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Abstract
We present an approach to automate the process
of discovering optimization methods, with a fo-
cus on deep learning architectures. We train a
Recurrent Neural Network controller to generate
a string in a specific domain language that de-
scribes a mathematical update equation based on
a list of primitive functions, such as the gradi-
ent, running average of the gradient, etc. The
controller is trained with Reinforcement Learn-
ing to maximize the performance of a model af-
ter a few epochs. On CIFAR-10, our method dis-
covers several update rules that are better than
many commonly used optimizers, such as Adam,
RMSProp, or SGD with and without Momentum
on a ConvNet model. These optimizers can also
be transferred to perform well on different neural
network architectures, including Google’s neural
machine translation system.

1. Introduction
The choice of the right optimization method plays a ma-
jor role in the success of training deep learning models.
Although Stochastic Gradient Descent (SGD) often works
well out of the box, more advanced optimization methods
such as Adam (Kingma & Ba, 2015) or Adagrad (Duchi
et al., 2011) can be faster, especially for training very deep
networks. Designing optimization methods for deep learn-
ing, however, is very challenging due to the non-convex
nature of the optimization problems.

In this paper, we consider an approach to automate the pro-
cess of designing update rules for optimization methods,
especially for deep learning architectures. The key insight
is to use a controller in the form of a recurrent network to
generate an update equation for the optimizer. The recur-
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Figure 1. An overview of Neural Optimizer Search.

rent network controller is trained with reinforcement learn-
ing to maximize the accuracy of a particular model archi-
tecture, being trained for a fixed number of epochs by the
update rule, on a held-out validation set. This process is
illustrated in Figure 1.

On CIFAR-10, our approach discovers several update rules
that are better than many commonly used optimizers such
as Adam, RMSProp, or SGD with and without Momentum
on a small ConvNet model. Many of the generated update
equations can be easily transferred to new architectures and
datasets. For instance, update rules found on a small Con-
vNet architecture, when applied to the Wide ResNet archi-
tecture (Zagoruyko & Komodakis, 2016), improved accu-
racy over Adam, RMSProp, Momentum, and SGD by a
margin up to 2% on the test set. The same update rules also
work well for Google’s Neural Machine Translation sys-
tem (Wu et al., 2016) giving an improvement of up to 0.7
BLEU on the WMT 2014 English to German task.

2. Related Work
Neural networks are difficult and slow to train, and
many methods have been designed to tackle this difficulty
(e.g., Riedmiller & Braun (1992); LeCun et al. (1998);
Schraudolph (2002); Martens (2010); Le et al. (2011);
Duchi et al. (2011); Zeiler (2012); Martens & Sutskever
(2012); Schaul et al. (2013); Pascanu & Bengio (2013);
Pascanu et al. (2013); Kingma & Ba (2014); Ba et al.
(2017)). More recent optimization methods combine in-
sights from both stochastic and batch methods in that they
use a small minibatch, similar to SGD, yet they implement
many heuristics to estimate diagonal second-order informa-
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tion, similar to Hessian-free or L-BFGS (Liu & Nocedal,
1989). This combination often yields faster convergence
for practical problems (Duchi et al., 2011; Dean et al.,
2012; Kingma & Ba, 2014). For example, Adam (Kingma
& Ba, 2014), a commonly-used optimizer in deep learn-
ing, implements simple heuristics to estimate the mean and
variance of the gradient, which are used to generate more
stable updates during training.

Many of the above update rules are designed by borrow-
ing ideas from convex analysis, even though optimization
problems in neural networks are non-convex. Recent em-
pirical results with non-monotonic learning rate heuris-
tics (Loshchilov & Hutter, 2017) suggest that there are still
many unknowns in training neural networks and that many
ideas in non-convex optimization can be used to improve
it.

The goal of our work is to search for better update rules
for neural networks in the space of well known primi-
tives. In other words, instead of hand-designing new update
rules from scratch, we use a machine learning algorithm to
search the update rules. This goal is shared with recently-
proposed methods by Andrychowicz et al. (2016); Ravi &
Larochelle (2017); Wichrowska et al. (2017), which em-
ploy an LSTM to generate numerical updates for training
neural networks. The key difference is that our approach
generates a mathematical equation for the update instead
of numerical updates. The main advantage of generating an
equation is that it can easily be transferred to larger tasks
and does not require training any additional neural net-
works for a new optimization problem. Finally, although
our method does not aim to optimize the memory usage of
update rules, our method discovers update rules that are on
par with Adam or RMSProp while requiring less memory.

The concept of using a Recurrent Neural Network for
meta-learning has been attempted in the past, either via
genetic programming or gradient descent (Schmidhuber,
1992; Hochreiter et al., 2001). Similar to the above recent
methods, these approaches only generate the updates, but
not the update equations, as proposed in this paper.

A related approach is using genetic programming to evolve
update equations for neural networks (e.g., Bengio et al.
(1994); Runarsson & Jonsson (2000); Orchard & Wang
(2016)). Genetic programming however is often slow and
requires many heuristics to work well. For that reason,
many prior studies in this area have only experimented with
very small-scale neural networks. For example, the neural
networks used for experiments in Orchard & Wang (2016)
have around 100 weights, which is quite small compared to
today’s standards.

Our approach is reminiscent of recent work in automated
model discovery with Reinforcement Learning (Baker

et al., 2016), especially Neural Architecture Search (Zoph
& Le, 2017), in which a recurrent network is used to gener-
ate the configuration string of neural architectures instead.
In addition to applying the key ideas to different applica-
tions, this work presents a novel scheme to combine prim-
itive inputs in a much more flexible manner, which makes
the search for novel optimizers possible.

Finally, our work is also inspired by the recent studies
by Keskar et al. (2016); Zhang et al. (2017), in which it was
found that SGD can act as a regularizer that helps general-
ization. In our work, we use the accuracy on the validation
set as the reward signal, thereby implicitly searching for
optimizers that can help generalization as well.

3. Method
3.1. A simple domain specific language for update rules

In our framework, the controller generates strings corre-
sponding to update rules, which are then applied to a neu-
ral network to estimate the update rule’s performance; this
performance is then used to update the controller so that the
controller can generate improved update rules over time.

To map strings sampled by the controller to an update
rule, we design a domain specific language that relies on a
parenthesis-free notation (in contrast to the classic infix no-
tation). Our choice of domain specific language (DSL) is
motivated by the observation that the computational graph
of most common optimizers can be represented as a sim-
ple binary expression tree, assuming input primitives such
as the gradient or the running average of the gradient and
basic unary and binary functions.

We therefore express each update rule with a string describ-
ing 1) the first operand to select, 2) the second operand to
select, 3) the unary function to apply on the first operand,
4) the unary function to apply on the second operand and
5) the binary function to apply to combine the outputs of
the unary functions. The output of the binary function is
then either temporarily stored in our operand bank (so that
it can be selected as an operand in subsequent parts of the
string) or used as the final weight update as follows:

∆w = λ ∗ b(u1(op1), u2(op2))

where op1, op2, u1(.), u2(.) and b(., .) are the operands,
the unary functions and the binary function corresponding
to the string, w is the parameter that we wish to optimize
and λ is the learning rate.

With a limited number of iterations, our DSL can only rep-
resent a subset of all mathematical equations. However we
note that it recovers common optimizers within one itera-
tion assuming access to simple primitives. Figure 2 shows



Neural Optimizer Search with Reinforcement Learning

Figure 2. Computation graph of some commonly used optimizers: SGD, RMSProp, Adam. Here, we show the computation of Adam in
1 step and 2 steps. Blue boxes correspond to input primitives or temporary outputs, yellow boxes are unary functions and gray boxes
represent binary functions. g is the gradient, m̂ is the bias-corrected running estimate of the gradient, and v̂ is the bias-corrected running
estimate of the squared gradient.

Figure 3. Overview of the controller RNN. The controller iteratively selects subsequences of length 5. It first selects the 1st and 2nd
operands op1 and op2, then 2 unary functions u1 and u2 to apply to the operands and finally a binary function b that combines the
outputs of the unary functions. The resulting b(u1(op1), u2(op2)) then becomes an operand that can be selected in the subsequent group
of predictions or becomes the update rule. Every prediction is carried out by a softmax classifier and then fed into the next time step as
input.

how some commonly used optimizers can be represented in
the DSL. We also note that multiple strings in our predic-
tion scheme can map to the same underlying update rule,
including strings of different lengths (c.f. the two repre-
sentations of Adam in Figure 2). This is both a feature
of our action space corresponding to mathematical expres-
sions (addition and multiplication are commutative for ex-
ample) and our choice of domain specific language. We
argue that this makes for interesting exploration dynamics
because a competitive optimizer may be obtained by ex-
pressing a standard optimizer in an expanded fashion and
modifying it slightly.

3.2. Controller optimization with policy gradients

Our controller is implemented as a Recurrent Neural Net-
work which samples strings of length 5n where n is a num-
ber of iterations fixed during training (see Figure 3). Since
the operand bank grows as more iterations are computed,
we use different softmax weights at every step of predic-
tion.

The controller is trained to maximize the performance of
its sampled update rules on a specified model. The training
objective is formulated as follows:

J(θ) = E∆∼pθ(.)[R(∆)] (1)

whereR(∆) corresponds to the accuracy on a held-out val-
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idation set obtained after training a target network with up-
date rule ∆.

Zoph & Le (2017) train their controller using a vanilla pol-
icy gradient obtained via REINFORCE (Williams, 1992),
which is known to exhibit poor sample efficiency. We find
that using the more sample efficient Trust Region Policy
Optimization (Schulman et al., 2015) algorithm speeds up
convergence of the controller. For the baseline function in
TRPO, we use a simple exponential moving average of pre-
vious rewards.

3.3. Accelerated Training

To further speed up the training of the controller RNN, we
employ a distributed training scheme. In our distributed
training scheme the samples generated from the controller
RNN are added to a queue, and run on a set of distributed
workers that are connected across a network. This scheme
is different from (Zoph & Le, 2017) in that now a param-
eter server and controller replicas are not needed for the
controller RNN, which simplifies training. At each itera-
tion, the controller RNN samples a batch of update rules
and adds them to the global worker queue. Once the train-
ing of the child network is complete, the accuracy on a
held-out validation set is computed and returned to the con-
troller RNN. whose parameters get updated with TRPO.
New samples are then generated and this same process con-
tinues.

Ideally, the reward fed to the controller would be the per-
formance obtained when running a model with the sam-
pled optimizer until convergence. However, such a setup
requires significant computation and time. To help deal
with these issues, we propose the following trade-offs to
greatly reduce computational complexity. First, we find
that searching for optimizers with a small two layer convo-
lutional network provides enough of a signal for whether
an optimizer would do well on much larger models such
as the Wide ResNet model. Second, we train each model
for a modest 5 epochs only, which also provides enough
signal for whether a proposed optimizer is good enough
for our needs. These techniques allow us to run experi-
ments more quickly and efficiently compared to Zoph &
Le (2017), with our controller experiments typically con-
verging in less than a day using 100 CPUs, compared to
800 GPUs over several weeks.

4. Experiments
We aim to answer the following questions:

• Can the controller discover update rules that outper-
form other stochastic optimization methods?

• Do the discovered update rules transfer well to other

architectures and tasks?

In this section, we will focus on answering the first ques-
tion by performing experiments with the optimizer search
framework to find optimizers on a small ConvNet model
and compete with the existing optimizers. In the next sec-
tion, we will transfer the found optimizers to other archi-
tectures and tasks thereby answering the second question.

4.1. Search space

The operands, unary functions and binary functions that are
accessible to our controller are as follows (details below):

• Operands: g, g2, g3, m̂, v̂, γ̂, sign(g), sign(m̂), 1,
small constant noise, 10−4w, 10−3w, 10−2w, 10−1w,
ADAM and RMSProp.

• Unary functions which map input x to: x, −x, ex,
log |x|, clip(x, 10−5), clip(x, 10−4), clip(x, 10−3),
drop(x, 0.1), drop(x, 0.3), drop(x, 0.5) and sign(x).

• Binary functions which map (x, y) to x+y (addition),
x − y (subtraction), x ∗ y (multiplication), x

y+ε (divi-
sion) or x (keep left).

Here, m̂, v̂, γ̂ are running exponential moving averages of
g, g2 and g3, obtained with decay rates β1, β2 and β3 re-
spectively, drop(.|p) sets its inputs to 0 with probability p
and clip(.|l) clips its input to [−l, l]. All operations are
applied element-wise.

In our experiments, we use binary trees with depths of 1,
2 and 3 which correspond to strings of length 5, 10 and 15
respectively. The above list of operands, unary functions
and binary function is quite large, so to address this issue,
we find it helpful to only work with subsets of the operands
and functions presented above. This leads to typical search
space sizes ranging from 106 to 1010 possible update rules.

We also experiment with several constraints when sampling
an update rule, such as forcing the left and right operands to
be different at each iteration, and not using addition as the
final binary function. An additional constraint added is to
force the controller to reuse one of the previously computed
operands in the subsequent iterations. The constraints are
implemented by manually setting the logits corresponding
to the forbidden operands or functions to −∞.

4.2. Experimental details

Across all experiments, our controller RNN is trained with
the ADAM optimizer with a learning rate of 10−5 and a
minibatch size of 5. The controller is a single-layer LSTM
with hidden state size 150 and weights are initialized uni-
formly at random between -0.08 and 0.08. We also use an
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entropy penalty to aid in exploration. This entropy penalty
coefficient is set to 0.0015.

The child network architecture that all sampled optimizers
are run on is a small two layer 3x3 ConvNet. This ConvNet
has 32 filters with ReLU activations and batch normaliza-
tion applied after each convolutional layer. These child net-
works are trained on the CIFAR-10 dataset, one of the most
benchmarked datasets in deep learning.

The controller is trained on a CPU and the child models are
trained using 100 distributed workers which also run on
CPUs (see Section 3.3). Once a worker receives an opti-
mizer to run from the controller, it performs a basic hyper-
parameter sweep on the learning rate: 10i with i ranging
from -5 to 1, with each learning rate being tried for 1 epoch
of 10,000 CIFAR-10 training examples. The best learning
rate after 1 epoch is then used to train our child network
for 5 epochs and the final validation accuracy is reported
as a reward to the controller. The child networks have a
batch size of 100 and evaluate the update rule on a fixed
held-out validation set of 5,000 examples. In this setup,
training a child model with a sampled optimizer generally
takes less than 10 minutes. Experiments typically converge
within a day. All experiments are carried out using Tensor-
Flow (Abadi et al., 2016).

The hyperparameter values for the update rules are inspired
by standard values used in the literature. We set ε to 10−8,
β1 to 0.9 and β2 = β3 to 0.999. Preliminary experiments
indicate that the update rules are robust to slight changes in
the hyperparameters they were searched over.

4.3. Experimental results

Our results show that the controller discovers many differ-
ent updates that perform well during training and the max-
imum accuracy also increases over time. In Figure 4, we
show the learning curve of the controller as more optimiz-
ers are sampled.
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Figure 4. Controller reward increasing over time as more optimiz-
ers are sampled.

The plots in Figure 5 show the results of two of our best
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Figure 5. Comparison of two of the best optimizers found with
Neural Optimizer Search using a 2-layer ConvNet as the architec-
ture. Optimizer 1 refers to [esign(g)∗sign(m) + clip(g, 10−4)] ∗ g
and Optimizer 2 refers to drop(m̂, 0.3) ∗ e10

−3∗w.

optimizers being run for 300 epochs on the full CIFAR-
10 dataset. From the plots we observe that our optimiz-
ers slightly outperform Momentum and SGD, while greatly
outperforming RMSProp and Adam.

The controller discovered update rules that work well, but
also produced update equations that are fairly intuitive. For
instance, among the top candidates is the following update
function:

• esign(g)∗sign(m) ∗ g

Because esign(g)∗sign(m) is positive, in each dimension the
update follows the direction of g with some adjustments to
the scale. The term esign(g)∗sign(m) means that if the signs
of the gradient and its running average agree, we should
make an update to the coordinate with the scale of e, other-
wise make an update with the scale of 1/e. This expression
appears in many optimizers that the model found, showing
up in 5 of the top 10 candidate update rules:

• [esign(g)∗sign(m) + clip(g, 10−4)] ∗ g



Neural Optimizer Search with Reinforcement Learning

• drop(g, 0.3) ∗ esign(g)∗sign(m)

• ADAM ∗ esign(g)∗sign(m)

• drop(g, 0.1) ∗ esign(g)∗sign(m)

5. Transferability experiments
A key advantage of our method of discovering update equa-
tions compared to the previous approach (Andrychowicz
et al., 2016) is that update equations found by our method
can be easily transferred to new tasks. In the following ex-
periments, we will exercise some of the update equations
found in the previous experiment on different network ar-
chitectures and tasks. The controller is not trained again,
and the update rules are simply reused.

5.1. Control Experiment with Rosenbrock function
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Figure 6. Comparison of an optimizer found with Neural Opti-
mizer Search to the other well-known optimizers on the Rosen-
brock function. Optimizer 1 refers to esign(g)∗sign(m) ∗ g. The
black dot is the optimum.

We first test one of the optimizers we found in the previ-
ous experiment on the famous Rosenbrock function against
the commonly used deep learning optimizers in Tensor-
Flow (Abadi et al., 2016): Adam, SGD, RMSProp and Mo-
mentum, and tune the value of ε in Adam in a log scale be-
tween 10−3 and 10−8. In this experiment, each optimizer

is run for 4000 iterations with 4 different learning rates on
a logarithmic scale and and the best performance is plotted.
The update rule we test is the intuitive g ∗ esign(g)∗sign(m).
The results in Figure 6 show that our optimizer outperforms
Adam, RMSProp, SGD, and is close to matching the per-
formance of Momentum on this task.

5.2. CIFAR-10 with Wide ResNet
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Figure 7. Comparison of two of the best optimizers found with
Neural Optimizer Search using Wide ResNet as the architecture.
Optimizer 1 refers to [esign(g)∗sign(m) + clip(g, 10−4)] ∗ g and
Optimizer 2 refers to drop(m̂, 0.3) ∗ e10

−3w.

We further investigate the generalizability of the found up-
date rules on a different and much larger model: the Wide
ResNet architecture (Zagoruyko & Komodakis, 2016). Our
controller finds many optimizers that perform well when
run for 5 epochs on the small ConvNet. To filter opti-
mizers that do well when run for many more epochs, we
run dozens of our top optimizers for 300 epochs and ag-
gressively stop optimizers that show less promise. The top
optimizers identified by this process are also the top opti-
mizers for the small ConvNet and the GNMT experiment.
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Optimizer Final Val Final Test Best Val Best Test
SGD 92.0 91.8 92.9 91.9
Momentum 92.7 92.1 93.1 92.3
ADAM 90.4 90.1 91.8 90.7
RMSProp 90.7 90.3 91.4 90.3
[esign(g)∗sign(m) + clip(g, 10−4)] ∗ g 92.5 92.4 93.8 93.1
clip(m̂, 10−4) ∗ ev̂ 93.5 92.5 93.8 92.7
m̂ ∗ ev̂ 93.1 92.4 93.8 92.6
g ∗ esign(g)∗sign(m) 93.1 92.8 93.8 92.8
drop(g, 0.3) ∗ esign(g)∗sign(m) 92.7 92.2 93.6 92.7
m̂ ∗ eg

2

93.1 92.5 93.6 92.4
drop(m̂, 0.1)/(eg

2

+ ε) 92.6 92.4 93.5 93.0
drop(g, 0.1) ∗ esign(g)∗sign(m) 92.8 92.4 93.5 92.2
clip(RMSProp, 10−5) + drop(m̂, 0.3) 90.8 90.8 91.4 90.9
ADAM ∗ esign(g)∗sign(m) 92.6 92.0 93.4 92.0
ADAM ∗ em̂ 92.9 92.8 93.3 92.7
g + drop(m̂, 0.3) 93.4 92.9 93.7 92.9
drop(m̂, 0.1) ∗ eg

3

92.8 92.7 93.7 92.8
g − clip(g2, 10−4) 93.4 92.8 93.7 92.8
eg − em̂ 93.2 92.5 93.5 93.1
drop(m̂, 0.3) ∗ e10

−3w 93.2 93.0 93.5 93.2

Table 1. Performance of Neural Search Search and standard optimizers on the Wide-ResNet architecture (Zagoruyko & Komodakis,
2016) on CIFAR-10. Final Val and Final Test refer to the final validation and test accuracy after for training for 300 epochs. Best Val
corresponds to the best validation accuracy over the 300 epochs and Best Test is the test accuracy at the epoch where the validation
accuracy was the highest. For each optimizer we report the best results out of seven learning rates on a logarithmic scale according to
the validation accuracy.

Figure 7 shows the comparison between SGD, Adam, RM-
SProp, Momentum and two of the top candidate optimiz-
ers. The plots reveal that these two optimizers outperform
the other optimizers by a size-able margin on a competitive
CIFAR-10 model.

Table 1 shows more details of the comparison between our
top 16 optimizers against the commonly used SGD, RM-
SProp, Momentum, and Adam optimizers. We note that
although Momentum was used and tuned by Zagoruyko &
Komodakis (2016), many of our updates outperform that
setup. The margin of improvement is around 1%. Our
method is also better than other optimizers, with a margin
up to 2%.

5.3. Neural Machine Translation

We run one particularly promising optimizer, g ∗
esign(g)∗sign(m), on the WMT 2014 English → German
task. Our goal is to test the transferability of this optimizer
on a completely different model and task, since before our
optimizers were run on convolutional networks and the
translation models are RNNs. Our optimizer in this exper-
iment is compared against the Adam optimizer (Kingma
& Ba, 2015). The architecture of interest is the Google

Neural Machine Translation (GNMT) model (Wu et al.,
2016), which was shown to achieve competitive transla-
tion quality on the English → German task. The GNMT
network comprises 8 LSTM layers for both its encoder and
decoder (Hochreiter & Schmidhuber, 1997), with the first
layer of the encoder having bidirectional connections. This
GNMT model also employs attention in the form of a 1
layer neural network.

The model is trained in a distributed fashion using a pa-
rameter server. Twelve workers are used, with each worker
using 8 GPUs and a minibatch size of 128. Further details
for this model can be found in Wu et al. (2016).

In our experiments, the only change we make to training is
to replace Adam with the new update rule. We note that the
GNMT model’s hyperparameters, such as weight initializa-
tion, were previously tuned to work well with Adam (Wu
et al., 2016), so we expect more tuning can further improve
the results of this new update rule.

The results in Table 2 show that our optimizer does indeed
generalize well and achieves an improvement of 0.1 per-
plexity, which is considered to be a decent gain on this task.
This gain in training perplexity enables the model to obtain
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a 0.5 BLEU improvement over the Adam optimizer on the
test set Wu et al. (2016). On the validation set, the averaged
improvement of 5 points near the peak values is 0.7 BLEU.

Optimizer Train perplexity Test BLEU
Adam 1.49 24.5
g ∗ esign(g)∗sign(m) 1.39 25.0

Table 2. Performance of our optimizer versus ADAM in a strong
baseline GNMT model on WMT 2014 English→ German.

Finally, the update rule is also more memory efficient as it
only keeps one running average per parameter, compared to
two running averages for Adam. This has practical implica-
tions for much larger translation models where Adam can-
not currently be used due to memory constraints (Shazeer
et al., 2017).

6. Conclusion
This paper considers an approach for automating the dis-
covery of optimizers with a focus on deep neural network
architectures. We evaluate our discovered optimizers on
widely used CIFAR-10 and NMT models for which we ob-
tain competitive performance against common optimizers
and validate to some extent that the optimizers generalize
across architectures and datasets.

One strength of our approach is that it naturally encom-
passes the environment in which the optimization process
happens. One may for example use our method for discov-
ering optimizers that perform well in scenarios where com-
putations are only carried out using 4 bits, or a distributed
setup where workers can only communicate a few bits of
information to a shared parameter server. Unlike previous
approaches in learning to learn, the update rules in the form
of equations can be easily transferred to other optimization
tasks.

Finally, one of the update rules found by our method,
g ∗esign(g)∗sign(m), is surprisingly intuitive and particularly
promising. Our experiments show that it performs well on a
range of tasks that we have tried, from image classification
with ConvNets to machine translation with LSTMs. In ad-
dition to opening up new ways to design update rules, this
new update rule can now be used to improve the training of
deep networks.
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