
Incorporating Nesterov Momentum into Adam

Timothy Dozat

1 Introduction

When attempting to improve the performance of a
deep learning system, there are more or less three
approaches one can take: the first is to improve the
structure of the model, perhaps adding another layer,
switching from simple recurrent units to LSTM cells
[4], or–in the realm of NLP–taking advantage of
syntactic parses (e.g. as in [13, et seq.]); another ap-
proach is to improve the initialization of the model,
guaranteeing that the early-stage gradients have cer-
tain beneficial properties [3], or building in large
amounts of sparsity [6], or taking advantage of prin-
ciples of linear algebra [15]; the final approach is to
try a more powerful learning algorithm, such as in-
cluding a decaying sum over the previous gradients
in the update [12], by dividing each parameter up-
date by the L2 norm of the previous updates for that
parameter [2], or even by foregoing first-order algo-
rithms for more powerful but more computationally
costly second order algorithms [9]. This paper has
as its goal the third option—improving the quality
of the final solution by using a faster, more powerful
learning algorithm.

2 Related Work

2.1 Momentum-based algorithms

Gradient descent is a simple, well-known, and gen-
erally very robust optimization algorithm where the
gradient of the function to be minimized with re-
spect to the parameters (∇ f (θ t−1)) is computed, and
a portion η of that gradient is subtracted off of the
parameters:

Classical momentum [12] accumulates a decaying

Algorithm 1 Gradient Descent
gt ← ∇θ t−1 f (θ t−1)
θ t ← θ t−1−ηgt

sum (with decay constant µ) of the previous gradi-
ents into a momentum vector m, and using that in-
stead of the true gradient. This has the advantage of
accelerating gradient descent learning along dimen-
sions where the gradient remains relatively consis-
tent across training steps and slowing it along turbu-
lent dimensions where the gradient is significantly
oscillating.

Algorithm 2 Classical Momentum
gt ← ∇θ t−1 f (θ t−1)
mt ← µmt−1 +gt

θ t ← θ t−1−ηmt

[14] show that Nesterov’s accelerated gradient
(NAG) [11]–which has a provably better bound than
gradient descent–can be rewritten as a kind of im-
proved momentum. If we can substitute the defini-
tion for mt in place of the symbol mt in the parame-
ter update as in (2)

θ t ←θ t−1−ηmt (1)

θ t ←θ t−1−ηµmt−1−ηgt (2)

we can see that the term mt−1 doesn’t depend on
the current gradient gt—so in principle, we can get
a superior step direction by applying the momentum
vector to the parameters before computing the gradi-
ent. The authors provide empirical evidence that this
algorithm is superior to the gradient descent, classi-

Algorithm 3 Nesterov’s accelerated gradient
gt ← ∇θ t−1 f (θ t−1−ηµmt−1)
mt ← µmt−1 +gt

θ t ← θ t−1−ηmt

cal momentum, and Hessian-Free [9] algorithms for
conventionally difficult optimization objectives.

2.2 L2 norm-based algorithms

[2] present adaptive subgradient descent (Ada-
Grad), which divides η of every step by the L2 norm
of all previous gradients; this slows down learning
along dimensions that have already changed signifi-
cantly and speeds up learning along dimensions that
have only changed slightly, stabilizing the model’s
representation of common features and allowing it
to rapidly “catch up” its representation of rare fea-
tures.1

Algorithm 4 AdaGrad
gt ← ∇θ t−1 f (θ t−1)
nt ← nt−1 +g2

t
θ t ← θ t−1−η

gt√
nt+ε

One notable problem with AdaGrad is that the
norm vector n eventually becomes so large that
training slows to a halt, preventing the model from
reaching the local minimum; [16] go on to motivate
RMSProp, an alternative to AdaGrad that replaces
the sum in nt with a decaying mean parameterized
here by ν . This allows the model to continue to learn
indefinitely.

Algorithm 5 RMSProp
gt ← ∇θ t−1 f (θ t−1)
nt ← νnt−1 +(1−ν)g2

t
θ t ← θ t−1−η

gt√
nt+ε

2.3 Combination

One might ask if combining the momentum-based
and norm-based methods might provide the ad-
vantages of both. In fact, [5] successfully do so

1Most implementations of this kind of algorithm include an
ε parameter to keep the denominator from being too small and
resulting in an irrecoverably large step

with adaptive moment estimation (Adam), combin-
ing classical momentum (using a decaying mean in-
stead of a decaying sum) with RMSProp to improve
performance on a number of benchmarks. In their
algorithm, they include initialization bias correction
terms, which offset some of the instability that ini-
tializing m and n to 0 can create.

Algorithm 6 Adam
gt ← ∇θ t−1 f (θ t−1)
mt ← µmt−1 +(1−µ)gt

m̂t ← mt
1−µ t

nt ← νnt−1 +(1−ν)g2
t

n̂t ← nt
1−ν t

θ t ← θ t−1−η
m̂t√
n̂t+ε

[5] also include an algorithm AdaMax that re-
places the L2 norm with the L∞ norm, removing the
need for n̂t and replacing nt and θ t with the follow-
ing updates:

nt ←max(νnt−1, |gt |)
θ t ← θ t−1−η

m̂t
nt+ε

We can generalize this to RMSProp as well, using
the L∞ norm in the denominator instead of the L2
norm, giving what might be called the MaxaProp
algorithm.

3 Methods

3.1 NAG revisited

Adam combines RMSProp with classical momen-
tum. But as [14] show, NAG is in general supe-
rior to classical momentum—so how would we go
about modifying Adam to use NAG instead? First,
we rewrite the NAG algorithm to be more straight-
forward and efficient to implement at the cost of
some intuitive readability. Momentum is most ef-
fective with a warming schedule, so for complete-
ness we parameterize µ by t as well. Here, the

Algorithm 7 NAG rewritten
gt ← ∇θ t−1 f (θ t−1)
mt ← µtmt−1 +gt

m̄t ← gt +µt+1mt

θ t ← θ t−1−ηm̄t

vector m̄ contains the gradient update for the cur-

rent timestep gt in addition to the momentum vector
update for the next timestep µt+1mt , which needs
to be applied before taking the gradient at the next
timestep. We don’t need to apply the momentum
vector for the current timestep anymore because we
already applied it in the last update of the parame-
ters, at timestep t−1.

3.2 Applying NAG to Adam

Ignoring the initialization bias correction terms for
the moment, Adam’s update rule can be written in
terms of the previous momentum/norm vectors and
current gradient update as in (3).

θ t ←θ t−1−η
µmt−1√

νnt−1 +(1−ν)g2
t + ε

(3)

−η
(1−µ)gt√

νnt−1 +(1−ν)g2
t + ε

In rewritten NAG, we would take the first part of the
step and apply it before taking the gradient of the
cost function f –however, the denominator depends
on gt , so we can’t take advantage of the trick used
in NAG for this equation. However, ν is generally
chosen to be very large (normally > .9), so the dif-
ference between nt−1 and nt will in general be very
small. We can then replace nt with nt−1 without los-
ing too much accuracy:

θ t ←θ t−1−η
µmt−1√nt−1 + ε

(4)

−η
(1−µ)gt√

νnt−1 +(1−ν)g2
t + ε

The the first term in the expression in (4) no longer
depends on gt , meaning here we can use the Nes-
terov trick; this give us the following expressions for
m̄t and θ t :

m̄t ← (1−µt)gt +µt+1mt

θ t ← θ t−1−η
m̄t√
vt+ε

All that’s left is to determine how to include the
initialization bias correction terms, taking into con-
sideration that gt comes from the current timestep
but mt comes from the subsequent timestep. This
gives us the following, final form of the Nesterov-
accelerated adaptive moment estimation (Nadam)
algorithm. AdaMax can make use of the Nesterov
acceleration trick identically (NadaMax).

Algorithm 8 Nesterov-accelerated adaptive moment
estimation

gt ← ∇θ t−1 f (θ t−1)
ĝ← gt

1−∏
t
i=1 µi

mt ← µmt−1 +(1−µ)gt

m̂t ← mt
1−∏

t+1
i=1 µi

nt ← νnt−1 +(1−ν)g2
t

n̂t ← nt
1−ν t

m̄t ← (1−µt)ĝt +µt+1m̂t

θ t ← θ t−1−η
m̄t√
n̂t+ε

4 Experiments

To test this algorithm, we compared the perfor-
mance of nine algorithms–GD, Momentum, NAG,
RMSProp, Adam, Nadam, MaxaProp, AdaMax,
and Nadamax–on three benchmarks–word2vec [10],
MNIST image classification [7], and LSTM lan-
guage models [17]. All algorithms used ν = .999
and ε = 1e−8 as suggested in [5], with a momen-
tum schedule given by µt = µ(1− .5× .96

t
250) with

µ = .99, similar to the recommendation in [14].
Only the learning rate η differed across algorithms
and experiments. The algorithms were all coded us-
ing Google’s TensorFlow [1] API and the experi-
ments were done using the built-in TensorFlow mod-
els, making only small edits to the default settings.
All algorithms used initialization bias correction.

4.1 Word2Vec

Word2vec [10] word embeddings were trained us-
ing each of the nine algorithms. Approximately
100MB of cleaned text2 from Wikipedia were used
as the source text, and any word not in the top 50000
words was replaced with UNK. 128-dimensional vec-
tors with a left and right context size of 1 were
trained using noise-contrastive estimation with 64
negative samples. Validation was done using the
word analogy task; we report the average cosine dif-
ferene (1−cossim(x,y)

2) between the analogy vector and
the embedding of the correct answer to the analogy.
The best results were achieved when, each column
of the embedding vector had a 50% chance to be
dropped during training. The results are in Figure 1.

2http://mattmahoney.net/dc/text8.zip

http://mattmahoney.net/dc/text8.zip

GD Mom NAG
Test loss .368 .361 .358

RMS Adam Nadam
Test loss .316 .325 .284

Maxa A-max N-max
Test loss .346 .356 .355

Figure 1: Training of word2vec word embeddings

The methods with RMSProp produced word vec-
tors that represented relationships between words
significantly better than the other methods, but RM-
SProp with Nesterov momentum (Nadam) clearly
outperformed RMSProp with no momentum and
with classical momentum (Adam). Notice also that
the algorithms with NAG consistently outperform
the algorithms witn classical momentum.

4.2 Image Recognition
MNIST [7] is a classic benchmark for testing algo-
rithms. We train a CNN with two convolutional lay-
ers of 5×5 filters of depth 32 and depth 64 alternat-
ing with 2× 2 max pooling layers with a stride of
2, followed by a fully connected layer of 512 nodes
and a softmax layer on top of that–this is the default
model in TensorFlow’s basic MNIST CNN model.
The annealing schedule was modified to decay faster
and the model was trained for more epochs in order
to smooth out the error graphs. The results are given
in Figure 2.

In this benchmark, Nadam receives the lowest de-
velopment error–as predicted–but on the test set, all
momentum-based methods underperform their sim-
ple counterparts without momentum. However, [5]
use a larger CNN and find that Adam achieves the
lowest performance. Furthermore, the hyperparam-
eters here have not been tuned for this task (except

GD Mom NAG
Test loss .0202 .0263 .0283

RMS Adam Nadam
Test loss .0172 .0175 .0183

Maxa A-max N-max
Test loss .0195 .0231 .0204

Figure 2: Training of handwritten digit recognition

the global learning rate), and in other training runs
Nadam performed noticeably better with a higher
value of ε .

4.3 LSTM Language Model
The final benchmark we present is the task of pre-
dicting the next word of a sentence given the pre-
vious words in a sentence. The dataset used here
comes from the Penn TreeBank [8], and the model
uses a two-layer stacked LSTM with 200 cells at
each layer, reproducing [17] on a smaller scale. All
default settings in the small TensorFlow implemen-
tation were retained, with the exception that the
model included L2 regularization in order to offset
the lack of dropout. The results of training are pre-
sented in Figure 3.

In this benchmark, algorithms that incorporated
RMSProp or MaxaProp did noticeably worse than
gradient descent and those that only use momen-
tum, and tuning hyperparameters makes little differ-
ence. It’s unclear why this is–it’s conceivable that
the assumptions RMS/MaxaProp make about how
features are represented don’t hold in the case of
language models, LSTMs, or recurrent NNs more
broadly. It’s also curious that classical momentum
outperformed Nesterov momentum, although that
may be due to the relatively small size of the mod-
els. Crucially, even though Nadam wasn’t the op-

GD Mom NAG
Test perp 100.8 99.3 99.8

RMS Adam Nadam
Test perp 106.7 111.0 105.5

Maxa A-max N-max
Test perp 106.3 108.5 107.0

Figure 3: Training of a Penn TreeBank language model

timal algorithm in this case, it significantly outper-
formed Adam, supporting our hypothesis that using
Nesterov momentum will improve Adam.

5 Discussion

While the results are a little messy, we can in-
fer a number of things: the first is that the hith-
erto untested MaxaProp-based methods, including
AdaMax and NadaMax, generally do worse than at
least some of the other algorithms. In the word2vec
task, the algorithms with Nesterov momentum con-
sistently achieve better results than the ones with
only classical momentum, supporting the intuition
behind the hypothesis that Nadam should be better
than Adam. We also see that Nadam produces by
far the best word vectors for this task when dropout
is included (which is not normally done but in our
experiments categorically improves results). With
the MNIST task, we find that including RMSProp
makes a significant difference in the quality of the
final classifier, likely owing to RMSProp’s ability to
adapt to different depths. Nadam performed best on
the development set, but contra [5], RMSProp sur-
passed it on the test set. This may be due to the
smaller size of our model, the relative easiness of the
task (CIFAR-10 might make a better benchmark in
a less time-sensitive setting), our choice to only use

default settings, random fluctuations that arise from
dropout, or possibly even slight overfitting (which
can be clearly seen in Nadam–but not in RMSProp–
when hyperparameters are tuned). Finally, in the
LSTM-LM, we find that using RMSProp hinders
performance, even when hyperparameters are exten-
sively tuned, but when it is included anyway, adding
Nesterov momentum to it as in Nadam improves it
over not using any momentum or only using classi-
cal momentum.

In two of the three benchmarks, we found a rather
significant difference between the performance of
models trained with Adam and that of those trained
with Nadam—why might this be? When the de-
nominator of RMSProp is small, the effective step
size of a parameter update becomes very large, and
when the denominator is large, the model requires
a lot of work to change what it’s learned–so ensur-
ing the quality of the step direction and reducing as
much noise as possible becomes critical. We can
understand classical momentum as being a version
of Nesterov momentum that applies an old, outdated
momentum vector that only uses past gradients to
the parameter updates, rather than the most recent,
up-to-date momentum vector computed using the
current gradient as well. It logically follows then
that Nesterov momentum would produce a gradient
update superior to classical momentum, which RM-
SProp can then take full advantage of.

6 Conclusion

Adam essentially combines two algorithms known
to work well for different reasons–momentum,
which points the model in a better direction, and
RMSProp, which adapts how far the model goes in
that direction on a per-parameter basis. However,
Nesterov momentum is theoretically and often em-
pirically superior to momentum—so it makes sense
to see how this affects the result of combining the
two approaches. We compared Adam and Nadam
(Adam with Nesterov momentum), in addition to a
slew of related algorithms, and find the in most cases
the improvement of Nadam over Adam is fairly dra-
matic. While Nadam wasn’t always the best algo-
rithm to chose, it seems like if one is going to use
momentum with RMSProp to train their model, they
may as well use Nesterov momentum.

References

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham,
Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[2] John Duchi, Elad Hazan, and Yoram Singer.
Adaptive subgradient methods for online learn-
ing and stochastic optimization. The Journal
of Machine Learning Research, 12:2121–2159,
2011.

[3] Xavier Glorot, Antoine Bordes, and Yoshua
Bengio. Deep sparse rectifier neural networks.
In International Conference on Artificial Intel-
ligence and Statistics, pages 315–323, 2011.

[4] Sepp Hochreiter and Jürgen Schmidhuber.
Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[5] Diederik Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[6] Quoc V. Le, Navdeep Jaitly, and Geoffrey E.
Hinton. A simple way to initialize recur-
rent networks of rectified linear units. CoRR,
abs/1504.00941, 2015.

[7] Yann LeCun, Corinna Cortes, and Christo-
pher JC Burges. The mnist database of hand-
written digits, 1998.

[8] Mitchell P Marcus, Mary Ann Marcinkiewicz,
and Beatrice Santorini. Building a large an-
notated corpus of english: The penn tree-
bank. Computational linguistics, 19(2):313–
330, 1993.

[9] James Martens. Deep learning via hessian-free
optimization. In Proceedings of the 27th In-
ternational Conference on Machine Learning
(ICML-10), pages 735–742, 2010.

[10] Tomas Mikolov, Ilya Sutskever, Kai Chen,
Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their
compositionality. In Advances in neural infor-
mation processing systems, pages 3111–3119,
2013.

[11] Yurii Nesterov. A method of solving a convex
programming problem with convergence rate
O(1/k2). In Soviet Mathematics Doklady, vol-
ume 27, pages 372–376, 1983.

[12] Boris Teodorovich Polyak. Some methods of
speeding up the convergence of iteration meth-
ods. USSR Computational Mathematics and
Mathematical Physics, 4(5):1–17, 1964.

[13] Richard Socher, Cliff C Lin, Andrew Y Ng,
and Chris Manning. Parsing natural scenes
and natural language with recursive neural net-
works. In Proceedings of the 28th interna-
tional conference on machine learning (ICML-
11), pages 129–136, 2011.

[14] Ilya Sutskever, James Martens, George Dahl,
and Geoffrey Hinton. On the importance of ini-
tialization and momentum in deep learning. In
Proceedings of the 30th International Confer-
ence on Machine Learning (ICML-13), pages
1139–1147, 2013.

[15] Sachin S Talathi and Aniket Vartak. Im-
proving performance of recurrent neural net-
work with relu nonlinearity. arXiv preprint
arXiv:1511.03771, 2015.

[16] Tijmen Tieleman and Geoffrey Hinton. Lec-
ture 6.5-rmsprop: Divide the gradient by a run-
ning average of its recent magnitude. COURS-
ERA: Neural Networks for Machine Learning,
4, 2012.

[17] Wojciech Zaremba, Ilya Sutskever, and Oriol
Vinyals. Recurrent neural network regulariza-
tion. CoRR, abs/1409.2329, 2014.

	Introduction
	Related Work
	Momentum-based algorithms
	L2 norm-based algorithms
	Combination

	Methods
	NAG revisited
	Applying NAG to Adam

	Experiments
	Word2Vec
	Image Recognition
	LSTM Language Model

	Discussion
	Conclusion

