
ioctl command
whitelisting in SELinux

Jeff Vander Stoep
08/21/2015

Stephen Smalley

Nick Kralevich

Dan Cashman

Mark Salyzyn

Paul Moore

Rom Lemarchand

Acknowledgements

NAME:
int ioctl(int filed, int command, ...);

CONFORMING TO:
No single standard. Arguments, returns,
and semantics of ioctl() vary according to the
device driver in question (the call is used
as a catch-all for operations that don't
cleanly fit the UNIX stream I/O model).

ioctl(2)

Ioctl command

Size
14 bits

Type
8 bits

Number
8 bits

Dir
2

bits

■ Protect user privacy - Limit access to persistent
device identifiers
○ E.g. MAC address can be used by apps to

fingerprint a device. Used to create an in-app
DRM, licensing, etc

■ Protect the kernel - Reduce attack surface.
○ Limit access to driver i/o. - e.g. GPU
○ Limit leaking of information - e.g. kernel

pointers.

Motivation

[...] the security of an SELinux system depends
primarily on the correctness of the kernel and its
security-policy configuration.

http://en.wikipedia.org/wiki/Security-Enhanced_Linux

Some numbers

Kernel crash analysis - ~500 kernel crashes across
multiple types of devices

~45% of crashes happened in a system call

~15% of crashes happened in an ioctl call

Linux Security Module

User space

Kernel space

User-mode Process

System Call

DAC check

LSM hook

Access
Granted/Denied

SELinux
AppArmor

Smack
...

Why use SELinux?

Selinux and system operations

■ chown
■ kill
■ setuid
■ ipc_lock
■ mmap
■ DAC

override
■ mknod
■ ...

capable(CAP_ CHOWN)

SELinux and ioctls

● Benign functionality
○ driver version
○ socket type
○ …

● Dangerous functionality
○ debugging capabilities
○ read/write/execute to

physical memory
○ privacy sensitive data
○ information leaks

Constraints

■ Performance:
○ many ioctls are performance sensitive e.g.

network and graphics
○ thousands of ioctl calls per second. ~150000

ioctl calls during device boot.
■ Targeted whitelisting

○ support existing policy.
■ Optimize for ioctls with a large command set

○ small command sets adequately protected with
existing ioctl command.

SELinux Architecture

User space

Kernel space

User-mode
Process

System Call

DAC check

LSM hook

Access
Granted/Denied

SELinux
hooks Cache lookup Policy lookup

Architecture

■ Only examine ioctl type and number. Size and
direction are considered to be arguments
○ allowxperm <source> <target>:<class> ioctl unpriv_app_socket_cmds
○ auditallowxperm <source> <target>:<class> ioctl priv_gpu_cmds

■ Use information regarding ioctl distribution to create a
constant permission check time

○ Commands are grouped by type, so cache commands by type

Size
14 bits

Type
8 bits

Number
8 bits

Dir
2

bits

Extended Permissions

■ Provide additional permissions in the Access
Vector Cache (AVC).
○ In increments of 256 bits

struct avc_entry {
 u32 ssid;
 u32 tsid;
 u16 tclass;
 struct av_decision avd;
+ struct avc_xperms_node *xp_node;
 };

Boot performance: 150000 ioctl calls

Individual ioctl calls

Case Study

Blocking third party app
access to MAC address

Fuzzing the GPU

Questions?

