + βn

√
F(B(x, 2h)) + β2

n

F(B(x, h))− βn
√
F(B(x, h))− β2

n

≤
F(B(x, 2h)) + 2βn

√
F(B(x, 2h))

F(B(x, h))− 2βn
√
F(B(x, h))

≤ F(B(x, 2h))

F(B(x, h))
+

5βn
√
F(B(x, 2h))

F(B(x, h))
≤ F(B(x, 2h))

F(B(x, h))

(
1 +

5βn

infx′∈X
√
F(B(x′, 2h))

)
.

Taking log2 of both sides yields

log2

(
Fn(B(x, 2h))

Fn(B(x, h))

)
≤ log2

(
F(B(x, 2h))

F(B(x, h))

)
+ log2

(
1 +

5βn

infx′∈X
√
F(B(x′, 2h))

)

≤ log2

(
F(B(x, 2h))

F(B(x, h))

)
+

6βn

infx′∈X
√
F(B(x′, 2h))

.

where the last inequality follows from the series expansion of log(1− r) = −r − r2 − · · · . It is now immediate that

ÎDn,h(x)− IDh(x) ≤ 6βn

infx′∈X
√
F(B(x′, 2h))

.

We now handle the other direction. By Lemma 3,

Fn(B(x, 2h))

Fn(B(x, h))
≥
F(B(x, 2h))− βn

√
F(B(x, 2h))− β2

n

F(B(x, h)) + βn
√
F(B(x, h)) + β2

n

≥
F(B(x, 2h))− 2βn

√
F(B(x, 2h))

F(B(x, h)) + 2βn
√
F(B(x, h))

≥ F(B(x, 2h))

F(B(x, h))
−

5βn
√
F(B(x, 2h))

F(B(x, h))
≥ F(B(x, 2h))

F(B(x, h))

(
1− 5βn

infx′∈X
√
F(B(x′, 2h))

)
.

Taking log2 of both sides yields

log2

(
Fn(B(x, 2h))

Fn(B(x, h))

)
≥ log2

(
F(B(x, 2h))

F(B(x, h))

)
+ log2

(
1− 5βn

infx′∈X
√
F(B(x′, 2h))

)

≥ log2

(
F(B(x, 2h))

F(B(x, h))

)
− 6βn

infx′∈X
√
F(B(x′, 2h))

.

Thus,

|ÎDn,h(x)− IDh(x)| ≤ 6βn

infx′∈X
√
F(B(x′, 2h))

,

as desired.


