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Abstract. We present a dynamic distributed hash table where peers
may join and leave at any time. Our system tolerates a powerful ad-
versary which has complete visibility of the entire state of the system
and can continuously add and remove peers. Our system provides worst-
case fault-tolerance, maintaining desirable properties such as a low peer
degree and a low network diameter.

1 Introduction

Storing and handling data in an efficient way lie at the heart of any data-driven
computing system. Compared to a traditional client/server approach, decen-
tralized peer-to-peer (P2P) systems have the advantage to be more reliable,
available, and efficient. P2P systems are based on common desktop machines
(“peers”), distributed over a large-scale network such as the Internet. These
peers share data (as well as the management of the data) that is conventionally
stored on a central server. Usually, peers are under control of individual users
who turn their machines on or off at any time. Such peers join and leave the
P2P system at high rates (“churn”), a problem that is not existent in orthodox
distributed systems. In other words, a P2P system consists of unreliable compo-
nents only. Nevertheless, the P2P system should provide a reliable and efficient
service.

Most P2P systems in the literature are analyzed against an adversary who
can crash a functionally bounded number of random peers. After crashing a few
peers the system is given sufficient time to recover again. The scheme described
in this paper significantly differs from this in two major aspects. First, we assume
that joins and leaves occur in a worst-case manner. We think of an adversary
which can remove and add a bounded number of peers. The adversary cannot be
fooled by any kind of randomness. It can choose which peers to crash and how
peers join.1 Note that we use the term “adversary” to model worst-case behavior.
We do not consider Byzantine faults. Second, the adversary does not have to
wait until the system is recovered before it crashes the next batch of peers.
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1 We assume that a joining peer knows a peer which already belongs to the system.

This is known as the bootstrap problem.
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Instead, the adversary can constantly crash peers while the system is trying to
stay alive. Indeed, our system is never fully repaired but always fully functional.
In particular, our system is resilient against an adversary which continuously
attacks the “weakest part” of the system. Such an adversary could for example
insert a crawler into the P2P system, learn the topology of the system, and then
repeatedly crash selected peers, in an attempt to partition the P2P network.
Our system counters such an adversary by continuously moving the remaining
or newly joining peers towards the sparse areas.

Clearly, we cannot allow our adversary to have unbounded capabilities. In
particular, in any constant time interval, the adversary can at most add and/or
remove O(log n) peers, n being the total number of peers currently in the sys-
tem. This model covers an adversary which repeatedly takes down machines by
a distributed denial of service attack, however only a logarithmic number of ma-
chines at each point in time. Our algorithm relies on messages being delivered
timely, in at most constant time between any pair of operational peers. In dis-
tributed computing such a system is called synchronous. Note that if nodes are
synchronized locally, our algorithm also runs in an asynchronous environment.
In this case, the propagation delay of the slowest message defines the notion of
time which is needed for the adversarial model.

The basic structure of our P2P system is a hypercube. Each peer is part of a
distinct hypercube node; each hypercube node consists of Θ(log n) peers. Peers
have connections to other peers of their hypercube node and to peers of the
neighboring hypercube nodes. In the case of joins or leaves, some of the peers
have to change to another hypercube node such that up to constant factors, all
hypercube nodes own the same number of peers at all times. If the total number
of peers grows or shrinks above or below a certain threshold, the dimension of
the hypercube is increased or decreased by one, respectively.

The balancing of peers among the hypercube nodes can be seen as a dy-
namic token distribution problem [1] on the hypercube. Each node of a graph
(hypercube) has a certain number of tokens, the goal is to distribute the to-
kens along the edges of the graph such that all nodes end up with the same
or almost the same number of tokens. While tokens are moved around, an ad-
versary constantly inserts and deletes tokens. Our P2P system builds on two
basic components: i) an algorithm which performs the described dynamic to-
ken distribution and ii) an information aggregation algorithm which is used to
estimate the number of peers in the system and to adapt the dimension accord-
ingly.

Based on the described structure, we get a fully scalable, efficient P2P sys-
tem which tolerates O(log n) worst-case joins and/or crashes per constant time
interval. As in other P2P systems, peers have O(log n) neighbors, and the usual
operations (e.g. search) take time O(log n). In our view a main contribution of
the paper, however, is to propose and study a model which allows for dynamic
adversarial churn. We believe that our basic algorithms (dynamic token distri-
bution and information aggregation) can be applied to other P2P topologies,


