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Abstract

We introduce a proximal version of dual coordinate ascent method. We demonstrate how the derived
algorithmic framework can be used for numerous regularized loss minimization problems, including
`1 regularization and structured output SVM. The convergence rates we obtain match, and sometimes
improve, state-of-the-art results.

1 Introduction

We consider the following generic optimization problem associated with regularized loss minimization of
linear predictors: Let X1, . . . , Xn be matrices in Rd×k, let φ1, . . . , φn be a sequence of vector convex
functions defined on Rk, and g(·) is a convex function defined on Rd. Our goal is to solve minw∈Rd P (w)
where

P (w) =

[
1

n

n∑
i=1

φi(X
>
i w) + λg(w)

]
, (1)

and λ ≥ 0 is a regularization parameter. We will later show how to use a solver for (1) for several popular
regularized loss minimization problems including `1 regularization and structured output SVM.

Let w∗ be the optimum of (1). We say that a solution w is εP -sub-optimal if P (w)− P (w∗) ≤ εP . We
analyze the runtime of optimization procedures as a function of the time required to find an εP -sub-optimal
solution.

The dual coordinate ascent (DCA) method solves a dual problem of (1). Specifically, for each i let
φ∗i : Rk → R be the convex conjugate of φi, namely, φ∗i (u) = maxz∈Rk(z>u−φi(z)). Similarly we define
the convex conjugate g∗ of g. The dual problem is

max
α∈Rk×n

D(α) where D(α) =

[
1

n

n∑
i=1

−φ∗i (−αi)− λg∗
(

1
λn

n∑
i=1

Xiαi

)]
, (2)

where αi is the i’th column of the matrix α, which forms a vector in Rk. The dual objective in (2) has a
different dual vector associated with each example in the training set. At each iteration of DCA, the dual
objective is optimized with respect to a single dual vector, while the rest of the dual vectors are kept intact.

We assume that g∗(·) is continuous differentiable. If we define

w(α) = ∇g∗(v(α)) v(α) =
1

λn

n∑
i=1

Xiαi, (3)
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then it is known that w(α∗) = w∗, where α∗ is an optimal solution of (2). It is also known that P (w∗) =
D(α∗) which immediately implies that for all w and α, we have P (w) ≥ D(α), and hence the duality gap
defined as

P (w(α))−D(α)

can be regarded as an upper bound on the primal sub-optimality P (w(α))− P (w∗).
We focus on a stochastic version of DCA, abbreviated by SDCA, in which at each round we choose

which dual vector to optimize uniformly at random. We analyze SDCA either for L-Lipschitz loss functions
or for (1/γ)-smooth loss functions, which are defined as follows.

Definition 1. A function φi : Rk → R is L-Lipschitz if for all a, b ∈ Rk, we have

|φi(a)− φi(b)| ≤ L ‖a− b‖P ,

where ‖ · ‖P is a norm.
A function φi : Rk → R is (1/γ)-smooth if it is differentiable and its gradient is (1/γ)-Lipschitz. An

equivalent condition is that for all a, b ∈ R, we have

φi(a) ≤ φi(b) +∇φi(b)>(a− b) +
1

2γ
‖a− b‖2P .

It is well-known that if φi(a) is (1/γ)-smooth, then φ∗i (u) is γ strongly convex w.r.t.the dual norm: for
all u, v ∈ R and s ∈ [0, 1]:

−φ∗i (su+ (1− s)v) ≥ −sφ∗i (u)− (1− s)φ∗i (v) +
γs(1− s)

2
‖u− v‖2D,

where ‖ · ‖D is the dual norm of ‖ · ‖P defined as

‖u‖D = sup
‖v‖P=1

u>v.

We also assume that g(w) is 1-strongly convex with respect to another norm ‖ · ‖P ′ :

g(w + ∆w) ≥ g(w) +∇g(w)>∆w +
1

2
‖∆w‖2P ′ ,

which means that g∗(w) is 1-smooth with respect to its dual norm ‖ · ‖D′ . Namely,

g∗(v + ∆v) ≤ h(v; ∆v) , (4)

where
h(v; ∆v) := g∗(v) +∇g∗(v)>∆v +

1

2
‖∆v‖2D′ . (5)

2 Main Results

The generic Prox-SDCA algorithm which we analyze in this paper is presented in Figure 1. The ideas are
described as follows. Consider the maximal increase of the dual objective, where we only allow to change
the i’th column of α. At step t, let v(t−1) = (λn)−1

∑
iXiα

(t−1)
i and let w(t−1) = ∇g∗(v(t−1)). We will

update the i-th dual variable α(t)
i = α

(t−1)
i + ∆αi, in a way that will lead to a sufficient increase of the dual
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objective. For primal variable, this would lead to the update v(t) = v(t−1) + (λn)−1Xi∆αi, and therefore
w(t) = ∇g∗(v(t)) can also be written as

w(t) = argmax
w

[
w>v(t) − g(w)

]
= argmin

w

[
−w>

(
n−1

n∑
i=1

Xiα
(t)
i

)
+ λg(w)

]
.

Note that this particular update is rather similar to the update step of proximal-gradient dual-averaging
method in the SGD domain [Xiao, 2010]. The difference is on how α(t) is updated, and as we will show
later, stronger results can be proved for the Prox-SDCA method when we run SDCA for t > n iterations
with smooth loss functions.

In order to motivate the proximal SDCA algorithm, we note that the goal of SDCA is to increase the
dual objective as much as possible, and thus the optimal way to choose ∆αi would be to maximize the dual
objective, namely, we shall let

∆αi = argmax
∆αi∈Rk

[
− 1

n
φ∗i (−(αi + ∆αi))− λg∗(v(t−1) + (λn)−1Xi∆αi)

]
.

However, for complex g∗(·), this optimization problem may not be easy to solve. We will simplify this
optimization problem by relying on (4). That is, instead of directly maximizing the dual objective function,
we try to maximize the following proximal objective which is a lower bound of the dual objective:

argmax
∆αi∈Rk

[
− 1

n
φ∗i (−(αi + ∆αi))− λ

(
∇g∗(v(t−1))>(λn)−1Xi∆αi +

1

2
‖(λn)−1Xi∆αi‖2D′

)]
= argmax

∆αi∈Rk

[
−φ∗i (−(αi + ∆αi))− w(t−1)>Xi∆αi −

1

2λn
‖Xi∆αi‖2D′

]
.

However, in general, this optimization problem is not necessarily simple to solve. We will thus also propose
alternative update rules for ∆αi of the form ∆αi = s(u − α(t−1)

i ) for an appropriately chosen step size
parameter s > 0 and any vector u ∈ Rk such that −u ∈ ∂φi(X

>
i w

(t−1)). Our analysis shows that an
appropriate choice of s still leads to a sufficient increase in the dual objective.

We analyze the algorithm based on different assumptions on the loss functions. To simplify the state-
ments of our theorems, we always make the following assumptions:

• Assume that the loss functions satisfy

1

n

n∑
i=1

φi(0) ≤ 1 and ∀i, a, φi(a) ≥ 0 .

• Assume that maxi ‖Xi‖ ≤ R, where

‖Xi‖ = sup
u6=0

‖Xiu‖D′
‖u‖D

.

Under the above assumptions, we have the following convergence result for smooth loss functions.
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Procedure Prox-SDCA

Parameters scalars λ, γ (γ can be 0), R, norms ‖ · ‖D, ‖ · ‖D′
Let α(0) = 0, w(0) = ∇g∗(0)
Iterate: for t = 1, 2, . . . , T :

Randomly pick i
Find ∆αi using any of the following options (or achieving larger dual objective than one of the options):

Option I:
∆αi ∈ argmax∆αi

[
−φ∗i (−(α

(t−1)
i + ∆αi))− w(t−1)>Xi∆αi − 1

2λn ‖Xi∆αi‖2D′
]

Option II:
Let u be s.t. −u ∈ ∂φi(X>i w(t−1))

Let z = u− α(t−1)
i

Let s = argmaxs∈[0,1]

[
−φ∗i (−(α

(t−1)
i + sz))− sw(t−1)>Xiz − s2

2λn ‖Xiz‖2D′
]

Set ∆αi = sz
Option III:

Same as Option II but replace the definition of s as follows:

Let s =
φi(X

>
i w

(t−1))+φ∗i (−α(t−1)
i )+w(t−1)>Xiα

(t−1)
i + γ

2
‖z‖2D

‖z‖2D(γ+‖Xi‖2/(λn))

Option IV:
Same as Option III but replace ‖Xi‖2 in the definition of s with R2

May also replace ‖z‖2D with an upper bound no larger than 4L2 for L-Lipschitz non-smooth loss
Option V (only for smooth losses):

Set ∆αi = λnγ
R2+λnγ

(
−∇φi(X>i w(t−1))− α(t−1)

i

)
α(t) ← α(t−1) + ∆αiei
v(t) ← v(t−1) + (λn)−1Xi∆αi
w(t) ← ∇g∗(v(t))

Output (Averaging option):
Let ᾱ = 1

T−T0
∑T

i=T0+1 α
(t−1)

Let w̄ = w(ᾱ) = 1
T−T0

∑T
i=T0+1w

(t−1)

return w̄
Output (Random option):

Let ᾱ = α(t) and w̄ = w(t) for some random t ∈ T0 + 1, . . . , T
return w̄

Figure 1: The Generic Proximal Stochastic Dual Coordinate Ascent Algorithm
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Theorem 1. Consider Procedure Prox-SDCA. Assume that φi is (1/γ)-smooth for all i. To obtain an
expected duality gap of E[P (w(T ))−D(α(T ))] ≤ εP , it suffices to have a total number of iterations of

T ≥
(
n+ R2

λγ

)
log((n+ R2

λγ ) · 1
εP

).

Moreover, to obtain an expected duality gap of E[P (w̄)−D(ᾱ)] ≤ εP , it suffices to have a total number of
iterations of

T0 ≥
(
n+

R2

λγ

)
log((n+ R2

λγ ) · 1
(T−T0)εP

).

The linear convergence result in the above theorem is faster than the corresponding proximal SGD result
when T � n. This indicates the advantage of Proximal SDCA approach when we run more than one pass
over the data. Similar results can also be found in Collins et al. [2008], Le Roux et al. [2012], Shalev-
Shwartz and Zhang [2012] but in more restricted settings than the general problem considered in this paper.
Unlike traditional batch algorithms (such as proximal gradient descent, or accelerated proximal gradient
descent) that can only achieve relatively fast convergence when the condition number 1/(λγ)) = O(1), our
algorithm allows relatively fast convergence even when the condition number 1/(λγ)) = O(n), which can
be a significant improvement for real applications.

For nonsmooth loss functions, the convergence rate for Prox-SDCA is given below.

Theorem 2. Consider Procedure Prox-SDCA. Assume that φi is L-Lipschitz for all i. To obtain an expected
duality gap of E[P (w̄)−D(ᾱ)] ≤ εP , it suffices to have a total number of iterations of

T ≥ T0 + n+
4 (RL)2

λεP
≥ max(0, dn log(0.5λn(RL)−2)e) + n+

20 (RL)2

λεP
.

Moreover, when t ≥ T0, we have dual sub-optimality bound of E[D(α∗)−D(α(t))] ≤ εP /2.

The result shown in the above theorem for nonsmooth loss is comparable to that of proximal SGD.
However, one advantage of our result is that the convergence is in duality gap, which can be easily checked
during the algorithm to serve as a stopping criterion. In comparison, SGD does not have an easy to imple-
ment stopping criterion. Moreover, as discussed in Shalev-Shwartz and Zhang [2012], faster convergence
(such as linear convergence) can be obtained asymptotically when the nonsmooth loss function is nearly
everywhere smooth, and in such case, the practical performance of the algorithm will be superior to SGD
when we run more than one pass over the data.

3 Applications

There are numerous possible applications of our algorithmic framework. Here we list three applications.

3.1 `1 regularization assuming instances of low `2 norm

Suppose our interest is to solve `1 regularization problem of the form

min
w

[
1

n

n∑
i=1

φi(x
>
i w) + σ‖w‖1

]
, (6)

5



with a positive regularization parameter σ ∈ R+. Assume also that R = maxi ‖xi‖2 is not too large.
This would be the case, for example, in text categorization problems where each xi is a bag-of-words
representation of some short document.

Let w∗ be an optimal solution of (6) and assume1 that ‖w∗‖2 ≤ B. Choose λ = ε
B2 and

g(w) =
1

2
‖w‖22 +

σ

λ
‖w‖1 . (7)

Consider the problem:

min
w
P (w) :=

[
1

n

n∑
i=1

φi(x
>
i w) + λg(w)

]
. (8)

Then, if ŵ is an (ε/2)-approximated solution of the above it holds that

1

n

n∑
i=1

φi(x
>
i ŵ) + σ‖ŵ‖1 ≤ P (ŵ) ≤ P (w∗) +

ε

2
≤ 1

n

n∑
i=1

φi(x
>
i w
∗) + σ‖w∗‖1 + ε .

It follows that ŵ is an ε-approximated solution to the problem (6). Hence, we can focus on solving (8) based
on the Prox-SDCA framework. Note that if our goal is to solve a general L1-L2 regularization problem
with a fixed λ independent of ε, then linear convergence can be obtained from our analysis when the loss
functions are smooth. However, this section focuses on the case that our interest is to solve (6), and thus
λ is chosen according to ε. The reason to introduce an extra `2 regularization in (7) is because our theory
requires g(w) to be 1-strongly convex, which is satisfied by (7) with respect to the `2-norm.

To derive the actual algorithm, we first need to calculate the gradient of the conjugate of g. We have

∇g∗(v) = argmax
w

[
w>v − 1

2
‖w‖22 −

σ

λ
‖w‖1

]
= argmin

w

[
1

2
‖w − v‖22 +

σ

λ
‖w‖1

]
A sub-gradient of the objective of the optimization problem above is of the form w − v + σ

λz = 0, where
z is a vector with zi = sign(wi), where if wi = 0 then zi ∈ [−1, 1]. Therefore, if w is an optimal solution
then for all i, either wi = 0 or wi = vi − σ

λsign(wi). Furthermore, it is easy to verify that if w is an optimal
solution then for all i, if wi 6= 0 then the sign of wi must be the sign of vi. Therefore, whenever wi 6= 0 we
have that wi = vi − σ

λsign(vi). It follows that in that case we must have |vi| > σ
λ . And, the other direction

is also true, namely, if |vi| > σ
λ then setting wi = vi − σ

λsign(vi) leads to an objective value of(σ
λ

)2
+
σ

λ
(|vi| −

σ

λ
) ≤ |vi|2 ,

where the right-hand side is the objective value we will obtain by settingwi = 0. This leads to the conclusion
that

∇ig∗(v) = sign(vi)
[
|vi| − σ

λ

]
+

=

{
vi − σ

λsign(vi) if |vi| > σ
λ

0 o.w.

The resulting algorithm is as follows:
1We can always take B = 1/σ since by the optimality of w∗ we have ‖w∗‖2 ≤ ‖w∗‖1 ≤ 1/σ.
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Procedure Prox-SDCA for minimizing (6) using g as in (7)

Parameters
regularization σ
target accuracy ε
B ≥ ‖w∗‖2 (default value B = 1/σ)

Run Prox-SDCA with:
‖ · ‖D = | · |, ‖ · ‖D′ = ‖ · ‖2, and R ≥ maxi ‖xi‖2
λ = ε/B2

∇ig∗(v) = sign(vi)
[
|vi| − σ

λ

]
+

In terms of runtime, we obtain the following result from the general theory, where the notation Õ(·)
ignores any log-factor.

Corollary 1. The number of iterations required by Prox-SDCA, with g(·) as in (7), for solving (6) to an
accuracy ε is

Õ

(
n+

R2B2

ε γ

)
if ∀i, φi is (1/γ) −smooth

Õ

(
n+

L2R2B2

ε2

)
if ∀i, φi is (L) −Lipschitz

In both cases, R is an upper bound of maxi ‖xi‖2 and B is an upper bound on ‖w∗‖2.

Related Work

Standard SGD requiresO(R2B2/ε2) even in the case of smooth loss functions. Several variants of SGD, that
leads to sparser intermediate solutions, have been proposed (e.g. Langford et al. [2009], Shalev-Shwartz and
Tewari [2011], Xiao [2010], Duchi and Singer [2009], Duchi et al. [2010]). However, all of these variants
share the iteration bound of O(R2B2/ε2), which is slower than our bound when ε is small.

Another relevant approach is the FISTA algorithm of Beck and Teboulle [2009]. The shrinkage operator
of FISTA is the same as the gradient of g∗ used in our approach. It is a batch algorithm using Nesterov’s
accelerated gradient technique. For smooth loss functions, FISTA enjoys the iteration bound of

O

(
RB
√
ε γ

)
.

However, each iteration of FISTA involves all the n examples rather than just a single example, as our
method. Therefore, the runtime of FISTA would be

O

(
dn

RB
√
ε γ

)
.

In contrast, the runtime of Prox-SDCA is

Õ

(
d

(
n+

R2B2

ε γ

))
,
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which is better when n � RB√
ε γ . This happens in the statistically interesting regime where we usually

choose ε larger than Ω(1/n2) for machine learning problems. In fact, since the generalization performance
of a learning algorithm is in general no better than O(1/n), there is no need to choose ε = o(1/n). This
means that in the statistically interesting regime, Prox-SDCA is superior to FISTA.

Another approach to solving (6) when the loss functions are smooth is stochastic coordinate descent
over the primal problem. Shalev-Shwartz and Tewari [2011] showed that the runtime of this approach is

O

(
dnB2

ε

)
,

under the assumption that ‖xi‖∞ ≤ 1 for all i. Similar results can also be found in Nesterov [2012].
For our method, each iteration costs runtime O(d) so the total runtime is

Õ

(
d

(
n+

R2B2

ε

))
,

whereR = maxi ‖xi‖2. Since the assumption ‖xi‖∞ ≤ 1 impliesR2 ≤ d, this is similar to the guarantee of
Shalev-Shwartz and Tewari [2011] in the worst-case. However, in many problems, R2 can be a constant that
does not depend on d (e.g. when the instances are sparse). In that case, the runtime of Prox-SDCA becomes
Õ
(
d(n+B2/ε)

)
, which is much better than the runtime bound for the primal stochastic coordinate descent

method given in Shalev-Shwartz and Tewari [2011].

3.2 `1 regularization with low `∞ instances

Next, we consider (6) but now we assume that R = maxi ‖xi‖∞ is not too large (but maxi ‖xi‖2 might be
large). This is the situation considered in Shalev-Shwartz and Tewari [2011].

Let w∗ be an optimal solution of (6) and assume2 that ‖w∗‖1 ≤ B. Choose λ = ε
3 log(d)B2 and

g(w) =
3 log(d)

2
‖w‖2q +

σ

λ
‖w‖1 , (9)

where q = log(d)
log(d)−1 . The function g(w) is 1-strongly convex with respect to the norm ‖ · ‖1 over Rd (see

for example Kakade et al. [2012]). Consider the problem (8) with g(·) being defined in (9). As before, if
ŵ is an (ε/2)-approximated solution of the above problem then it is also an ε-approximated solution to the
problem (6). Hence, we can focus on solving (8) based on the Prox-SDCA framework.

To derive the actual algorithm, we need to calculate the gradient of the conjugate of g. We have

∇g∗(v) = argmin
w

[
−w>v +

3 log(d)

2
‖w‖2q +

σ

λ
‖w‖1

]
.

The i’th component of a sub-gradient of the objective of the optimization problem above is of the form

−vi +
3 log(d)sign(wi)|wi|q−1

‖w‖q−2
q

+
σ

λ
zi ,

2We can always take B = 1/σ since by the optimality of w∗ we have ‖w∗‖1 ≤ 1/σ.
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where zi = sign(wi) whenever wi 6= 0 and otherwise zi ∈ [−1, 1]. Therefore, if w is an optimal solution
then for all i, either wi = 0 or

|wi|q−1 = sign(wi)
‖w‖q−2

q

3 log(d)

(
vi −

σ

λ
sign(wi)

)
=
‖w‖q−2

q

3 log(d)

(
sign(wi) vi −

σ

λ

)
.

Furthermore, it is easy to verify that if w is an optimal solution then for all i, if wi 6= 0 then the sign of wi
must be the sign of vi. Therefore, whenever wi 6= 0 we have that

|wi|q−1 =
‖w‖q−2

q

3 log(d)

(
|vi| −

σ

λ

)
.

It follows that in that case we must have |vi| > σ
λ . And, the other direction is also true, namely, if |vi| > σ

λ
then wi must be non-zero. This is true because if |vi| > σ

λ , then the i’th coordinate of any sub-gradient of
the objective function at any vector w s.t. wi = 0 is −vi + σ

λzi 6= 0. Hence, w can’t be an optimal solution.
This leads to the conclusion that an optimal solution has the form

∇ig∗(v) =

{
sign(vi)

(
a
(
|vi| − σ

λ

)) 1
q−1 if |vi| > σ

λ

0 otherwise
, (10)

where

a =
‖∇g∗(v)‖q−2

q

3 log(d)
=

1

3 log(d)

 ∑
i:|vi|>σ

λ

(
a
(
|vi| −

σ

λ

)) q
q−1


q−2
q

=
a
q−2
q−1

3 log(d)

 ∑
i:|vi|>σ

λ

(
|vi| −

σ

λ

) q
q−1


q−2
q

,

which yields

a =

 1

3 log(d)

 ∑
i:|vi|>σ

λ

(
|vi| −

σ

λ

) q
q−1


q−2
q


q−1

. (11)

The resulting algorithm is as follows:

Procedure Prox-SDCA for minimizing (6) using g as in (9)

Parameters
regularization σ
target accuracy ε
dimension d
B ≥ ‖w∗‖1 (default value B = 1/σ)

Run Prox-SDCA with:
‖ · ‖D = | · |, ‖ · ‖D′ = ‖ · ‖∞, and R ≥ maxi ‖xi‖∞
λ = ε

3 log(d)B2

∇g∗(v) according to (10) and (11)

In terms of runtime, we obtain the following

9



Corollary 2. The number of iterations required by Prox-SDCA, with g as in (9), for solving (6) to accuracy
ε is

Õ

(
n+

R2B2 log(d)

ε γ

)
if ∀i, φi is (1/γ) −smooth

Õ

(
n+

L2R2B2 log(d)

ε2

)
if ∀i, φi is (L) −Lipschitz

In both cases, R = maxi ‖xi‖∞ and B is an upper bound over ‖w∗‖1.

Related work

The algorithm we have obtained is similar to the Mirror Descent framework Beck and Teboulle [2003] and
its online or stochastic versions (see for example Shalev-Shwartz [2011] and the references therein). It is
also closely related to the SMIDAS and COMID algorithms Shalev-Shwartz and Tewari [2011] as well as
to dual averaging Xiao [2010]. Comparing the rates of these algorithms to Prox-SDCA, we obtain similar
differences as in the previous subsection, only now B is a bound on ‖w∗‖1 rather than ‖w∗‖2 and R is a
bound on maxi ‖xi‖∞ rather than maxi ‖xi‖2.

3.3 Multiclass categorization and structured prediction

In structured output problems, there is an instance space X and a large target space Y . There is a function
ψ : X × Y → Rd. We assume that the range of ψ is in the `2 ball of radius R of Rd. The prediction of a
vector w ∈ Rd is

argmax
y∈Y

w>ψ(x, y) .

There is also a function δ : Y×Y → R+ which evaluates the cost of predicting a label y′ when the true label
is y. We assume that δ(y, y) = 0 for all y. The generalized hinge-loss defined below is used as a convex
surrogate loss function

max
y′

[
δ(y′, y)− w>ψ(x, y) + w>ψ(x, y′)

]
.

The optimization problem associated with learning w is now

min
w

[
λ

2
‖w‖22 +

1

n

n∑
i=1

(
max
y′

δ(y′, yi)− w>ψ(xi, yi) + w>ψ(xi, y
′)

)]
. (12)

The above optimization problem can be cast in our setting as follows. W.l.o.g. assume that Y =
{1, . . . , k}. For each i and each j, let the j’th column of Xi be ψ(xi, j). Define,

φi(v) = max
j

(δ(j, yi)− vyi + vj) .

Finally, let g(w) = 1
2‖w‖

2
2. Then, (12) can be written in the form of (1).

To apply the Prox-SDCA to this problem, note that g is 1-strongly convex w.r.t. ‖ · ‖2 and that φi is
2-Lipschitz w.r.t. norm ‖ · ‖∞. Indeed, given vectors u, v, let j be the index that attains the maximum in the
definition of φi(v), then

φi(v)− φi(u) ≤ (δ(j, yi)− vyi + vj)− (δ(j, yi)− uyi + uj) ≤ 2‖v − u‖∞ .

10



Therefore ‖ · ‖D = ‖ · ‖1 and ‖ · ‖D′ = ‖ · ‖2. If we let

R ≥ max
j
‖ψ(xi, j)‖2,

then we have that

‖Xi‖ = sup
u6=0

‖Xiu‖2
‖u‖1

= sup
u:‖u‖1=1

‖Xiu‖2 = max
j
‖ψ(xi, j)‖2 ≤ R .

To calculate the dual of φi, note that we can write φi as

φi = max
β∈∆k

∑
j

βj (δ(j, yi)− vyi + vj) ,

where ∆k = {β :
∑

j βj ≤ 1;βj ≥ 0} is the non-negative simplex of Rk. Hence, the dual of φi is

φ∗i (α) = max
v

[
v>α− φi(v)

]
= max

v
min
β

v>α−∑
j

βj (δ(j, yi)− vyi + vj)


= min

β
max
v

v>α−∑
j

βj (δ(j, yi)− vyi + vj)


= min

β

β>δ(·, yi) + max
v

v>(α− β) + vyi
∑
j

‖β‖1

 .
The inner maximization over v would be∞ if for some j 6= yi we have αj 6= βj . Otherwise, if for all j 6= yi
we have αj = βj the inner objective becomes

vyi
(
αyi − βyi +

∑
j

βj
)

= vyi
(
αyi +

∑
j 6=yi

αj
)
.

Therefore, the objective would again be∞ if αyi 6= −
∑

j 6=yi αj . In all other cases, the objective is zero.
Overall, this implies that:

φ∗i (α) =

{∑
j αjδ(j, yi) if

∑
j αj = 0 ∧ ∀j 6= yi, αj ≥ 0 ∧

∑
j 6=yi αj ≤ 1

∞ o.w.

Finally, we specify Prox-SDCA (using Option IV with 2 as an upper bound of ‖z‖D, and the random out-
put option), and rely on the fact that a sub-gradient of φi(v) is a vector ej−eyi with j ∈ argmaxj (δ(j, yi)− vyi + vj).

11



Procedure Prox-SDCA for structured output learning

Parameter scalar λ
Let w(0) = 0 ; R ≥ maxi,j ‖φ(x, j)‖2
∀i, w(0)

i = 0 (we’ll maintain w(t)
i = (λn)−1Xiα

(t)
i and w(t) =

∑
iw

(t)
i )

∀i, D(0)
i = 0 (we’ll maintain D(t)

i = φ∗i (α
(t)))

Iterate: for t = 1, 2, . . . , T :
Randomly pick i
Let j ∈ argmaxj

(
δ(j, yi)− w(t−1) >φ(xi, yi) + w(t−1) >φ(xi, j)

)
Let Pi = φi(X

>
i w

(t−1)) = δ(j, yi)− w(t−1) >φ(xi, yi) + w(t−1) >φ(xi, j)

Let s =
Pi+D

(t−1)
i +λnw(t−1)>w

(t−1)
i

4R2/(λn)

D
(t)
i ← (1− s)D(t−1)

i + s δ(j, yi)

w
(t)
i ← (1− s)w(t−1)

i + s(λn)−1(φ(xi, yi)− φ(xi, j))

w(t) ← w(t−1) + w
(t)
i − w

(t−1)
i

Output:
Return w̄ = w(t) for some random t ∈ T0 + 1, . . . , T

Note that even if k is very large, the above implementation does not maintain α explicitly, but only
maintains d-dimensional vectors. Therefore, we can implement the above procedure efficiently whenever
the optimization problem involves in finding j can be performed efficiently. This is the same requirement as
in implementing SGD for structured output prediction.

Corollary 3. Prox-SDCA can be implemented for structured output prediction. To obtain an expected
duality gap of at most εP , it suffices to have a total number of iterations of

T ≥ max(0, dn log(0.5λn(2R)−2)e) + n+
20 (2R)2

λεP
,

where R is an upper bound on ‖φ(xi, j)‖2. The most expensive operation at iteration t is solving

argmax
j

(
δ(j, yi)− w(t−1) >φ(xi, yi) + w(t−1) >φ(xi, j)

)
. (13)

Remark 1. Since for this problem, ‖z‖2D in Option IV can be bounded by L2 = 4 instead of 4L2 = 16, the
proof of Theorem 2 implies that the constant 20 in Corollary 3 can be replaced by 5.

Related Work

For structured prediction problem, SGD enjoys the rate

Õ

(
R2

λε

)
,

while the most expensive operation at each iteration of SGD also involves solving (13). Therefore, our
bound matches the bound of SGD when n = Õ

(
R2

λε

)
. The main advantage of our result is that it bounds
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duality gap which can be checked in practice. Moreover, the practical convergence speed can be faster than
what is indicated in Corollary 3 when the non-smooth loss function can be approximated by a smooth loss
function, as pointed out in Shalev-Shwartz and Zhang [2012].

Recently, Lacoste-Julien et al. [2012] derived a stochastic coordinate ascent for structural SVM based
on the Frank-Wolfe algorithm. Their algorithm is very similar to our algorithm and the rate they obtain for
the convergence of duality gap matches our rate.

Note that the generality of our framework enables us to easily handle structured output problems with
other regularizers, such as `1 norm regularization.

4 Proofs

Note that the proof technique follows that of Shalev-Shwartz and Zhang [2012], but with more involved
notations of the paper. We prove the theorems for running Prox-SDCA while choosing ∆αi as in Option I.
A careful examination of the proof easily reveals that the results hold for the other options as well. More
specifically, Lemma 1 only requires choosing ∆αi = s(u

(t−1)
i −α(t−1)

i ) as in (14), and Option III chooses s
to optimize the bound on the right hand side of (16), and hence ensures that the choice can do no worse than
the result of Lemma 1 with any s. The simplification in Option IV and V employs the specific simplification
of the bound in Lemma 1 in the proof of the theorems.

For convenience, we list the following simple facts about primal and dual formulations, which will be
used in the proofs. For each i, we have

−α∗i ∈ ∂φi(X>i w∗), X>i w
∗ ∈ ∂φ∗i (−α∗i ),

and

w∗ = ∇g∗(v∗), v∗ =
1

λn

n∑
i=1

Xiα
∗
i .

The key lemma is the following:

Lemma 1. Assume that φ∗i is γ-strongly-convex (where γ can be zero). Then, for any iteration t and any
s ∈ [0, 1] we have

E[D(α(t))−D(α(t−1))] ≥ s

n
E [P (w(t−1))−D(α(t−1))]−

( s
n

)2 G(t)

2λ
,

where

G(t) =
1

n

n∑
i=1

(
‖Xi‖2 −

γ(1− s)λn
s

)
E
[
‖u(t−1)

i − α(t−1)
i ‖2D

]
,

and −u(t−1)
i ∈ ∂φi(X>i w(t−1)).

Proof. Since only the i’th element of α is updated, the improvement in the dual objective can be written as

n[D(α(t))−D(α(t−1))]

=
(
−φ∗(−α(t)

i )− λng∗
(
v(t−1) + (λn)−1Xi∆αi

))
−
(
−φ∗(−α(t−1)

i )− λng∗
(
v(t−1)

))
≥
(
−φ∗(−α(t)

i )− λnh
(
v(t−1); (λn)−1Xi∆αi

))
︸ ︷︷ ︸

A

−
(
−φ∗(−α(t−1)

i )− λng∗
(
v(t−1)

))
︸ ︷︷ ︸

B

.
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By the definition of the update we have for all s ∈ [0, 1] that

A = max
∆αi
−φ∗(−(α

(t−1)
i + ∆αi))− λnh

(
v(t−1); (λn)−1Xi∆αi

)
≥ −φ∗(−(α

(t−1)
i + s(u

(t−1)
i − α(t−1)

i )))− λnh(v(t−1); (λn)−1sXi(u
(t−1)
i − α(t−1)

i )). (14)

From now on, we omit the superscripts and subscripts. Since φ∗ is γ-strongly convex, we have that

φ∗(−(α+s(u−α))) = φ∗(s(−u)+(1−s)(−α)) ≤ sφ∗(−u)+(1−s)φ∗(−α)− γ
2
s(1−s)‖u−α‖2D (15)

Combining this with (14) and rearranging terms we obtain that

A ≥ −sφ∗(−u)− (1− s)φ∗(−α) +
γ

2
s(1− s)‖u− α‖2D − λnh(v; (λn)−1sX(u− α))

= −sφ∗(−u)− (1− s)φ∗(−α) +
γ

2
s(1− s)‖u− α‖2D − λng∗(v)− sw>X(u− α)− s2

2λn
‖X(u− α)‖2D′

≥ −sφ∗(−u)− (1− s)φ∗(−α) +
γ

2
s(1− s)‖u− α‖2D − λng∗(v)− sw>X(u− α)− s2

2λn
‖X‖2‖u− α‖2D

= −s(φ∗(−u) + w>Xu)︸ ︷︷ ︸
s φ(X>w)

+ (−φ∗(−α)− λng∗(v))︸ ︷︷ ︸
B

+
s

2

(
γ(1− s)− s‖X‖2

λn

)
‖u− α‖2D + s(φ∗(−α) + w>Xα),

where we used −u ∈ ∂φ(X>w) which yields φ∗(−u) = −w>Xu− φ(X>w). Therefore

A−B ≥ s
[
φ(X>w) + φ∗(−α) + w>Xα+

(
γ(1− s)

2
− s‖X‖2

2λn

)
‖u− α‖2D

]
. (16)

Next note that with w = ∇g∗(v), we have g(w) + g∗(v) = w>v. Therefore:

P (w)−D(α) =
1

n

n∑
i=1

φi(X
>
i w) + λg(w)−

(
− 1

n

n∑
i=1

φ∗i (−αi)− λg∗(v)

)

=
1

n

n∑
i=1

φi(X
>
i w) +

1

n

n∑
i=1

φ∗i (−αi) + λw>v

=
1

n

n∑
i=1

(
φi(X

>
i w) + φ∗i (−αi) + w>Xiαi

)
.

Therefore, if we take expectation of (16) w.r.t. the choice of i we obtain that

1

s
E[A−B] ≥ E[P (w)−D(α)]− s

2λn
· 1

n

n∑
i=1

(
‖Xi‖2 −

γ(1− s)λn
s

)
‖ui − αi‖2D︸ ︷︷ ︸

=G(t)

.

We have obtained that

n

s
E[D(α(t))−D(α(t−1))] ≥ E[P (w(t−1))−D(α(t−1))]− sG(t)

2λn
. (17)

Multiplying both sides by s/n concludes the proof of the lemma.
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We also use the following simple lemma:

Lemma 2. For all α, D(α) ≤ P (w∗) ≤ P (0) ≤ 1. In addition, D(0) ≥ 0.

Proof. The first inequality is by weak duality, the second is by the optimality of w∗, and the third by the
assumption that n−1

∑
i φi(0) ≤ 1. For the last inequality we use −φ∗i (0) = −maxz(0 − φi(z)) =

minz φi(z) ≥ 0, which yields D(0) ≥ 0.

4.1 Proof of Theorem 1

Proof of Theorem 1. The assumption that φi is (1/γ)-smooth implies that φ∗i is γ-strongly-convex. We will
apply Lemma 1 with s = λnγ

R2+λnγ
∈ [0, 1]. Recall that ‖Xi‖ ≤ R. Therefore, the choice of s implies that

‖Xi‖2 −
γ(1− s)λn

s
≤ R2 − 1− s

s/(λnγ)
= R2 −R2 = 0 ,

and hence G(t) ≤ 0 for all t. This yields,

E[D(α(t))−D(α(t−1))] ≥ s

n
E[P (w(t−1))−D(α(t−1))] .

But since ε(t−1)
D := D(α∗)−D(α(t−1)) ≤ P (w(t−1))−D(α(t−1)) andD(α(t))−D(α(t−1)) = ε

(t−1)
D −ε(t)D ,

we obtain that

E[ε
(t)
D ] ≤

(
1− s

n

)
E[ε

(t−1)
D ] ≤

(
1− s

n

)t E[ε
(0)
D ] ≤

(
1− s

n

)t ≤ exp(−st/n) = exp

(
− λγt

R2 + λγn

)
.

This would be smaller than εD if
t ≥

(
n+ R2

λγ

)
log(1/εD) .

It implies that
E[P (w(t))−D(α(t))] ≤ n

s
E[ε

(t)
D − ε

(t+1)
D ] ≤ n

s
E[ε

(t)
D ]. (18)

So, requiring ε(t)D ≤
s
nεP we obtain a duality gap of at most εP . This means that we should require

t ≥
(
n+ R2

λγ

)
log((n+ R2

λγ ) · 1
εP

) ,

which proves the first part of Theorem 1.
Next, we sum (18) over t = T0, . . . , T − 1 to obtain

E

 1

T − T0

T−1∑
t=T0

(P (w(t))−D(α(t)))

 ≤ n

s(T − T0)
E[D(α(T ))−D(α(T0))].

Now, if we choose w̄, ᾱ to be either the average vectors or a randomly chosen vector over t ∈ {T0 +
1, . . . , T}, then the above implies

E[P (w̄)−D(ᾱ)] ≤ n

s(T − T0)
E[D(α(T ))−D(α(T0))] ≤ n

s(T − T0)
E[ε

(T0)
D )].

It follows that in order to obtain a result of E[P (w̄)−D(ᾱ)] ≤ εP , we only need to have

E[ε
(T0)
D )] ≤ s(T − T0)εP

n
=

(T − T0)εP

n+ R2

λγ

.

This implies the second part of Theorem 1, and concludes the proof.

15



4.2 Proof of Theorem 2

Next, we turn to the case of Lipschitz loss function. We rely on the following lemma.

Lemma 3. Let φ : Rk → R be an L-Lipschitz function w.r.t. a norm ‖ · ‖P and let ‖ · ‖D be the dual norm.
Then, for any α ∈ Rk s.t. ‖α‖D > L we have that φ∗(α) =∞.

Proof. Fix some α with ‖α‖D > L. Let x0 be a vector such that ‖x0‖P = 1 and α>x0 = ‖α‖D (this is a
vector that achieves the maximal objective in the definition of the dual norm). By definition of the conjugate
we have

φ∗(α) = sup
x

[α> x− φ(x)]

≥ −φ(0) + sup
x

[α> x− (φ(x)− φ(0))]

≥ −φ(0) + sup
x

[α> x− L‖x− 0‖P ]

≥ −φ(0) + sup
c>0

[α> (cx0)− L‖cx0‖P ]

= −φ(0) + sup
c>0

(‖α‖D − L) c =∞ .

A direct corollary of the above lemma is:

Lemma 4. Suppose that for all i, φi is L-Lipschitz w.r.t. ‖ · ‖P . Let G(t) be as defined in Lemma 1 (with
γ = 0). Then, G(t) ≤ 4R2 L2.

Proof. Using Lemma 3 we know that ‖α(t−1)
i ‖D ≤ L, and in addition by the relation of Lipschitz and

sub-gradients we have ‖u(t−1)
i ‖D ≤ L. Combining this with the triangle inequality we obtain that ‖u(t−1)

i −
α

(t−1)
i ‖2D ≤ 4L2, and the proof follows.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let G = maxtG
(t) and note that by Lemma 4 we have G ≤ 4R2L2. Lemma 1, with

γ = 0, tells us that

E[D(α(t))−D(α(t−1))] ≥ s

n
E[P (w(t−1))−D(α(t−1))]−

( s
n

)2 G

2λ
, (19)

which implies that
E[ε

(t)
D ] ≤

(
1− s

n

)
E[ε

(t−1)
D ] +

(
s
n

)2 G
2λ .

We next show that the above yields

E[ε
(t)
D ] ≤ 2G

λ(2n+ t− t0)
(20)

for all t ≥ t0 = max(0, dn log(2λnε
(0)
D /G)e). Indeed, let us choose s = 1, then at t = t0, we have

E[ε
(t)
D ] ≤

(
1− 1

n

)t
ε
(0)
D + G

2λn2
1

1−(1−1/n) ≤ e
−t/nε

(0)
D + G

2λn ≤
G
λn .
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This implies that (20) holds at t = t0. For t > t0 we use an inductive argument. Suppose the claim holds
for t− 1, therefore

E[ε
(t)
D ] ≤

(
1− s

n

)
E[ε

(t−1)
D ] +

(
s
n

)2 G
2λ ≤

(
1− s

n

)
2G

λ(2n+t−1−t0) +
(
s
n

)2 G
2λ .

Choosing s = 2n/(2n− t0 + t− 1) ∈ [0, 1] yields

E[ε
(t)
D ] ≤

(
1− 2

2n−t0+t−1

)
2G

λ(2n−t0+t−1) +
(

2
2n−t0+t−1

)2
G
2λ

= 2G
λ(2n−t0+t−1)

(
1− 1

2n−t0+t−1

)
= 2G

λ(2n−t0+t−1)
2n−t0+t−2
2n−t0+t−1

≤ 2G
λ(2n−t0+t−1)

2n−t0+t−1
2n−t0+t

= 2G
λ(2n−t0+t) .

This provides a bound on the dual sub-optimality. We next turn to bound the duality gap. Summing (19)
over t = T0 + 1, . . . , T and rearranging terms we obtain that

E

 1

T − T0

T∑
t=T0+1

(P (w(t−1))−D(α(t−1)))

 ≤ n

s(T − T0)
E[D(α(T ))−D(α(T0))] +

sG

2λn

Now, if we choose w̄, ᾱ to be either the average vectors or a randomly chosen vector over t ∈ {T0 +
1, . . . , T}, then the above implies

E[P (w̄)−D(ᾱ)] ≤ n

s(T − T0)
E[D(α(T ))−D(α(T0))] +

sG

2λn
.

If T ≥ n+ T0 and T0 ≥ t0, we can set s = n/(T − T0) and combining with (20) we obtain

E[P (w̄)−D(ᾱ)] ≤ E[D(α(T ))−D(α(T0))] +
G

2λ(T − T0)

≤ E[D(α∗)−D(α(T0))] +
G

2λ(T − T0)

≤ 2G

λ(2n− t0 + T0)
+

G

2λ(T − T0)
.

A sufficient condition for the above to be smaller than εP is that T0 ≥ 4G
λεP
− 2n+ t0 and T ≥ T0 + G

λεP
. It

also implies that E[D(α∗) −D(α(T0))] ≤ εP /2. Since we also need T0 ≥ t0 and T − T0 ≥ n, the overall
number of required iterations can be

T0 ≥ max{t0, 4G/(λεP )− 2n+ t0}, T − T0 ≥ max{n,G/(λεP )}.

We conclude the proof by noticing that ε(0)
D ≤ 1 (Lemma 2), which implies that t0 ≤ max(0, dn log(2λn/G)e).
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