
Detection and Prediction of Resource-Exhaustion Vulnerabilities ∗

João Antunes Nuno Ferreira Neves Paulo Verissimo
University of Lisboa, Faculty of Sciences, LASIGE – Portugal

Abstract

Systems connected to the Internet are highly suscepti-
ble to denial-of-service attacks that can compromise service
availability, causing damage to customers and providers.
Due to errors in the design or coding phases, particular
client-server interactions can be made to consume much
more resources than necessary easing the success of this
kind of attack. To address this issue we propose a new
methodology for the detection and identification of local
resource-exhaustion vulnerabilities. The methodology also
gives a prediction on the necessary effort to exploit a spe-
cific vulnerability, useful to support decisions regarding the
configuration of a system, in order to sustain a certain at-
tack magnitude. The methodology was implemented in a tool
called PREDATOR that is able to automatically generate
malicious traffic and to perform post-processing analysis to
build accurate resource usage projections on a given target
server. The validity of the approach was demonstrated with
several synthetic programs and well-known DNS servers.

1. Introduction

Through the years our society has become increasingly
reliant on the pervasiveness of the Internet to perform every-
day activities (e.g., tax payments, shopping, entertainment).
Therefore, any disruption that prevents users from utilizing
certain services can have a significant negative impact both
in the general population and providers. In the Internet, how-
ever, any service is susceptible to denial-of-service (DoS)
attacks. These attacks affect the system’s ability to provide
the service with the expected quality or they simply bring the
service operation to a halt. A recent study about this type of
attacks has recorded for instance an average of 5,213 SYN
floods per day [30]. The same study also reported that a
daily average of 63,912 active bot-infected computers were
observed over a period of six months (totaling more than 6
million distinct computers), which in many cases are em-
ployed in coordinated DoS attacks.

∗This work was partially supported by EC through project IST-2004-
27513 (CRUTIAL) and NoE IST-4-026764-NOE (RESIST), by FCT
through the Multiannual and the CMU-Portugal Programmes.

Generically, a DoS can be performed in two ways. One
method consists in overwhelming the target system or its
network connection with an excessive load, by leveraging
the utilization of a number of resources (CPU and band-
width) which surpass the target capabilities. In this case,
either some network component starts dropping (good and
bad) packets or the target system spends most of its time pro-
cessing the erroneous requests, preventing valid clients from
getting responses within an acceptable delay. In the second
approach, the DoS can be carried out by exploiting some
known vulnerability in the system through the transmission
of well-crafted malicious data. Basically, the attackers take
advantage of some dormant fault in the target (i.e., a design
flaw, a software bug, or a configuration problem) that can
be activated by an unusual network interaction, causing for
example a crash. Usually, this type of attacks can be accom-
plished in a simple and effective way, requiring very little
resources.

In this paper we describe a novel methodology towards
the systematic detection of DoS vulnerabilities in network
servers, including subtle types of faults that lead to the de-
pletion of some local resource. Resource-exhaustion vulner-
abilities are difficult to find because 1) they might be trig-
gered exclusively in very special conditions, and 2) the re-
source leaks may only be perceived after many activations.
For this reason, specific techniques have to be developed to
search for these problems, which in spite of being active can
still remain concealed.

Our approach was implemented in PREDATOR, a tool
that automatically generates a large number of test cases (or
attacks) based on a specification of the communication pro-
tocol utilized by the target server. Next, it directs the attacks
to the network interface of the target system while gather-
ing detailed resource usage information. A post-processing
analysis on the collected data is performed to build accurate
resource usage projections and to find vulnerabilities. The
attacks that triggered the vulnerabilities and the respective
monitoring data can be provided to the developers to assist
debugging. On the other hand, the resource projections give
a forecast on the amount of effort necessary for an attacker to
deplete the server’s resources. This information can also be
used by administrators to assign critical levels to vulnerabil-
ities, and to assist on decisions regarding hardware upgrades

1

to sustain stronger attacks, at least until a patch is available.
The methodology was experimentally evaluated with syn-

thetic leak servers, i.e., programs that contained various
kinds of resource leaks, and with seven public-domain DNS
servers. The results revealed that the proposed methodology
is quite suitable not only to discover remotely exploitable
vulnerabilities that lead to the server crash, but also with
the profiling of different resource usages. In particular, they
demonstrated the usefulness of the tool by disclosing two
resource-exhaustion vulnerabilities in an active DNS server.

2. Attack Injection Projection Methodology

2.1. Resource-exhaustion vulnerabilities

An effective way to carry out a DoS attack consists in ex-
ploiting some known vulnerability in a target system, here-
after also referred as network server. In other words, the
adversary resorts to a malicious interaction to activate the
vulnerability and as a result, the server suffers an immediate
crash or some sort of service degradation. In the presence of
a fatal crash, the fault usually brings the server into an erro-
neous state that cannot be handled, abruptly ending the ex-
ecution. Example vulnerabilities that usually produce such
behavior are the well-known “buffer overflows” and “divide
by zero”. On the other hand, in the case of a service degrada-
tion, faults are more subtle but they can also lead to a com-
plete halt if they occur at a higher rate. These faults ap-
pear due to resource-exhaustion vulnerabilities. We define
resource-exhaustion vulnerabilities as follows:

Def: A resource-exhaustion vulnerability is a specific type
of fault that causes the consumption or allocation of
some resource in an undefined or unnecessary way, or
the failure to release it when no longer needed, eventu-
ally causing its depletion.

As this definition indicates there are two classes of prob-
lems that can lead to resource-exhaustion. The first one is
related to a bad design or an inefficient implementation of
the server, forcing it to spend more resources then required.
As a consequence, the overloading of the system can be ac-
complished with much less effort, when compared with an
efficient design or implementation. For example, a compo-
nent with poor resource management or slow algorithms can
reserve large chunks of memory that are only partially uti-
lized or waste valuable CPU cycles.

The second problem is associated with resource leakages.
Here, the resource is indeed necessary but the server fails to
make it available after use. Examples are a component that
neglects to close a file descriptor or to free some memory,
or a log file that grows indefinitely due to some error con-
dition. These flaws are particularly important in long run-
ning servers, since the cumulative resource consumption can

build up through time (also known as software aging [32]).
On a malicious setting this is even more serious because the
particular situation that causes the resource leakage can be
continuously forced by the adversary.

Most DoS attacks aim at exploiting one or a combination
of the two classes of problems above. TCP SYN attacks, for
instance, cause the server to create half-open connections
until it fills up the maximum number of available connec-
tions [8]. Other attacks, such as memory leak attacks, cause
DoS by continuously forcing the server to execute a partic-
ular task that uses some chunk of memory that is not freed
upon completion [16].

Keep in mind however that these vulnerabilities can have
other impact besides DoS, such as data corruption or some
other exceptional illegal state. Consider the following sce-
nario where a server with very little disk space does not
properly verify the error status of a write call. If the write call
terminates abruptly due to space shortage, the data stored in
the disk is left in an inconsistent state.

2.2. Searching for vulnerabilities

Typical solutions for vulnerability discovery, such as
scanners or fuzzers, inject faults (i.e., malicious attacks) in
the target system and look for an abnormal outcome that in-
dicates some sort of problem [26, 13, 31]. This approach
is usually confined to locate vulnerabilities that produce
quite visible effects, normally a crash. More subtle results,
like those associated with resource-exhaustion vulnerabili-
ties, are much more difficult to observe. The resource loss
cannot be detected just by looking at a single snapshot of its
utilization. Only a continuous and careful monitoring can
perceive the overall tendency in which the resource deple-
tion is developing into.

The attack injection projection methodology (AIP)
searches for vulnerabilities through a comprehensive anal-
ysis on the system resource utilization of many (potentially
malicious) client/server interactions. This is accomplished
by injecting attacks into the network interface of the target
system while monitoring the server’s evolution. The whole
procedure is performed in three basic phases:

Test case generation phase Given a specification of the
communication protocol utilized by the server, the test case
generation creates valid and invalid network interactions (or
attacks). When transmitted to the target system, these mes-
sages will test its ability to cope with some erroneous data,
such as an out-of-bounds value, a missing field, or an incor-
rect type of message. This phase can employ different at-
tack generation algorithms specialized in detecting specific
classes of vulnerabilities. As more knowledge is gained on
how to activate more vulnerabilities, additional generation
algorithms can be implemented to produce test cases that
could trigger those vulnerabilities.

2

Exploratory phase This phase runs the entire universe of
the generated test cases, by carrying out each test case with
a fresh copy of the target server. Each attack has to be per-
formed several times, as opposed to a single injection used
in the traditional fault injection, so that the monitoring data
can be gradually collected to build a trend on the resource
usage.

Ideally, it is desirable to keep a lower number of injec-
tions to ensure a feasible exploratory phase. However, de-
pending on the resource and monitoring capabilities, it might
be necessary to execute a large number of attacks to guaran-
tee that changes on the resource use can be observed. For
example, if the monitoring mechanism can measure exactly
how much memory is allocated and released by each attack,
then two repeated injections might be sufficient to detect any
memory usage variation. On the other hand, if the memory
leak is small and the monitoring mechanism works with a
page size granularity (e.g., counts the number of pages as-
signed to the process), then it is necessary to re-inject the
attacks as many times as needed to force the allocation of an
additional memory page.

In any case, enough information must be obtained to
construct a usage profile for each considered attack and re-
source. We use regression analysis on the collected data to
produce a statistical model of the actual resource consump-
tion. Linear regression, however, also imposes constrains
on the minimum number of repeated injections. If p coeffi-
cients have to be estimated, then n ≥ p + 1 data samples are
necessary to determine the regression, and therefore at least
n injections have to be performed. Consequently, the min-
imum number of repeated injections is defined by both the
monitoring capabilities and the type of regression analysis.

At the end of this phase there is, for all test cases, a pro-
file for each monitored resource. With this information it is
possible to recognize which attacks are more dangerous by
looking for the profiles with higher growth rates.

Exploitive phase The execution of this last phase is op-
tional, though it should provide more accurate profiles,
which supports for better forecasts of the resource utilization
and to remove false positives. The second injection cam-
paign is initiated exclusively for the small subset of attacks
that showed highest DoS potential. Essentially, it performs
a larger number of repeated injections for these attacks and
calculates new and more precise projections.

Using the AIP methodology in existing servers has sev-
eral useful applications. It allows the discovery of DoS
vulnerabilities, whether caused by simple bugs, e.g., buffer
overflows, or by more subtle faults that also result in the
resource-exhaustion. AIP can also contribute to the identifi-
cation of the root of the problem, by discovering which re-
sources are being depleted and by providing the test cases
that activate the vulnerabilities. Developers can then use

this invaluable information to fix the problem on the server.
Additionally, the resource usage models can support further
analysis since they let us forecast the consumption of re-
sources in various scenarios with distinct attack magnitudes.
For example, it is possible to find out: what are the main
resource bottlenecks of a system; how many attacks can be
sustained before the execution halts, and therefore estimate
the critical level of the attack; compare the robustness of
two implementations of the same server given some hard-
ware configuration.

2.3. Modeling resource usage

The AIP methodology produces statistical models repre-
senting the use of each resource for each test case. Since
complex models typically require more computation time,
there is usually a tradeoff between the accuracy of the model
and the number of tests that can be performed within a rea-
sonable time frame. In order to maximize tests, and increase
confidence on the correctness of the server, the model has
to be relatively simple to allow a rapid calculation. Among
the different mathematical models that were considered, we
opted for linear regression because it gave excellent results
for the kind of analysis and vulnerabilities we were focusing.

Least-square analysis is employed to compute the param-
eters of the linear regression fitting. In its simplest form,
linear regression estimates one parameter plus the constant
intercept, which results in a straight line. This idea can be
generalized to higher degree polynomials by estimating p
parameters. For example, with p = 2 the projection is a
quadratic function (i.e., a parabola), and with p = 3 a cu-
bic function. The number of parameters is also related to the
number of inflections, or “curves”, that the polynomial has.
A linear regression with p parameters will result in a poly-
nomial of degree p with p− 1 inflections. A cubic function,
for instance, will be useful to represent data that follows a
cubic polynomial pattern, i.e., that has two inflections.

Therefore, it is important to study the nature and pattern
of the data itself in order to determine the best polynomial
that fits it. First, consider that it is the same attack that is
injected multiple times, which results in the execution of the
same task over and over again. Also note that the monitor-
ing mechanism measures the total amount of resources spent
by the server throughout n injections. Consequently, the re-
source usage data is the accumulated value since the begin-
ning of the injections of that attack (and not per injection).
This translates into a nondecreasing monotonic resource uti-
lization (e.g., CPU time never decreases, memory consump-
tion is constant or increasing).

The following two propositions result from an under-
standing of the data, and help us determine the degree of
the linear regression polynomial:

P1: Intuitively, since the resource usage data is nondecreas-
ing, it should be suitably represented by straight line or

3

a degree-two polynomial, i.e., by a curve with zero or
one inflection. Therefore, the number of parameters to
be estimated can be p ≤ 2, plus the constant intercept.

P2: Additionally, if resource waste is increasing (e.g., a
memory leak), it does not necessarily grow at a con-
stant rate. For example, some additional overhead may
increase the resource consumption even further. This
means that a straight line may not be enough to ac-
curately represent the loss of the resource. Therefore,
in some cases a polynomial with at least one inflection
(p ≥ 2) may be required.

From these propositions we conclude that p = 2 estimated
parameters are necessary and sufficient to correctly model
the consumption of a resource due to the repeated execution
of the same attack (i.e., y = ax2 + bx + c).

3. The PREDATOR Tool

PREDATOR, which stands for PREDicting ATtacks On
Resources, is a fully automated black box testing tool that
implements the AIP methodology to search for vulnerabil-
ities. Unlike other ordinary fault injection tools, PREDA-
TOR not only produces the test cases and injects them in the
target, but also computes resource usage profiles for every
attack and monitored resource.

The main features that characterize PREDATOR are:
Firstly, thorough resource and process monitoring, mak-
ing it capable of automatically detecting small resource us-
age variations, such as CPU cycles, number of child pro-
cesses or threads, memory, disk, or open files. For this rea-
son it can discover various kinds of bugs, like deadlocks or
memory/disk leaks, that can be exploited to produce a ser-
vice disruption; Secondly, generation resource usage pro-
jections, through a post-processing analysis of the collected
data. This allows the discovery of attacks that can com-
promise the availability of the system, as well as the most
dangerous protocol interactions; Thirdly, test case prioriti-
zation, achieved by two-phase attack injection campaigns.
Only a minimum number of injections are performed in the
first exploratory phase, and then just the most promising at-
tacks are evaluated in the exploitive phase.

3.1. Architecture

The architecture of the PREDATOR tool is presented in
Figure 1. The overall operation of the tool can be divided in
the attack generation and the two injection campaigns (ex-
ploratory and exploitive).

The attack generation is performed off-line and only once
for each target communication protocol. The attacks can be
used in all test campaigns against target systems that share
the same application protocol (e.g., DNS, FTP). The format

Attack Projector

Attack Projection

Attack Injector

Target Protocol Specification Attack Generator

Target System and Monitor

Monitor

response
attack

injection

Test Manager

Attack
Generator

GUI Protocol Specification

Target
System

Protocol spec

Packet
 Injector

Response and
 Execution data

 Collector

Attack
 Processor

Projection Results
(exploratory phase)

Attack

 Selection

Selected Attacks
(exploitive phase)

execution
data

High-accuracy
Projection Results
(exploitive phase)

A
tt
a
c
k
 g
e
n
e
ra
ti
o
n

In
je
c
ti
o
n
 c
a
m
p
a
ig
n

All Attacks
(exploratory phase)

Figure 1. PREDATOR’s architecture.

of messages, their fields, and data types of the protocol are
defined through a graphical interface (GUI Protocol Specifi-
cation). Additionally, the protocol states and transition mes-
sages are also identified. The GUI produces a protocol spec-
ification file which is later used by the test case generation
algorithm to construct the attacks. The algorithm (similar
to [18], implemented in the Test Manager and Attack Gener-
ator) creates variations of the protocol messages that test the
target system’s ability to cope with some erroneous attribute,
such as an illegal parameter or out-of-order messages. All
protocol states are tried, so each attack is also composed by
the transition messages required to take the protocol to the
state where the attack is supposed to inject the fault.

Both injection campaigns share exactly the same oper-
ation, although as pointed out earlier, just a few selected
test cases are used in the exploitive phase. The Attack Pro-
cessor decomposes each attack in its components, i.e., the
state transition messages and the attack message itself. The
Packet Injector sends the transition messages to the Target
System, and once the protocol is in the designated state, it
repeatedly injects the attack message several times. For ex-
ample, 256 injections in the exploratory phase (due to the
granularity of the memory monitoring) and 1024 injections
in the exploitive phase (which empirically provided accurate
projections for most situations). There is also an implicit
synchronization between the Attack Injector and the Moni-
tor (not represented in the figure). The Monitor launches a
fresh copy of the Target System process (i.e., the server ap-

4

plication) before initiating a new test case, and terminates its
execution once the injection campaign is done.

The Target System resource usage data acquired by the
Monitor after every response, and the contents of the re-
sponses themselves, are gathered by the Response and Exe-
cution Data Collector. The Attack Projector uses linear re-
gression on this data to build the statistical profiles of the
resource usage. In the exploratory phase, a list with the most
dangerous attacks, i.e., those with higher estimated coeffi-
cients, is continuously updated. At the end, PREDATOR
outputs the resource usage projections for all attacks.

3.2. Implementation issues

PREDATOR resorts to third-party libraries to implement
the monitor. The PTRACE facility is employed to intercept
signals or system calls made by any of the server’s processes
(i.e., the main process, any forked children, and threads).
Received signals are logged and the usage data is obtained
at a few specific resource-related systems calls (e.g., mem-
ory utilization is probed after a memory allocation or de-
allocation call). This mode of operation passively traces the
execution of the server, without much interference with its
normal behavior. We have tried to reduce the overhead to
a minimum by only updating the usage data at the relevant
system calls. In some extreme situations, however, the mon-
itoring activities can create some delays because of the con-
stant pause, probe for data, and resume cycle. We plan to
address this issue in future versions of PREDATOR.

The monitor maintains and regularly updates a global ta-
ble with the resource usage data. The following local re-
sources are watched:

• total number of processes, including forked children
and threads of the target server. PTRACE signal in-
terceptions are used to track new process ids (PIDs);

• memory pages, given by the number of resident set
pages minus the shared pages, are obtained through the
LibGTop library [5];

• file descriptors, such as those identifying opened disk
files or network sockets, are kept in a updated list of
file descriptors. LSOF [1] calls are used to keep track
of the open files;

• disk usage, specified by the number of bytes written to
disk. This value is obtained by parsing the LSOF’s out-
put for the files in use, and recording their size through-
out the execution;

• CPU cycles, which corresponds to the work performed
by the processor by all server’s processes, is obtained
by performance hardware counters. The linux kernel
had to be patched to associate to each process a pri-
vate set of virtual hardware counters [21]. PREDATOR

controls and accesses these counters through the PAPI
library [12];

• wall time, measured as the elapsed time from the be-
ginning of the main process execution, is computed
by simple gettimeofday() calls. This resource is
monitored mainly to compare its value with the number
of CPU cycles. Large CPU and wall time discrepancies
normally indicate a non-active wait, which suggests the
presence of some timeout or deadlock.

4. Experimental Evaluation

The main purpose of the evaluation was to validate the
AIP methodology and to demonstrate its usefulness by de-
tecting resource exhaustion vulnerabilities in DNS servers.
The experiments were carried out in two Intel Pentium Dual-
core 2.8Ghz PCs, with 512MB of main memory. One PC
was running the Injector, while the other corresponded to the
Target System (also running the Monitor component). Each
target network server was installed in a separated cloned par-
tition of a basic Ubuntu Linux Distribution, with approxi-
mately 360MB of free disk space.

The target servers were chosen to be the representative for
the different types of resource leaks (synthetic leak servers)
and for the real world code (DNS servers). The synthetic
leak servers provided a simple, yet controllable experimen-
tal approach for the methodology validation. As for the DNS
servers, their development and testing have evolved and sta-
bilized throughout the years. They are small (few lines of
code) and sustain continuous execution and testing, making
them a challenging target.

4.1. AIP validation

The AIP methodology computes a model representing the
resource usage until exhaustion, and therefore, is able to pre-
dict, within a small and acceptable error, future resource uti-
lization. To verify and validate this hypothesis several syn-
thetic programs were developed with distinct types of leaks.
All programs were based on a simple TCP echo server –
it has only one kind of interaction, where the client sends
a “hello” message, and the server returns it back. Every
time the server receives a message, it creates some sort of
resource waste. Table 1 presents the fundamental character-
istics of various synthetic leak servers. It shows the iden-
tifier of the server, the type of leak, the number of attack
injections until terminating the experiment (5000) or until
the machine stopped responding, and the kind of resource
that was exhausted. Since the size of the leak could be deci-
sive to the conclusions, in some cases variations of the same
server were used. Two CPU leak servers were configured to
execute additional instructions, a cumulative sum and a cu-
mulative multiplication (B1 and B2); a server which created

5

Server ID Leak type No. of injections Type of exhaustion
A no leak 5,000 predefined no. of injections
B1 CPU leak (add) 5,000 predefined no. of injections
B2 CPU leak (mult) 5,000 predefined no. of injections
C fork leak 4,888 memory exhaustion

D1 pthread leak (stack size 16KB) 2,659 memory exhaustion
D2 pthread leak (stack size 8MB) 383 memory exhaustion
E1 memory leak (malloc 4B) 3,652,789 memory exhaustion
E2 memory leak (malloc 30KB) 86,482 memory exhaustion
F file open leak 1,019 open file limit
G socket leak 1,019 open file limit
H disk leak (write 30 KB) 13,042 disk exhaustion

Table 1. Synthetic leak servers with resource leaks.

another process per interaction (C); similarly, two servers
which wasted a thread, with a stack of 16KB and 8MB, re-
spectively (D1 and D2); two memory leak servers with 4B
and 30KB (E1 and E2), a disk leak server with 30KB (H) ;
and two servers that did not close a file or socket descriptor
per interaction (F and G).

Minimum number of injections As stated in Section 2,
the minimum number of repeated injections for each attack
must meet two requirements: allow the calculation of linear
regression projections, and guarantee the detection of any
resource usage variation. Since we need potentially to es-
timate p = 2 parameters, three independent data points are
required, i.e., at least three injections have to be done.

On the other hand, monitoring mechanisms can have dis-
tinct levels of granularity. For instance, in the current version
of PREDATOR, all resources have a fine-grain type of mon-
itoring with the exception of memory – the tool can only
assess the number of memory pages assigned to the pro-
cess. This affects the minimum number of injections be-
cause memory changes are only perceived when the process
requests an additional page. The glibc malloc() imple-
mentation acquires at least 16 bytes on a 32-bit system (4
bytes for the preceding size field + 4 bytes for trailing size
field + at least 8 bytes for the user block1). Therefore, no
matter how many bytes a program requests, malloc() will
allocate a block of at least 16 bytes. If a memory page is
4096 bytes long, in the worse case of a 1B leak, there must
be 256 attack injections to force a new page request. One
however should notice that other memory management im-
plementations, which do not waste so much memory with
control data, may require a larger number of injections.

Table 2 shows the linear regression projections for re-
sources disk space (denoted by ŷd) and memory pages (de-
noted by ŷm) of two synthetic leak servers. The first of them

1The minimum of 8 bytes for the user block is imposed because when
the chunk is freed, the memory manager must store two free list pointers
(double-linked list) in this space.

Disk leak (4B) memory leak (4B)
n = 3 ŷd = 4x ŷm = 114
n = 256 ŷd = 4x ŷm = 0.0001x + 113.99

Table 2. Projections for a disk and memory
leak created from n injections.

had a 4B disk leak and the other wasted 4B of memory per
interaction. The calculated models with 256 injections esti-
mated parameters that reflected the increase in resource con-
sumption (non-zero coefficients in the x variable), therefore,
they identify the vulnerabilities. The table also demonstrates
the impact of the granularity of monitoring. Since the mech-
anism measuring disk usage is capable of detecting varia-
tions of a single byte, three injections (n = 3) were enough
to completely determine the model for the first server. How-
ever, for the memory case it was necessary to inject 256
times to reflect in the model the growing memory consump-
tion, i.e., the 0.0001 coefficient.

Resource usage projection To validate the linear regres-
sion model, PREDATOR generated resource usage projec-
tions for the various synthetic leak servers, which were cal-
culated with the measurements made on first 1024 attack in-
jections. Then, the Injector continued to attack the server
until it stopped, so that real data could be obtained about the
behavior of the resources as the server became exhausted.
Finally, the real data was compared with the predictions.

The resource usage projections with p = 2 estimated pa-
rameters are presented in Table 3. We tried to use polynomi-
als with degree higher than 2, but in all cases the additional
coefficients were always zero. As it is possible to observe, in
most cases resource consumption was either constant (some-
times zero) or had a constant growth (x2 coefficient was
zero). Highlighted in bold are the coefficients that reflect the
curved-shaped lines. These are the most dangerous vulnera-
bilities because the consumption increase is “accelerating”.

6

Server CPU M cycles Processes Memory pages File descriptors Disk bytes
A ŷ = 0.93x− 1.04 ŷ = 1.00 ŷ = 106.00 ŷ = 0.00 ŷ = 0.00
B1 ŷ = 0.01x2 + 0.35x− 22.89 ŷ = 1.00 ŷ = 91.00 ŷ = 0.00 ŷ = 0.00
B2 ŷ = 0.41x2 + 13.74x− 522.30 ŷ = 1.00 ŷ = 91.00 ŷ = 0.00 ŷ = 0.00

C ŷ = 0.22x− 14.05 ŷ = 1.00x + 1.00 ŷ = 69.99x + 114.62 ŷ = 0.00 ŷ = 0.00
D1 ŷ = 0.08x− 0.33 ŷ = 1.00x + 1.00 ŷ = 2.04x2 + 132.58x + 124.69 ŷ = 0.00 ŷ = 0.00
D2 ŷ = 0.12x + 0.03 ŷ = 1.06x− 2.01 ŷ = 3.03x2 + 134.90x + 137.42 ŷ = 0.00 ŷ = 0.00
E1 ŷ = 0.04x + 0.29 ŷ = 1.00 ŷ = 103.63 ŷ = 0.00 ŷ = 0.00
E2 ŷ = 0.04x + 0.32 ŷ = 1.00 ŷ = 1.00x + 104.00 ŷ = 0.00 ŷ = 0.00
F ŷ = 0.14x + 1.56 ŷ = 1.00 ŷ = 1.09x + 110.51 ŷ = 1.00x + 5.00 ŷ = 0.00

G ŷ = 0.12x + 0.31 ŷ = 1.00 ŷ = 94.00 ŷ = 1.00x + 5.00 ŷ = 0.00
H ŷ = 0.12x + 0.27 ŷ = 1.00 ŷ = 112.00 ŷ = 6.00 ŷ = 28672.00x

Table 3. Resource usage projections for the synthetic leak servers (with p = 2).

Another point worth of notice is the implicit correlation
between the resources, in particular the CPU and the mem-
ory. For instance, servers D1 and D2 have a thread leak,
i.e., a new thread is created at each request (which is not
terminated). The creation of a thread has an impact on three
resources: the number of processes/threads, CPU, and mem-
ory. Therefore, there is a correlation among these resources
for this sort of vulnerability (e.g., the correlation coeffi-
cient between the number of processes and memory pages
is R = 0.97). This reveals the potential of the AIP methodol-
ogy to better understand the dependencies and relationships
between the different resources, which can contribute to the
identification of specific vulnerabilities.

The results of the goodness-of-fit of the linear regression
projections, for p = 1 and p = 2 parameters, are depicted
in Table 4. The table shows two well know statistical mea-
sures for each of the major resources: the adjusted coefficient
of determination (R2

a) and the mean squared error (MSE).
Since we want to evaluate the goodness-of-fit of the projec-
tion for the entire data, and not only for the subset used in the
linear regression, the coefficient of determination2 had to be
adjusted to the sample size. An R2

a of 1.0 indicates that the
regression line perfectly fits the data (some values are miss-
ing because of the regular resource usage). However, since
the entire data is much larger than the 1024 injections used
in the regression, the residual standard deviation can sum up
to produce negative R2

a values. The other measure, MSE, is
the expected value of the square of the error. It measures the
amount by which the estimator differs from the quantity to
be estimated. When comparing two estimators for the same
data, the one that gives a smaller MSE is better.

The table clearly shows that in all cases but three, the
projections were extremely accurate (R2

a of approximately
1 and MSE for p = 1 and p = 2 in the same order of mag-
nitude). The exceptions (highlighted in bold) are the two
CPU projections for the CPU leak servers, and the memory
projection for the thread leak server (D1). In all three cases
a straight line projection (p = 1) did not correctly represent

2The coefficient of determination (R2) is the proportion of variability
(defined as the sum of squares) in a data set that is accounted for by a
statistical model.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

0 500 1000 1500 2000 2500

m
em
o
ry
 p
ag
es

repeated injections

actual data

projection (p=1)

projection (p=2)

Figure 2. Memory usage projections for the
D1 synthetic server (with thread leak).

the actual resource usage data. Figure 2, for instance, shows
the memory usage projections and the actual consumption
for the D1 server. These results confirm our initial intuition
that for certain types of resource consumption we may need
curve-shaped projections. Overall, the experimental results
shows that linear regression with p = 2 estimated parameters
produces valid and accurate projections for the entire life-
time of the server, i.e., until the exhaustion of the resources.

4.2. DNS experimental results

In order to test PREDATOR with real applications, we
decided to focus on a single protocol to reduce the effort de-
voted to the production of protocol specifications (which is
required for the attack generation), allowing more time to
test different servers. The Domain Name System (DNS) is
a network component that performs a crucial role in the In-
ternet [14]. It is a hierarchical and distributed service that
stores and associates information related to the Internet do-
main names. DNS employs a query/response stateless pro-
tocol. Messages have a large number of fields, which can
take a reasonable range of possible values (e.g., 16-bit binary
fields or null-delimited strings), and the erroneous combina-
tion of these fields can be utilized to perform attacks.

The experimental validation was conducted with seven
known DNS servers: BIND 9.4.2 [10], MaraDNS

7

Server CPU Processes Memory Files Disk
R2

a MSE R2
a MSE R2

a MSE R2
a MSE R2

a MSE

A p = 1 1.00 1.2× 103 − 0.00 − 0.00 − 0.00 − 0.00
p = 2 1.00 1.1× 103 − 0.00 − 0.00 − 0.00 − 0.00

B1
p = 1 -0.23 2.6× 109 − 0.00 − 0.00 − 0.00 − 0.00
p = 2 0.99 1.5× 107 − 0.00 − 0.00 − 0.00 − 0.00

B2
p = 1 -0.27 1.2× 1013 − 0.00 − 0.00 − 0.00 − 0.00
p = 2 1.00 2.0× 108 − 0.00 − 0.00 − 0.00 − 0.00

C p = 1 0.99 45.9905 1.00 1.002 1.00 1.8× 107 − 0.00 − 0.00
p = 2 0.96 2.6× 102 1.00 1.003 1.00 1.8× 107 − 0.00 − 0.00

D1
p = 1 0.98 94.582 1.00 1.001 0.31 1.3× 1013 − 0.00 − 0.00
p = 2 0.91 4.7× 102 1.00 1.001 1.00 4.2× 107 − 0.00 − 0.00

D2
p = 1 1.00 0.86 1.00 3.8× 102 0.95 1.1× 109 − 0.00 − 0.00
p = 2 0.99 2.1574 1.00 3.8× 102 1.00 2.2× 106 − 0.00 − 0.00

E1
p = 1 0.96 3.7× 107 − 0.00 0.99 8.9× 104 − 0.00 − 0.00
p = 2 0.98 2.2× 107 − 0.00 0.99 8.9× 104 − 0.00 − 0.00

E2
p = 1 0.99 8.8× 103 − 0.00 1.00 9.5× 103 − 0.00 − 0.00
p = 2 0.99 9.8× 103 − 0.00 1.00 9.5× 103 − 0.00 − 0.00

F p = 1 1.00 0.69 − 0.00 1.00 1.2611 1.00 1.002 − 0.00
p = 2 0.99 12.6607 − 0.00 1.00 1.2524 1.00 1.003 − 0.00

G p = 1 1.00 2.3726 − 0.00 − 0.00 1.00 1.002 − 0.00
p = 2 0.97 32.7006 − 0.00 − 0.00 1.00 1.003 − 0.00

H p = 1 1.00 1.1951 − 0.00 − 0.00 − 0.00 1.00 8.2× 108

p = 2 1.00 37.0782 − 0.00 − 0.00 − 0.00 1.00 8.2× 108

Table 4. R2
a and MSE for the resource usage projections for the synthetic leak servers.

1.2.12.05 [28], MyDNS 1.1.0 [15], NSD 3.0.6 [20], Pow-
erDNS 2.9.21 [23], Posadis 0.60.6 [22], and rbldnsd
0.996a [27]. All these servers are highly customizable, with
several options that could affect the monitoring data gath-
ered during the experiments. To make our tests as repro-
ducible as possible, we chose to run the servers with no (or
minimal) changes to the default configuration.

PREDATOR generated a total of 19,104 different attacks
from the DNS protocol specification, using a test case gener-
ation algorithm that created message variations with illegal
data. The exploratory phase repeated the injection of each at-
tack 256 times and selected the best attack for each resource
(i.e., the attack that caused higher consumption) to be used
in a second injection campaign. In the exploitive phase, each
of the selected attacks was injected 1024 times.

The final resource usage projections (from the exploitive
phase) are presented in Table 5. Four projections are
highlighted in bold, the higher CPU resource projection
(BIND), the higher processes resource projection (Pow-
erDNS), and a couple of increasing memory resource pro-
jections (MaraDNS and PowerDNS). The CPU increase is
expected because as more tasks are executed, more CPU cy-
cles are spent. However, it is interesting to note that the most
CPU intensive server happens to be also the most used DNS
server in the Internet, BIND. This means that BIND is more
susceptible to a CPU exhaustion, i.e., the CPU has no idle
times, than the remaining target systems.

PowerDNS increases the total number of pro-
cesses/threads from 7 to 8, which results in the highlighted
processes projection. Further inspection, i.e., by running
the exploitive phase with more injections, showed that the

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000

m
em
o
ry
 p
ag
es

repeated injections

MaraDNS-1.12.05 MaraDNS-1.12.06

MaraDNS-1.12.05 (projection) MaraDNS-1.12.06 (projection)

Figure 3. Memory consumption in MaraDNS.

PowerDNS server was in fact limited to 8 processes/threads.
The observed raise in the memory consumption projection
was also due to the same cause, since the OS allocates
memory when starting a new process/thread on behalf of
the same application. Therefore, no vulnerability actually
existed in both cases as the resource consumption eventually
stabilized. This example demonstrates the usefulness of
the last phase of the AIP methodology – it allows the user
to tradeoff some additional time executing extra injections
on a small set of attacks, with a better accuracy of the
projections. In some exceptional cases, such as to confirm
the attacks that potentially could exploit a vulnerability, we
deliberately increased the number of injections (> 1024) to
take the server closer to the exhaustion point.

Another DNS server, MaraDNS, also showed a raising
memory usage projection. In fact, the memory consumption
of MaraDNS is a clear example of a memory leak vulnera-

8

Server CPU M cycles Processes Memory pages File descriptors Disk bytes
BIND-9.4.2 ŷ = 0.39x + 25.31 ŷ = 1.00 ŷ = 1251.00 ŷ = 0.00 ŷ = 0.00
MaraDNS-1.2.12.05 ŷ = 0.18x + 4.85 ŷ = 1.00 ŷ = 0.14x + 170.85 ŷ = 0.00 ŷ = 0.00
MyDNS-1.1.0 ŷ = 0.14x + 0.21 ŷ = 1.00 ŷ = 494.00 ŷ = 0.00 ŷ = 0.00
NSD-3.0.7 ŷ = 0.02x + 0.78 ŷ = 3.00 ŷ = 534.00 ŷ = 0.00 ŷ = 0.00
PowerDNS-2.9.21 ŷ = 0.19x− 19.61 ŷ = 0.01x + 7.04 ŷ = 2.40x + 4983.49 ŷ = 0.00 ŷ = 0.00
Posadis-0.60.6 ŷ = 0.29x− 0.02 ŷ = 2.00 ŷ = 812.00 ŷ = 0.00 ŷ = 0.00
rbldnsd-0.996a ŷ = 0.02x + 1.50 ŷ = 1.00 ŷ = 175.00 ŷ = 0.00 ŷ = 0.00

Table 5. Resource usage projections for the DNS servers.

bility. But the memory exhaustion was not restricted to the
selected attack. Several of the generated attacks caused the
same abnormal behavior, which allowed us to identify the
relevant message fields that triggered the vulnerability. Any
attack requesting a reverse lookup, or a non-Internet class
records, made memory usage grow. A closer look at the
server’s code path of execution, showed that the server stops
processing these queries once they are detected because they
are not currently supported. However, the respective parsing
function fails to free a couple of previously allocated vari-
ables. Successively injecting any of these two kinds of at-
tacks caused the server to constantly allocate more memory,
eventually requesting a new memory page. Both resource-
exhaustion vulnerabilities could be exploited remotely to
halt the server. They were deemed by the MaraDNS devel-
opers as fairly serious, and were credited to PREDATOR [3].
Figure 3 compares the projections for memory consumption
of the vulnerable (1.12.05) and corrected (1.12.06) versions
of the server.

5. Related Work

This work has been influenced by several research areas.
MESSALINE [4], Xception [7], or FTAPE [29], are exam-
ples of tools that can inject hardware or software faults in a
target system under evaluation. By forcing and reproducing
the occurrence of such irregular and unusual events, they can
evaluate the target system’s ability to cope with them. How-
ever, due to the relative simplicity of the mimicked faults, it
is difficult to apply these tools to more complex faults, like
security vulnerabilities of network servers.

Fuzzers deal with this intractability by injecting random
samples as inputs to the tested software components. Orig-
inally, they were used against UNIX commands. For in-
stance, Fuzz [13] generates large sequences of random char-
acters which were used as parameters for command-line pro-
grams. Many programs failed to process the illegal argu-
ments and crashed, indicating flaws like buffer overflow.
Throughout the years, fuzzers have evolved into more intel-
ligent, and less random, vulnerability detectors [31, 6, 24]).
However, in some cases they have become too specialized,
and they still lack more thorough monitoring mechanisms.

Robustness testing studies the exception handling effec-
tiveness of the more complex software systems [11, 2]. Au-

tomated robustness testing tools probe OS APIs (e.g., oper-
ating system calls, device driver interfaces, or other software
modules) to see how effective the target system is at handling
the presence of erroneous input conditions.

There is also a field of study dedicated to the injection of
malicious faults. Attack injection [18, 19] is used to gener-
ate and inject a large number of attacks in a target system
while monitoring its behavior. The attacks can be directed
at any interface of the target system, e.g., network device,
file system, command-line parameters, and are based on the
interface specification. AJECT attacks the network interface
of target servers to discover vulnerabilities. It is composed
of an injector and a monitor. The injector uses a specifica-
tion of the network protocol (e.g., IMAP) to generate a broad
spectrum of attacks. Then, it sends these messages to the tar-
get system and collects its replies. The generation is accom-
plished accordingly to a specific attack creation algorithm,
which complies to some predefined test class, namely syn-
tax test or value test. A monitor component closely observes
the injection process and traces the server’s execution (e.g.,
UNIX signals) and some basic resource usage (e.g., number
of allocated memory pages and the time spent by the CPU).
A vulnerability is detected upon the observation of an un-
usual server behavior, such as the reception of SIGSEGV
signal. PREDATOR differs from AJECT in three ways: the
considerable extension of the monitoring capabilities; the in-
troduction of a new structured attack injection process, the
AIP methodology, which required a complete rewrite with
two injection campaign phases and a post-processing analy-
sis; and finally, the capability to provide an estimate of the
resource usage prediction.

Another area relevant to our research focuses on resource
usage monitoring. Most of the work in this area is done
mainly on performance monitoring and memory leaks. Sup-
porting the former, various timing facilities are available in
Linux systems, such as /proc/stat, getrusage, getpinfo, or
even more portable solutions such as LibGTop [5]. However,
given the small time granularity of many operating system
activities [9] or due to processor fluctuations [33] the mea-
sured time may yield incorrect or inaccurate values. In or-
der to improve the timing resolution, hardware performance
counters present in modern processors can be utilized.

Besides the CPU time, memory is also an important re-
source. Memory leak detectors such as Valgrind [17] or

9

memprof [25] trace the memory allocation and de-allocation
during the program execution. However, it is up to the devel-
oper to provide the different execution paths, or test cases, in
order to attain a reasonable coverage.

6. Conclusions

The paper presents a new methodology for the detection
of resource-exhaustion vulnerabilities. This methodology
can be applied to any network server, as long as a specifi-
cation of its protocol is provided. It was implemented in a
fully automated black box testing tool called PREDATOR.
The tool not only produces test cases and injects them in the
server, but also computes resource usage profiles which pre-
dict the utilization of every monitored resource for all tests.
The attacks that trigger vulnerabilities can be identified by its
resource usage projections, showing an unexpected resource
consumption.

The methodology was experimentally validated with syn-
thetic servers, which showed that it is quite suitable to profile
different kinds of resource leaks. As for real applications, we
decided to focus on seven well-known public-domain DNS
servers. Despite the fact that these servers have been exten-
sively tested throughout the years, we still found new vul-
nerabilities, which we believe is an important demonstration
of the added value of our tool and methodology.

References

[1] V. A. Abell. lsof – LiSt Open Files, 2007.
http://people.freebsd.org/ abe/.

[2] A. Albinet, J. Arlat, and J.-C. Fabre. Characterization of the
impact of faulty drivers on the robustness of the Linux ker-
nel. In Proc. of the Int. Conf. on Dependable Systems and
Networks, June 2004.

[3] J. Antunes. MaraDNS multiple remote denial of ser-
vice vulnerabilities. In Bugtraq Mailing List, 2007.
http://www.securityfocus.com/bid/24337.

[4] J. Arlat, Y. Crouzet, and J.-C. Laprie. Fault injection for de-
pendability validation of fault-tolerant computing systems. In
Proc. of the Int. Symp. on Fault-Tolerant Computing, 1989.

[5] M. Baulig and D. Kacar. LibGTop – li-
brary that provides system information, 2007.
http://directory.fsf.org/libs/LibGTop.html.

[6] T. Biege. Radius fuzzer, Sept. 2005.
http://www.suse.de/ thomas/index.html.

[7] J. Carreira, H. Madeira, and J. G. Silva. Xception: Software
fault injection and monitoring in processor functional units.
In Proc. of the Int. Working Conf. on Dependable Computing
for Critical Applications, Jan. 1995.

[8] W. Eddy. TCP SYN Flooding Attacks and Common Mitiga-
tions. RFC 4987 (Informational), Aug. 2007.

[9] S. Hines, B. Wyat, and J. M. Chang. Increasing timing reso-
lution for processes and threads in linux. Unpublished.

[10] Internet Systems Consortium, Inc. BIND – Berkeley Internet
Name Domain, 2007. http://www.isc.org/sw/bind.

[11] P. Koopman and J. DeVale. The exception handling effective-
ness of POSIX operating systems. IEEE Trans. on Software
Engineering, 2000.

[12] K. London, S. Moore, P. Mucci, K. Seymour, and R. Luczak.
The PAPI cross-platform interface to hardware performance
counters. In Department of Defense Users’ Group Confer-
ence Proceedings, June 2001.

[13] B. P. Miller, L. Fredriksen, and B. So. An empirical study
of the reliability of UNIX utilities. Communications of the
ACM, 1990.

[14] P. Mockapetris. Domain names - implementation and speci-
fication. RFC 1035 (Standard), Nov. 1987.

[15] D. Moore. MyDNS, 2006. http://mydns.bboy.net.
[16] M. Murphy. eServ memory leak enables denial

of service attacks. In Bugtraq Mailing List, 2003.
http://www.securityfocus.com/archive/1/321306.

[17] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In Proc. of the
Programming Language Design and Implementation, June
2007.

[18] N. Neves, J. Antunes, M. Correia, P. Veríssimo, and R. Neves.
Using attack injection to discover new vulnerabilities. In
Proc. of the Int. Conf. on Dependable Systems and Networks,
June 2006.

[19] N. F. Neves. Locating file processing vulnerabilities. Fast ab-
stract in Supplement of the Int. Conf. on Dependable Systems
and Networks, June 2006.

[20] NLnet Labs. NSD – Name Server Daemon, 2007.
http://www.nlnetlabs.nl/nsd.

[21] M. Pettersson. Linux performance-monitoring counters
driver, 2002. http://www.csd.uu.se/ mikpe/linux/perfctr.

[22] Posadis. Posadis, 2004. http://posadis.sourceforge.net.
[23] PowerDNS. PowerDNS, 2007. http://www.powerdns.com.
[24] M. Sutton. FileFuzz, Sept. 2005.

http://labs.idefense.com/labs-software.php?show=3.
[25] O. Taylor. MemProf: Profiling and leak detection, 1999-

2007. htp://www.gnome.org/projects/memprof.
[26] Tenable Network Security. Nessus vulnerability scanner,

2006. http://www.nessus.org.
[27] M. Tokarev. rbldnsd, 2006. http://posadis.sourceforge.net.
[28] S. Trenholme. MaraDNS – a security-aware DNS server,

2007. http://www.maradns.org.
[29] T. K. Tsai and R. K. Iyer. Measuring fault tolerance with

the FTAPE fault injection tool. In Int. Conf. on Modeling
Techniques and Tools for Computer Performance Evaluation,
LNCS. Sept. 1995.

[30] D. Turner, S. Entwisle, M. Denesiuk, M. Fossi, J. Blackbird,
D. McKinney, R. Bowes, N. Sullivan, P. Coogan, C. Wueest,
O. Whitehouse, and Z. Ramzan. Symantec internet security
threat report. Technical Report Volume XI, Symantec, Mar.
2007.

[31] University of Oulu. PROTOS – security test-
ing of protocol implementations, 1999–2003.
http://www.ee.oulu.fi/research/ouspg/protos/.

[32] K. Vaidyanathan and K. S. Trivedi. A comprehensive model
for software rejuvenation. IEEE Trans. on Dependable and
Secure Computing, 2005.

[33] A. Wiebalck, T. M. Steinbeck, and V. Lindenstruth. Fluctu-
ating processors - recognizing and resolving cpu load in the
kernel. Linux Magazine, June 2003.

10

