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Abstract

By providing a simple and efficient way of computing low-variance gradients of
continuous random variables, the reparameterization trick has become the technique
of choice for training a variety of latent variable models. However, it is not
applicable to a number of important continuous distributions. We introduce an
alternative approach to computing reparameterization gradients based on implicit
differentiation and demonstrate its broader applicability by applying it to Gamma,
Beta, Dirichlet, and von Mises distributions, which cannot be used with the classic
reparameterization trick. Our experiments show that the proposed approach is faster
and more accurate than the existing gradient estimators for these distributions.

1 Introduction

Pathwise gradient estimators are a core tool for stochastic estimation in machine learning and
statistics [12, 15,26, 42,|51]. In machine learning, we now commonly introduce these estimators
using the “reparameterization trick”, in which we replace a probability distribution with an equivalent
parameterization of it, using a deterministic and differentiable transformation of some fixed base
distribution. This reparameterization is a powerful tool for learning because it makes backpropagation
possible in computation graphs with certain types of continuous random variables, e.g. with Normal,
Logistic, or Concrete distributions [23,/30]. Many of the recent advances in machine learning were
made possible by this ability to backpropagate through stochastic nodes. They include variational
autoenecoders (VAEs), automatic variational inference [26, 28, 42], Bayesian learning in neural
networks [7}|14]], and principled regularization in deep networks [[13}34].

The reparameterization trick is easily used with distributions that have location-scale parameteriza-
tions or tractable inverse cumulative distribution functions (CDFs), or are expressible as deterministic
transformations of such distributions. These seemingly modest requirements are still fairly restrictive
as they preclude a number of standard distributions, such as truncated, mixture, Gamma, Beta,
Dirichlet, or von Mises, from being used with reparameterization gradients. This paper provides a
general tool for reparameterization in these important cases.

The limited applicability of reparameterization has often been addressed by using a different class
of gradient estimators, the score-function estimators [12,[16,|53]. While being more general, they
typically result in high-variance gradients which require problem-specific variance reduction tech-
niques to be practical. Generalized reparameterizations involve combining the reparameterization
and score-function estimators [36} 44]]. Another approach is to approximate the intractable derivative
of the inverse CDF [27]].

Following Graves [[17]], we use implicit differentiation to differentiate the CDF rather than its inverse.
While the method of Graves [|17] is only practical for distributions with analytically tractable CDFs
and has been used solely with mixture distributions, we leverage automatic differentiation to handle
distributions with numerically tractable CDFs, such as Gamma and von Mises. We review the
standard reparameterization trick in Section [2| and then make the following contributions:
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o We develop implicit reparameterization gradients that provide unbiased estimators for continuous
distributions with numerically tractable CDFs. This allows many other important distributions to
be used as easily as the Normal distribution in stochastic computation graphs.

e We show that the proposed gradients are both faster and more accurate than alternative approaches.

e We demonstrate that our method can outperform existing stochastic variational methods at training
the Latent Dirichlet Allocation topic model in a black-box fashion using amortized inference.

e We use implicit reparameterization gradients to train VAEs with Gamma, Beta, and von Mises
latent variables instead of the usual Normal variables, leading to latent spaces with interesting
alternative topologies.

2 Background

2.1 Explicit reparameterization gradients

We start with a review of the original formulation of reparameterization gradients [26} |42} 51]], which
we will refer to as explicit reparameterization. Suppose we would like to optimize an expectation
Eq,(z) [f(2)] of some continuously differentiable function f(z) w.r.t. the parameters ¢ of the
distribution. We assume that we can find a standardization function Sg(z) that when applied to a
sample from g, (z) removes its dependence on the parameters of the distribution. The standardization
function should be continuously differentiable w.r.t. its argument and parameters, and invertible:

Sp(z) =e~qle) z=585"(e). (1)

For example, for a Gaussian distribution N (11, o) we canuse S, »(2) = (2 — p) /o ~ N(0,1). We
can then express the objective as an expectation w.r.t. €, transferring the dependence on ¢ into f:

Ego(0) [f(2)] = Ege) [ 1557 ())] @

This allows us to compute the gradient of the expectation as the expectation of the gradients:

Vo Egy(a) [F(2)] = Eqe) [V (S51(6)] = Eye) [VaF(S; )V6S; @) . @

A standardization function Sy (z) satisfying the requirements exists for a wide range of continuous
distributions, but it is not always practical to take advantage of this. For instance, the CDF F'(z|¢)
of a univariate distribution provides such a function, mapping samples from it to samples from the
uniform distribution over [0, 1]. However, inverting the CDF is often complicated and expensive, and
computing its derivative is even harder.

2.2 Stochastic variational inference

Stochastic variational inference [19] for latent variable models is perhaps the most popular use
case for reparameterization gradients. Consider a model pg(z) = [ pg(x|2)p(z)dz, where x is
an observation, z € R is a vector-valued latent variable, pg (|z) is the likelihood function with
parameters 6, and p(z) is the prior distribution. Except for a few special cases, maximum likelihood
learning in such models is intractable because of the difficulty of the integrals involved. Variational
inference [22] provides a tractable alternative by introducing a variational posterior distribution
¢¢(z|x) and maximizing a lower bound on the marginal log-likelihood:

L(x,0,¢) = Ey, (2|2 [logpe(x|2)] — KL(g4(2|x)|p(2)) < logpe(z). ()

Training models with modern stochastic variational inference [26, 39] involves gradient-based
optimization of the bound w.r.t. the model parameters 8 and the variational posterior parameters ¢.
While the KL-divergence term and its gradients can often be computed analytically, the remaining
term and its gradients are typically intractable and are approximated using samples from the variational
posterior. The most general form of this approach involves score-function gradient estimators [33} 39|
41] that handle both discrete and continuous latent variables but have relatively high variance. The
reparameterization trick usually provides a lower variance gradient estimator and is easier to use, but
due to the limitations discussed above, is not applicable to many important continuous distributions.



3 Implicit reparameterization gradients

We propose an alternative way of computing the reparameterization gradient that avoids the inversion
of the standardization function. We start from Eqn. (3) and perform a change of variable z = S(gl (e):

Vo Eoyz) [[(2)] = Bguz) [V2f(2)Vg2];  Vez = VS, (€)le=s,(2)- 5
Our key insight is that we can compute V ¢z by implicit differentiation. We apply the total gradient
V;FD to the equality Sy (z) = €. Then, we use the chain rule to expand the total gradient in terms of
the partial gradients. The standardization function S,(z) depends on the parameters ¢ directly via
the subscript parameters and indirectly via the argument z, while the noise € is independent of ¢ by

the definition of a standardization function. Thus, we have V,S4(2)Vgz + V4S¢(2) = 0, where
all the gradients are partial. Solving this equation for V 4z yields

Voz = —(V284(2)) "' VSs(2) (6)

This expression for the gradient only requires differentiating the standardization function and not
inverting it. Note that its value does not change under any invertible transformation 7'(e) of the
standardization function, since the corresponding Jacobian V.T'(¢) cancels out with the inverse.

Example: univariate Normal distribution N (11, 02). We illustrate that explicit and implicit repa-

rameterizations give identical results. A standardization function is given by S, »(2) = (2 — p) /o =

e ~ N(0,1). Explicit reparameterization inverts this function: z = S, 1 (¢) = p + o, g—; =

1, g—i = . The implicit reparameterization, Eqn. (6)), gives:
98u,0(2) 1 08,10 (2) Z=p
92 “ow Tz _y 95 e~ T ik %
aM BS;L,G(Z) 1 ’ ao' 65#,0‘(2) 1 o :
0z g 0z g

The expressions are equivalent, but the implicit version avoids inverting Sy, »(2).

Universal standardization function. For univariate distributions, a standardization function is given
by the CDF: Sy (2) = F(z|¢p) ~ Uniform(0, 1). Assuming that the CDF is strictly monotonic and
continuously differentiable w.r.t. z and ¢, it satisfies the requirements for a standardization function.
Plugging this function into (6), we have
VoF(z
\V4 p7 = — M . (8)
4 (2)
Therefore, computing the implicit gradient requires only differentiating the CDF. In the multivariate
case, we can perform the multivariate distributional transform [45]:

S¢(Z) = (F(Zl|¢)7F(Z2|Z15¢)7 ,F(ZD|21,...,ZD,1,¢)> =€, (9)

where ¢(g) = HdD=1 Uniform(eq|0,1). Eqn. (6) requires computing the gradient of the (conditional)
CDFs and solving a linear system with matrix V.S (2). If the distribution is factorized, the matrix
is diagonal and the system can be solved in O(D). Otherwise, the matrix is triangular because each
CDF depends only on the preceding elements, and the system is solvable in O(D?).

Algorithm. We present the comparison between the standard explicit and the proposed implicit
reparameterization in Table [I. Samples of z in implicit reparameterization can be obtained with
any suitable method, such as rejection sampling [|10]. The required gradients of the standardization
function can be computed either analytically or using automatic differentiation.

4 Applications of implicit reparameterization gradients

We now demonstrate how implicit reparameterization can be applied to a variety of distributions.
Our strategy is to provide a computation method for a standardization function, such as CDF or
multivariate distributional transform, and its gradients.

Truncated univariate distribution. A truncated distribution is obtained by restricting a distribution’s
domain to some range [a, b]. Its CDF can be computed from the CDF of the original distribution:



Table 1: Comparison of the two reparameterization types. While they provide the same result, the
implicit version is easier to implement for distributions such as Gamma because it does not require
inverting the standardization function Sg(2).

Explicit reparameterization Implicit reparameterization (proposed)
Forward pass Sample e rilq(s) Sample z ~ g4 (2)

Setz < Sy (¢)
Backward pass Set Vgz < VS, (e) Set Vpz  —(V284(2)) "1V pSe(2)

Set Vg f(2) « Vof(2)Vez SetVef(z) < V.f(2)Vez

F(z|¢,a,b) = %, z € [a,b]. Assuming that the gradient V4 F'(z|¢) is available, we

can easily compute the implicit gradient for the truncated distribution.

Mixture distribution ¢,(z) = Zfil wiqep,; (%), where ¢ = (¢1,..., ¢, wi,...,wk). In the
univariate case, the CDF of the mixture is simply Zfil w; F'(z|¢;). In the multivariate case, the dis-

tributional transform is given by F'(z4|21,. .., 24-1, @) = Zfil wlF(zq|21, ..., 2a—1, P;), where
d Wiqg; (Z1,--12d—1) . . . . .
¢ = L is th rior weight for the mixtur mponent after rving th
w; TR E——— s the posterior weight for the mixture component after observing the
first d — 1 dimensions of the sample. The required gradient can be obtained via automatic differentia-
tion. When the mixture components are fully factorized, we obtain the same result as [17], butin a

simpler form, due to automatic differentiation and the explicitly specified linear system.

Gamma distribution Gamma(c, 3) with shape « > 0 and rate 5 > 0. The rate can be standardized
using the scaling property: if z ~ Gamma(a, 1), then z/8 ~ Gamma(c, ). For the shape
parameter, the CDF of the Gamma distribution with shape o and unit rate is the regularized incomplete
Gamma function «y(z, «) that does not have an analytic expression. Following Moore [35]], we propose
to apply forward-mode automatic differentiation [2] to a numerical method [3] that computes its

value. This provides the derivative %ZQ) for roughly twice the cost of computing the CDF.

Student’s ¢-distribution samples can be derived from samples of Gamma. Indeed, if o ~
Gammal(¥, %), then z ~ N'(0,0?) is t-distributed with v degrees of freedom.
Beta and Dirichlet distribution samples can also be obtained from samples of Gamma. If

z1 ~ Gamma(a, 1) and 2o ~ Gamma(f,1), then - Z— ~ Beta(a,3). Similarly, if z; ~

Gamma(a;, 1), then ( A .., =22 . > ~ Dirichlet(ayq,...,ap).

j=17%i j=17%J

Von Mises distribution [31, [32] is a maximum entropy distribution on a circle with the density

function vonMises(z|u, k) = W, where p is the location parameter, x > 0 is the

concentration, and (k) is the modified Bessel function of the first kind. The location parameter
can be standardized by noting that if z ~ vonMises(0, k), then z + p ~ vonMises(u, k). For the
concentration parameter x, we propose to use implicit reparameterization by performing forward-
mode automatic differentiation of an efficient numerical method [[18]] for computation of the CDF.

4.1 Accuracy and speed of reparameterization gradient estimators

Implicit reparameterization requires differentiating the CDF w.r.t. its parameters. When this operation
is analytically intractable, e.g. for Gamma and von Mises distributions, we estimate it via forward-
mode differentiation of the code that numerically evaluates the CDF. We implement this approach by
manually performing the required modifications of the C++ code (see Appendix [B). An alternative is
to use a central finite difference approximation of the derivative: or S;M’) ~ LG9 Hﬁ)%;f (zl6(1=9))
where 0 < § < 1 is the relative step size that we choose via grid search. For the Gamma distribution,
we also compare with two alternatives: (1) the estimator of Knowles [27] that performs explicit
reparameterization by approximately computing the derivative of the inverse CDF; (2) the concurrently
developed method of Jankowiak and Obermeyer [25] that computes implicit reparameterization using
a closed-form approximation of the CDF derivative. We use the reference PyTorch Paszke et al. [40]
implementation of the method of Jankowiak and Obermeyer [25]]. The ground truth value of the CDF




Table 2: Average error and time (measured in seconds per element) of the reparameterization gradient
computation methods. Automatic differentiation achieves the lowest error and the highest speed.

Gamma Von Mises

Method Precision Mean abs. error Time (s) Mean abs. error Time (s)
Automatic differentiation 2.3x107% 19x107% 19x107 3.1x10°8
Finite difference float32 1.9 x 1073 3.8 x 1078 9.6 x 107° 3.8x 1078
Jankowiak and Obermeyer [25] 4.1 x107° 9.0 x 10~8 - -
Automatic differentiation 5.4x 10713 32x107% 1.3x107*¥ 3.7x10°8
Finite difference float64 3.2 x107° 7.1x 1078 1.1 x 10710 5.9 x 1078
Knowles [27] 6.5 x 1073 1.2 x 1076 - -

derivative is computed in a computationally expensive but accurate way (see Appendix[C). The results
in Table[2]suggest that the automatic differentiation approach provides the highest accuracy and speed.
The finite difference method can be easier to implement if a CDF computation method is available,
but requires computation in £1loat64 to obtain the £1oat32 precision. This can be problematic for
devices such as GPUs and other accelerators that do not support fast high-precision computation. The
approach of Knowles is slower and significantly less accurate due to the approximations of the inverse
CDF derivative computation method. The method of Jankowiak and Obermeyer is 4.5x slower
and 3 x less accurate than the automatic differentiation approach, which reflects the complexity of
obtaining fast and accurate closed-form approximations to the CDF derivative. In the remaining
experiments we use automatic differentiation and £1oat32 precision.

5 Related work

Surrogate distributions. When explicit reparameterization is not feasible, it is often possible to
modify the model to use alternative distributions that are reparameterizable. This is a popular approach
due to is simplicity. Kucukelbir et al. [28] approximate posterior distributions by a deterministic
transformation of Normal samples; Nalisnick et al. [37]] and Nalisnick and Smyth [38]] replace Beta
distributions with Kumaraswamy distributions in the Dirichlet Process stick-breaking construction;
Zhang et al. [[54] substitute the Gamma distribution for a Weibull distribution; Srivastava and Sutton
[47, 48] replace the Dirichlet distribution with a Logistic Normal. Surrogate distributions however do
not always have all the desirable properties of the distributions they replace. For example, as noted
by Ruiz et al. [44], such surrogate distributions struggle to capture sparsity, which is achievable with
Gamma and Dirichlet distributions.

Integrating out the nuisance variables. In some cases it is possible to trade computation for sim-
plicity of reparameterization. Roeder et al. [43] consider a mixture of reparameterizable distributions
and analytically sum out the discrete mixture component id variable. For a mixture with K" compo-
nents, this results in a K'-fold increase of computation, compared to direct reparameterization of the
mixture. This approach becomes prohibitively expensive for a chain of mixture distributions, where
the amount of computation grows exponentially with the length of the chain. On the other hand, we
can always estimate the gradients with just one sample by directly reparameterizing the mixture.

Implicit reparameterization gradients. Reparameterization gradients have been known in the
operations research community since the late 1980s under the name of pathwise, or stochastic,
gradients [12, 49]. There the “explicit” and “implicit” versions were usually introduced side-by-
side, but they were applied only to univariate distributions and simple computational graphs that do
not require backpropagation. In the machine learning community, the implicit reparameterization
gradients for univariate distributions were introduced by Salimans and Knowles [46]. That work,
as well as Hoffman and Blei [21], used the implicit gradients to perform backpropagation through
the Gamma distribution using a finite difference approximation of the CDF derivative. Graves [|17]
independently introduced the implicit reparameterization gradients for multivariate distributions
with analytically tractable CDFs, such as mixtures. We add to this rich literature by generalizing
the technique to handle arbitrary standardization functions, deriving a simpler expression than that
of Graves [17] for the multivariate case, showing the connection to explicit reparameterization
gradients, and providing an efficient automatic differentiation method to compute the intractable CDF
derivatives.



Reparameterization gradients as differential equation solutions. The concurrent works [24,[25]
provide a complementary view of the reparameterization gradients as solutions of a differential
equation called the transport equation. For univariate distributions, the unique solution is Eqn. (8).
However, for the non-factorial multivariate distributions, there are multiple solutions. By choosing an
appropriate one, the variance of the gradient estimator may be reduced. Unfortunately, there does not
seem to be a general way to obtain these solutions, so distribution-specific derivations are required.
‘We hypothesize that the transport equation solutions correspond to the implicit reparameterization
gradients for different standardization functions.

Generalized reparameterizations. The limitations of standard reparameterization was recently
tackled by several other works. Ruiz et al. [44] introduced generalized reparameterization gradients
(GRG) that expand the applicability of the reparameterization trick by using a standardization
function that allows the underlying base distribution to depend weakly on the parameter vector
(e.g. only through the higher moments). The resulting gradient estimator, which in addition to the
the reparameterized gradients term includes a score-function gradient term that takes into account
the dependence of the base distribution on the parameter vector, was applied to the Gamma, Beta,
and log-Normal distributions. The challenge of using this approach lies in finding an effective
approximate standardization function, which is nontrivial yet essential for obtaining low-variance
gradients.

Rejection sampling variational inference (RSVI) [36] is a closely-related approach that combines
the reparameterization gradients from the proposal distribution of a rejection sampler with a score-
function gradient term that takes into account the effect of the accept/reject step. When applied to the
gamma distribution the RSVI gradients can have lower variance gradients than those computed using
GRG [36]). Davidson et al. [9] have recently demonstrated the use of RSVI with the von Mises-Fisher
distribution.

6 Experiments

We apply implicit reparameterization for two distributions with analytically intractable CDFs (Gamma
and von Mises) to three problems: a toy setting of stochastic cross-entropy estimation, training a
Latent Dirichlet Allocation [6] (LDA) topic model, and training VAEs [26, 42] with non-Normal
latent distributions. We use the RSVI gradient estimator [[36] as our main baseline. For Gamma
distributions, RSVI provides a shape augmentation parameter B that decreases the magnitude of
the score-function correction term by using additional B samples from a uniform distribution. As
B — oo, the term vanishes and the RSVI gradient becomes equivalent to ours, but with a higher
computational cost. Von Mises distribution does not have such an augmentation parameter. For
LDA, we also compare with a surrogate distribution approach [47] and a classic stochastic variational
inference method [19]]. The experimental details are given in Appendix [D. We use TensorFlow [1] for
our experiments. Implicit reparameterization for Gamma, Student’s ¢, Beta, Dirichlet and von Mises
distributions is available in TensorFlow Probability [[11]. This library also contains an implementation
of the LDA model from section

6.1 Gradient of the cross-entropy

We compare the variance of the implicit and RSVI gradient estimators on a toy problem of stochastic
estimation of the cross-entropy gradient, % Eq,(z)[—logp(z)]. It was introduced by Naesseth
et al. [36] as minimization of the KL-divergence; however, since they analytically compute the
entropy, the only source of variance is the cross-entropy term. We use their setting for the Dirichlet
distribution: p(z) = Dirichlet(z|a1, a2, ..., a100), ¢4(2z) = Dirichlet(z|¢, as, ..., a100), Where
o are the posterior parameters for a Dirichlet with a uniform prior after observing 100 samples
from a Categorical distribution. The Dirichlet samples are obtained by transforming samples from

Gamma. Additionally, we construct a similar problem with the von Mises distribution: p(z) =
H(liozl vonMises(z4|0,2) and ¢4 (z) = vonMises(z1|0, ¢) H;O:Z vonMises(z4|0, 2).

The results presented on Fig. [I show that the implicit gradient is faster and has lower variance than
RSVI. For the Dirichlet distribution, increasing the shape augmentation parameter B allows RSVI to
asymptotically approach the variance of the implicit gradient. However, this comes at an additional
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Figure 1: Variance of the gradient and computation time for the cross-entropy optimization problem.
The vertical line denotes the optimal value for the parameter. Implicit gradient is faster and has lower
variance than RSVI [36]).

computational cost and requires tuning this parameter. Furthermore, such a parameter is not available
for other distributions, including von Mises.

6.2 Latent Dirichlet Allocation

LDA [6] is a popular topic model that represents each document as a bag-of-words and finds a set
of topics so that each document is well-described by a few topics. It has been extended in various
ways, e.g. [4}|5], and often serves as a testbed for approximate inference methods [19, |20, |50]. LDA

is a latent variable model with a likelihood pg(w|z) = Hfil Categorical(w;|®z), and the prior
Pa(z) = Dirichlet(z|a), where w is the observed document represented as a vector of word counts,
z is a distribution of topics, ® € R¥Wwordsx#opics 5 4 matrix that specifies the categorical distribution of
words in each topic, and o parameterizes the prior distribution over the topics. We perform amortized
variational inference by using a neural network to parameterize the Dirichlet variational posterior
over the topics z as a function of the observation.

We use the 20 Newsgroups (11,200 documents, 2,000-word vocabulary) and RCV1 [29] (800,000

documents, 10,000-word vocabulary) datasets with the same preprocessing as in [47]. We report the
N

n=1 i
the document and the marginal log-likelihood is approximated with a single-sample estimate of the
evidence lower bound. Following [52]], we optimize the prior parameters o during training.

test perplexity of the models, exp (— % > log p(wn)) , where L,, is the number of words in

We compare amortized variational inference in LDA using implicit reparameterization to several
alternatives: (i) training the LDA model with the RSVI gradients; (ii) stochastic variational inference
(SVD) [19] training method for LDA; (iii) the method of Srivastava and Sutton [47]], which we refer to
as LN-LDA, that uses a Logistic Normal approximation in place of the Dirichlet prior and performs
amortized variational inference using a Logistic Normal variational posterior.

The results in Table[3 and Fig. [3(a-b) show that RSVI matches the implicit gradient results only at
B = 20, as opposed to B = 10 for the previous problem. Lower gradient variance leads to faster
training objective convergence. Interestingly, amortized inference can achieve better perplexity than
SVLI. Finally, we see that LDA trained with implicit gradients performs as well or better than LN-LDA.
The learned topics and the prior weights shown on Fig. 2/ demonstrate that LDA automatically
determines the number of topics in the corpus by setting some of the prior weights to 0; this does
not occur in LN-LDA model. Additionally, LN-LDA is prone to representing the same topic several
times, perhaps due to a non-sparse variational posterior distribution.

The obtained results suggest that the advantage of implicit gradients compared to RSVI increases
with the complexity of the problem. When the original distributions are replaced by surrogates, some
desirable properties of the solution, such as sparsity, might be lost.

6.3 Variational Autoencoders

VAE [26] 42| is a generative latent variable model trained using amortized variational inference. Both
the variational posterior and the generative distributions (also known as the encoder and decoder) are
parameterized using neural networks. VAEs typically use the standard Normal distribution as the
prior and a factorized Normal as the variational posterior. The form of the likelihood depends on



Table 3: Test perplexity (lower is better) for the topic modeling task. Mean = standard deviation over
5 runs. LN-LDA uses Logistic Normal distributions instead of Dirichlet.

Model Training method 20 Newsgroups RCV1
Implicit reparameterization 876 =7 896 + 6
RSVIB =1 1066 = 7 1505 £+ 33
LDA [@ RSVIB =5 968 £+ 18 1075 £ 15
RSVI B =10 887 + 10 953 £ 16
RSVI B =20 865 + 11 907 £ 13
SVI 964 + 4 1330 £ 4
LN-LDA [47]  Explicit reparameterization 875+6 951 £+ 10
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(a) LN-LDA topics (b) LDA topics (implicit) (c) 20 Newsgroups weights (d) RCV1 weights

Figure 2: Left: topics with the highest weight for the 20 Newsgroups dataset; Right: prior topic
weights ae. LDA learns sparse prior weights, while LN-LDA does not.

the data, with factorized Bernoulli or Normal distributions being popular choices for images. In this
section, we experiment with using distributions other than Normal for the prior and the variational
posterior. The use of alternative distributions allows incorporating different prior assumptions about
the latent factors of the data, such as bounded support or periodicity.

We use fully factorized priors and variational posteriors. For the variational posterior we explore
Gamma, Beta, and von Mises distributions. For Gamma, we use a sparse Gamma(0.3, 0.3) prior and
a bell-shaped prior Gamma(10, 10). For Beta and von Mises, instead of a sparse prior we choose a
uniform prior over the corresponding domain.

We train the models on the dynamically binarized MNIST dataset [8] using the fully-connected
encoder and decoder architectures from [9]], so our results are comparable. The results in Table [l show
that a uniform prior and cyclic latent space of von Mises is advantageous for low-dimensional latent
spaces, consistent with the findings of [9]]. For a uniform prior, the factorized von Mises distribution
outperforms the multivariate von Mises-Fisher distribution in low dimensions, perhaps due to the
more flexible concentration parameterization (von Mises-Fisher uses shared concentration across
dimensions). The results obtained with bell-shaped priors are similar to the Normal prior/posterior
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Figure 3: The training objective (top) and the variance of the gradient (bottom) during training. The
sharp drop in perplexity on RCV1 dataset occurs at the end of the o burn-in period.



Table 4: Test negative log-likelihood (lower is better) for VAE on MNIST. Mean =+ standard deviation
over 5 runs. The von Mises-Fisher results are from [9]).

Prior Variational posterior D=2 D=5 D =10 D =20 D =40

N(0,1) N(p,02) 131.14+0.6 1079404 925402 83.1+02 88.1+0.0
Gamma(0.3,0.3) Gamma(a, ) 1324+£0.3 108.0+£0.3 94.0+0.3 90.3+0.2 90.6+0.2
Gamma(10,10)  Gamma(a, 3) 135.0+0.2 107.0+0.2 923+£0.2 883+0.2 883+0.1
Uniform(0, 1) Beta(a, ) 128.3+0.2 107.44+0.2 94.14+01 889+0.1 88.6+0.1
Beta(10, 10) Beta(a, ) 131.1+0.4 106.7+0.1 921+02 87.8+0.1 87.7+0.1
Uniform(—m, 7) vonMises(, k) 1276+04 107.5+04 9444+05 909+0.1 91.5+04
vonMises (0, 10) vonMises (1, k) 130.7+0.8 107.5+£05 92.3+0.2 87.8+0.2 87.9+0.3
Uniform(SD) vonMisesFisher(p, k) 132.5+0.7 108.4+0.1 93.2+0.1 89.0+0.3 90.9+0.3
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Figure 4: 2D latent spaces learned by a VAE on the MNIST dataset. Normal distribution exhibits a
strong pull to the center, while Beta and Von Mises latents are tiling the entire available space.

pair, as expected. The latent spaces learned by models with 2 latents shown on Fig. 4] demonstrate the
differences in topology.

We provide a detailed comparison between implicit gradients and RSVI in Table [7] of the supplemen-
tary material. For Gamma and Beta distributions, RSVI with B = 20 performs similarly to implicit
gradients. However, for the von Mises distribution implicit gradients usually perform better than
RSVI. For example, for a uniform prior and D = 40, implicit gradients yield a 1.3 nat advantage in
the test log-likelihood due to lower gradient variance (Fig. [3c).

7 Conclusion

Reparameterization gradients have become established as a central tool underlying many of the
recent advances in machine learning. In this paper, we strengthened this tool by extending its
applicability to distributions, such as truncated, Gamma, and von Mises, that are often encountered
in probabilistic modelling. The proposed implicit reparameterization gradients offer a simple and
practical approach to stochastic gradient estimation which has the properties we expect from such
a new type of estimator: it is faster than the existing methods and simultaneously provides lower
gradient variance. These new estimators allow us to move away from making model choices for
reasons of computational convenience. Applying these estimators requires a numerically tractable
CDF or some other standardization function. When one is not available, it should be possible to use
an approximate standardization function to augment implicit reparameterization with a score function
correction term, along the lines of generalized reparameterization. We intend to explore this direction
in future work.
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