
Feature Pyramid Networks for Object Detection

Tsung-Yi Lin1,2, Piotr Dollár1, Ross Girshick1,
Kaiming He1, Bharath Hariharan1, and Serge Belongie2

1Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

Abstract

Feature pyramids are a basic component in recognition
systems for detecting objects at different scales. But recent
deep learning object detectors have avoided pyramid rep-
resentations, in part because they are compute and memory
intensive. In this paper, we exploit the inherent multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids with marginal extra cost. A top-
down architecture with lateral connections is developed for
building high-level semantic feature maps at all scales. This
architecture, called a Feature Pyramid Network (FPN),
shows significant improvement as a generic feature extrac-
tor in several applications. Using FPN in a basic Faster
R-CNN system, our method achieves state-of-the-art single-
model results on the COCO detection benchmark without
bells and whistles, surpassing all existing single-model en-
tries including those from the COCO 2016 challenge win-
ners. In addition, our method can run at 6 FPS on a GPU
and thus is a practical and accurate solution to multi-scale
object detection. Code will be made publicly available.

1. Introduction

Recognizing objects at vastly different scales is a fun-
damental challenge in computer vision. Feature pyramids
built upon image pyramids (for short we call these featur-
ized image pyramids) form the basis of a standard solution
[1] (Fig. 1(a)). These pyramids are scale-invariant in the
sense that an object’s scale change is offset by shifting its
level in the pyramid. Intuitively, this property enables a
model to detect objects across a large range of scales by
scanning the model over both positions and pyramid levels.

Featurized image pyramids were heavily used in the
era of hand-engineered features [5, 25]. They were so
critical that object detectors like DPM [7] required dense
scale sampling to achieve good results (e.g., 10 scales per
octave). For recognition tasks, engineered features have
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Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow. (b) Recent detection systems have opted to use
only single scale features for faster detection. (c) An alternative is
to reuse the pyramidal feature hierarchy computed by a ConvNet
as if it were a featurized image pyramid. (d) Our proposed Feature
Pyramid Network (FPN) is fast like (b) and (c), but more accurate.
In this figure, feature maps are indicate by blue outlines and thicker
outlines denote semantically stronger features.

largely been replaced with features computed by deep con-
volutional networks (ConvNets) [19, 20]. Aside from being
capable of representing higher-level semantics, ConvNets
are also more robust to variance in scale and thus facilitate
recognition from features computed on a single input scale
[15, 11, 29] (Fig. 1(b)). But even with this robustness, pyra-
mids are still needed to get the most accurate results. All re-
cent top entries in the ImageNet [33] and COCO [21] detec-
tion challenges use multi-scale testing on featurized image
pyramids (e.g., [16, 35]). The principle advantage of fea-
turizing each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels.

Nevertheless, featurizing each level of an image pyra-
mid has obvious limitations. Inference time increases con-
siderably (e.g., by four times [11]), making this approach
impractical for real applications. Moreover, training deep
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networks end-to-end on an image pyramid is infeasible in
terms of memory, and so, if exploited, image pyramids are
used only at test time [15, 11, 16, 35], which creates an
inconsistency between train/test-time inference. For these
reasons, Fast and Faster R-CNN [11, 29] opt to not use fea-
turized image pyramids under default settings.

However, image pyramids are not the only way to com-
pute a multi-scale feature representation. A deep ConvNet
computes a feature hierarchy layer by layer, and with sub-
sampling layers the feature hierarchy has an inherent multi-
scale, pyramidal shape. This in-network feature hierarchy
produces feature maps of different spatial resolutions, but
introduces large semantic gaps caused by different depths.
The high-resolution maps have low-level features that harm
their representational capacity for object recognition.

The Single Shot Detector (SSD) [22] is one of the first
attempts at using a ConvNet’s pyramidal feature hierarchy
as if it were a featurized image pyramid (Fig. 1(c)). Ideally,
the SSD-style pyramid would reuse the multi-scale feature
maps from different layers computed in the forward pass
and thus come free of cost. But to avoid using low-level
features SSD foregoes reusing already computed layers and
instead builds the pyramid starting from high up in the net-
work (e.g., conv4 3 of VGG nets [36]) and then by adding
several new layers. Thus it misses the opportunity to reuse
the higher-resolution maps of the feature hierarchy. We
show that these are important for detecting small objects.

The goal of this paper is to naturally leverage the pyra-
midal shape of a ConvNet’s feature hierarchy while cre-
ating a feature pyramid that has strong semantics at all
scales. To achieve this goal, we rely on an architecture that
combines low-resolution, semantically strong features with
high-resolution, semantically weak features via a top-down
pathway and lateral connections (Fig. 1(d)). The result is
a feature pyramid that has rich semantics at all levels and
is built quickly from a single input image scale. In other
words, we show how to create in-network feature pyramids
that can be used to replace featurized image pyramids with-
out sacrificing representational power, speed, or memory.

Similar architectures adopting top-down and skip con-
nections are popular in recent research [28, 17, 8, 26]. Their
goals are to produce a single high-level feature map of a fine
resolution on which the predictions are to be made (Fig. 2
top). On the contrary, our method leverages the architecture
as a feature pyramid where predictions (e.g., object detec-
tions) are independently made on each level (Fig. 2 bottom).
Our model echoes a featurized image pyramid, which has
not been explored in these works.

We evaluate our method, called a Feature Pyramid Net-
work (FPN), in various systems for detection and segmen-
tation [11, 29, 27]. Without bells and whistles, we re-
port a state-of-the-art single-model result on the challenging
COCO detection benchmark [21] simply based on FPN and
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Figure 2. Top: a top-down architecture with skip connections,
where predictions are made on the finest level (e.g., [28]). Bottom:
our model that has a similar structure but leverages it as a feature
pyramid, with predictions made independently at all levels.

a basic Faster R-CNN detector [29], surpassing all exist-
ing heavily-engineered single-model entries of competition
winners. In ablation experiments, we find that for bound-
ing box proposals, FPN significantly increases the Average
Recall (AR) by 8.0 points; for object detection, it improves
the COCO-style Average Precision (AP) by 2.3 points and
PASCAL-style AP by 3.8 points, over a strong single-scale
baseline of Faster R-CNN on ResNets [16]. Our method is
also easily extended to mask proposals and improves both
instance segmentation AR and speed over state-of-the-art
methods that heavily depend on image pyramids.

In addition, our pyramid structure can be trained end-to-
end with all scales and is used consistently at train/test time,
which would be memory-infeasible using image pyramids.
As a result, FPNs are able to achieve higher accuracy than
all existing state-of-the-art methods. Moreover, this im-
provement is achieved without increasing testing time over
the single-scale baseline. We believe these advances will
facilitate future research and applications. Our code will be
made publicly available.

2. Related Work
Hand-engineered features and early neural networks.
SIFT features [25] were originally extracted at scale-space
extrema and used for feature point matching. HOG fea-
tures [5], and later SIFT features as well, were computed
densely over entire image pyramids. These HOG and SIFT
pyramids have been used in numerous works for image
classification, object detection, human pose estimation, and
more. There has also been significant interest in comput-
ing featurized image pyramids quickly. Dollár et al. [6]
demonstrated fast pyramid computation by first computing
a sparsely sampled (in scale) pyramid and then interpolat-
ing missing levels. Before HOG and SIFT, early work on
face detection with ConvNets [38, 32] computed shallow
networks over image pyramids to detect faces across scales.
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Deep ConvNet object detectors. With the development
of modern deep ConvNets [19], object detectors like Over-
Feat [34] and R-CNN [12] showed dramatic improvements
in accuracy. OverFeat adopted a strategy similar to early
neural network face detectors by applying a ConvNet as
a sliding window detector on an image pyramid. R-CNN
adopted a region proposal-based strategy [37] in which each
proposal was scale-normalized before classifying with a
ConvNet. SPPnet [15] demonstrated that such region-based
detectors could be applied much more efficiently on fea-
ture maps extracted on a single image scale. Recent and
more accurate detection methods like Fast R-CNN [11] and
Faster R-CNN [29] advocate using features computed from
a single scale, because it offers a good trade-off between
accuracy and speed. Multi-scale detection, however, still
performs better, especially for small objects.

Methods using multiple layers. A number of recent ap-
proaches improve detection and segmentation by using dif-
ferent layers in a ConvNet. FCN [24] sums partial scores
for each category over multiple scales to compute semantic
segmentations. Hypercolumns [13] uses a similar method
for object instance segmentation. Several other approaches
(HyperNet [18], ParseNet [23], and ION [2]) concatenate
features of multiple layers before computing predictions,
which is equivalent to summing transformed features. SSD
[22] and MS-CNN [3] predict objects at multiple layers of
the feature hierarchy without combining features or scores.

There are recent methods exploiting lateral/skip connec-
tions that associate low-level feature maps across resolu-
tions and semantic levels, including U-Net [31] and Sharp-
Mask [28] for segmentation, Recombinator networks [17]
for face detection, and Stacked Hourglass networks [26]
for keypoint estimation. Ghiasi et al. [8] present a Lapla-
cian pyramid presentation for FCNs to progressively refine
segmentation. Although these methods adopt architectures
with pyramidal shapes, they are unlike featurized image
pyramids [5, 7, 34] where predictions are made indepen-
dently at all levels, see Fig. 2. In fact, for the pyramidal
architecture in Fig. 2 (top), image pyramids are still needed
to recognize objects across multiple scales [28].

3. Feature Pyramid Networks

Our goal is to leverage a ConvNet’s pyramidal feature
hierarchy, which has semantics from low to high levels, and
build a feature pyramid with high-level semantics through-
out. The resulting Feature Pyramid Network is general-
purpose and in this paper we focus on sliding window pro-
posers (Region Proposal Network, RPN for short) [29] and
region-based detectors (Fast R-CNN) [11]. We also gener-
alize FPNs to instance segmentation proposals in Sec. 6.

Our method takes a single-scale image of an arbitrary
size as input, and outputs proportionally sized feature maps
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Figure 3. A building block illustrating the lateral connection and
the top-down pathway, merged by addition.

at multiple levels, in a fully convolutional fashion. This pro-
cess is independent of the backbone convolutional architec-
tures (e.g., [19, 36, 16]), and in this paper we present results
using ResNets [16]. The construction of our pyramid in-
volves a bottom-up pathway, a top-down pathway, and lat-
eral connections, as introduced in the following.

Bottom-up pathway. The bottom-up pathway is the feed-
forward computation of the backbone ConvNet, which com-
putes a feature hierarchy consisting of feature maps at sev-
eral scales with a scaling step of 2. There are often many
layers producing output maps of the same size and we say
these layers are in the same network stage. For our feature
pyramid, we define one pyramid level for each stage. We
choose the output of the last layer of each stage as our ref-
erence set of feature maps, which we will enrich to create
our pyramid. This choice is natural since the deepest layer
of each stage should have the strongest features.

Specifically, for ResNets [16] we use the feature activa-
tions output by each stage’s last residual block. We denote
the output of these last residual blocks as {C2, C3, C4, C5}
for conv2, conv3, conv4, and conv5 outputs, and note that
they have strides of {4, 8, 16, 32} pixels with respect to the
input image. We do not include conv1 into the pyramid due
to its large memory footprint.

Top-down pathway and lateral connections. The top-
down pathway hallucinates higher resolution features by
upsampling spatially coarser, but semantically stronger, fea-
ture maps from higher pyramid levels. These features are
then enhanced with features from the bottom-up pathway
via lateral connections. Each lateral connection merges fea-
ture maps of the same spatial size from the bottom-up path-
way and the top-down pathway. The bottom-up feature map
is of lower-level semantics, but its activations are more ac-
curately localized as it was subsampled fewer times.

Fig. 3 shows the building block that constructs our top-
down feature maps. With a coarser-resolution feature map,
we upsample the spatial resolution by a factor of 2 (using
nearest neighbor upsampling for simplicity). The upsam-
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pled map is then merged with the corresponding bottom-up
map (which undergoes a 1×1 convolutional layer to reduce
channel dimensions) by element-wise addition. This pro-
cess is iterated until the finest resolution map is generated.
To start the iteration, we simply attach a 1×1 convolutional
layer on C5 to produce the coarsest resolution map. Fi-
nally, we append a 3×3 convolution on each merged map to
generate the final feature map, which is to reduce the alias-
ing effect of upsampling. This final set of feature maps is
called {P2, P3, P4, P5}, corresponding to {C2, C3, C4, C5}
that are respectively of the same spatial sizes.

Because all levels of the pyramid use shared classi-
fiers/regressors as in a traditional featurized image pyramid,
we fix the feature dimension (numbers of channels, denoted
as d) in all the feature maps. We set d = 256 in this pa-
per and thus all extra convolutional layers have 256-channel
outputs. There are no non-linearities in these extra layers,
which we have empirically found to have minor impacts.

Simplicity is central to our design and we have found that
our model is robust to many design choices. We have exper-
imented with more sophisticated blocks (e.g., using multi-
layer residual blocks [16] as the connections) and observed
marginally better results. Designing better connection mod-
ules is not the focus of this paper, so we opt for the simple
design described above.

4. Applications
Our method is a generic solution for building feature

pyramids inside deep ConvNets. In the following we adopt
our method in RPN [29] for bounding box proposal gen-
eration and in Fast R-CNN [11] for object detection. To
demonstrate the simplicity and effectiveness of our method,
we make minimal modifications to the original systems of
[29, 11] when adapting them to our feature pyramid.

4.1. Feature Pyramid Networks for RPN

RPN [29] is a sliding-window class-agnostic object de-
tector. In the original RPN design, a small subnetwork is
evaluated on dense 3×3 sliding windows, on top of a single-
scale convolutional feature map, performing object/non-
object binary classification and bounding box regression.
This is realized by a 3×3 convolutional layer followed by
two sibling 1×1 convolutions for classification and regres-
sion, which we refer to as a network head. The object/non-
object criterion and bounding box regression target are de-
fined with respect to a set of reference boxes called anchors
[29]. The anchors are of multiple pre-defined scales and
aspect ratios in order to cover objects of different shapes.

We adapt RPN by replacing the single-scale feature map
with our FPN. We attach a head of the same design (3×3
conv and two sibling 1×1 convs) to each level on our feature
pyramid. Because the head slides densely over all locations
in all pyramid levels, it is not necessary to have multi-scale

anchors on a specific level. Instead, we assign anchors of
a single scale to each level. Formally, we define the an-
chors to have areas of {322, 642, 1282, 2562, 5122} pixels
on {P2, P3, P4, P5, P6} respectively.1 As in [29] we also
use anchors of multiple aspect ratios {1:2, 1:1, 2:1} at each
level. So in total there are 15 anchors over the pyramid.

We assign training labels to the anchors based on
their Intersection-over-Union (IoU) ratios with ground-truth
bounding boxes as in [29]. Formally, an anchor is assigned
a positive label if it has the highest IoU for a given ground-
truth box or an IoU over 0.7 with any ground-truth box,
and a negative label if it has IoU lower than 0.3 for all
ground-truth boxes. Note that scales of ground-truth boxes
are not explicitly used to assign them to the levels of the
pyramid; instead, ground-truth boxes are associated with
anchors, which have been assigned to pyramid levels. As
such, we introduce no extra rules in addition to those in [29].

We note that the parameters of the heads are shared
across all feature pyramid levels; we have also evaluated the
alternative without sharing parameters and observed similar
accuracy. The good performance of sharing parameters in-
dicates that all levels of our pyramid share similar semantic
levels. This advantage is analogous to that of using a fea-
turized image pyramid, where a common head classifier can
be applied to features computed at any image scale.

With the above adaptations, RPN can be naturally trained
and tested with our FPN, in the same fashion as in [29]. We
elaborate on the implementation details in the experiments.

4.2. Feature Pyramid Networks for Fast R-CNN

Fast R-CNN [11] is a region-based object detector in
which Region-of-Interest (RoI) pooling is used to extract
features. Fast R-CNN is most commonly performed on a
single-scale feature map. To use it with our FPN, we need
to assign RoIs of different scales to the pyramid levels.

We view our feature pyramid as if it were produced from
an image pyramid. Thus we can adapt the assignment strat-
egy of region-based detectors [15, 11] in the case when they
are run on image pyramids. Formally, we assign an RoI of
width w and height h (on the input image to the network) to
the level Pk of our feature pyramid by:

k = bk0 + log2(
√
wh/224)c. (1)

Here 224 is the canonical ImageNet pre-training size, and
k0 is the target level on which an RoI with w × h = 2242

should be mapped into. Analogous to the ResNet-based
Faster R-CNN system [16] that uses C4 as the single-scale
feature map, we set k0 to 4. Intuitively, Eqn. (1) means
that if the RoI’s scale becomes smaller (say, 1/2 of 224), it
should be mapped into a finer-resolution level (say, k = 3).

1Here we introduce P6 only for covering a larger anchor scale of 5122.
P6 is simply a stride two subsampling of P5. P6 is not used by the Fast
R-CNN detector in the next section.
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We attach predictor heads (in Fast R-CNN the heads are
class-specific classifiers and bounding box regressors) to all
RoIs of all levels. Again, the heads all share parameters,
regardless of their levels. In [16], a ResNet’s conv5 lay-
ers (a 9-layer deep subnetwork) are adopted as the head on
top of the conv4 features, but our method has already har-
nessed conv5 to construct the feature pyramid. So unlike
[16], we simply adopt RoI pooling to extract 7×7 features,
and attach two hidden 1,024-d fully-connected (fc) layers
(each followed by ReLU) before the final classification and
bounding box regression layers. These layers are randomly
initialized, as there are no pre-trained fc layers available in
ResNets. Note that compared to the standard conv5 head,
our 2-fc MLP head is lighter weight and faster.

Based on these adaptations, we can train and test Fast R-
CNN on top of the feature pyramid. Implementation details
are given in the experimental section.

5. Experiments on Object Detection
We perform experiments on the 80 category COCO de-

tection dataset [21]. We train using the union of 80k train
images and a 35k subset of val images (trainval35k
[2]), and report ablations on a 5k subset of val images
(minival). We also report final results on the standard
test set (test-std) [21] which has no disclosed labels.

As is common practice [12], all network backbones
are pre-trained on the ImageNet1k classification set [33]
and then fine-tuned on the detection dataset. We use the
pre-trained ResNet-50 and ResNet-101 models that are
publicly available.2 Our code is a reimplementation of
py-faster-rcnn3 using Caffe2.4

5.1. Region Proposal with RPN

We evaluate the COCO-style Average Recall (AR) and
AR on small, medium, and large objects (ARs, ARm, and
ARl) following the definitions in [21]. We report results for
100 and 1000 proposals per images (AR100 and AR1k).

Implementation details. All architectures in Table 1 are
trained end-to-end. The input image is resized such that its
shorter side has 800 pixels. We adopt synchronized SGD
training on 8 GPUs. A mini-batch involves 2 images per
GPU and 256 anchors per image. We use a weight decay of
0.0001 and a momentum of 0.9. The learning rate is 0.02 for
the first 30k mini-batches and 0.002 for the next 10k. For
all RPN experiments (including baselines), we include the
anchor boxes that are outside the image for training, which
is unlike [29] where these anchor boxes are ignored. Other
implementation details are as in [29]. Training RPN with
FPN on 8 GPUs takes about 8 hours on COCO.

2https://github.com/kaiminghe/deep-residual-networks
3https://github.com/rbgirshick/py-faster-rcnn
4https://github.com/caffe2/caffe2

5.1.1 Ablation Experiments

Comparisons with baselines. For fair comparisons with
original RPNs [29], we run two baselines (Table 1(a, b)) us-
ing the single-scale map of C4 (the same as [16]) or C5, both
using the same hyper-parameters as ours, including using 5
scale anchors of {322, 642, 1282, 2562, 5122}. Table 1 (b)
shows no advantage over (a), indicating that a single higher-
level feature map is not enough because there is a trade-off
between coarser resolutions and stronger semantics.

Placing FPN in RPN improves AR1k to 56.3 (Table 1
(c)), which is 8.0 points increase over the single-scale RPN
baseline (Table 1 (a)). In addition, the performance on small
objects (AR1k

s ) is boosted by a large margin of 12.9 points.
Our pyramid representation greatly improves RPN’s robust-
ness to object scale variation.

How important is top-down enrichment? Table 1(d)
shows the results of our feature pyramid without the top-
down pathway. With this modification, the 1×1 lateral con-
nections followed by 3×3 convolutions are attached to the
bottom-up pyramid. This architecture simulates the effect
of reusing the pyramidal feature hierarchy (Fig. 1(b)).

The results in Table 1(d) are just on par with the RPN
baseline and lag far behind ours. We conjecture that this
is because there are large semantic gaps between different
levels on the bottom-up pyramid (Fig. 1(b)), especially for
very deep ResNets. We have also evaluated a variant of Ta-
ble 1(d) without sharing the parameters of the heads, but
observed similarly degraded performance. This issue can-
not be simply remedied by level-specific heads.

How important are lateral connections? Table 1(e)
shows the ablation results of a top-down feature pyramid
without the 1×1 lateral connections. This top-down pyra-
mid has strong semantic features and fine resolutions. But
we argue that the locations of these features are not precise,
because these maps have been downsampled and upsampled
several times. More precise locations of features can be di-
rectly passed from the finer levels of the bottom-up maps via
the lateral connections to the top-down maps. As a results,
FPN has an AR1k score 10 points higher than Table 1(e).

How important are pyramid representations? Instead
of resorting to pyramid representations, one can attach the
head to the highest-resolution, strongly semantic feature
maps of P2 (i.e., the finest level in our pyramids). Simi-
lar to the single-scale baselines, we assign all anchors to the
P2 feature map. This variant (Table 1(f)) is better than the
baseline but inferior to our approach. RPN is a sliding win-
dow detector with a fixed window size, so scanning over
pyramid levels can increase its robustness to scale variance.

In addition, we note that using P2 alone leads to more
anchors (750k, Table 1(f)) caused by its large spatial reso-
lution. This result suggests that a larger number of anchors
is not sufficient in itself to improve accuracy.
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RPN feature # anchors lateral? top-down? AR100 AR1k AR1k
s AR1k

m AR1k
l

(a) baseline on conv4 C4 47k 36.1 48.3 32.0 58.7 62.2
(b) baseline on conv5 C5 12k 36.3 44.9 25.3 55.5 64.2
(c) FPN {Pk} 200k X X 44.0 56.3 44.9 63.4 66.2
Ablation experiments follow:
(d) bottom-up pyramid {Pk} 200k X 37.4 49.5 30.5 59.9 68.0
(e) top-down pyramid, w/o lateral {Pk} 200k X 34.5 46.1 26.5 57.4 64.7
(f) only finest level P2 750k X X 38.4 51.3 35.1 59.7 67.6

Table 1. Bounding box proposal results using RPN [29], evaluated on the COCO minival set. All models are trained on trainval35k.
The columns “lateral” and “top-down” denote the presence of lateral and top-down connections, respectively. The column “feature” denotes
the feature maps on which the heads are attached. All results are based on ResNet-50 and share the same hyper-parameters.

Fast R-CNN proposals feature head lateral? top-down? AP@0.5 AP APs APm APl

(a) baseline on conv4 RPN, {Pk} C4 conv5 54.7 31.9 15.7 36.5 45.5
(b) baseline on conv5 RPN, {Pk} C5 2fc 52.9 28.8 11.9 32.4 43.4
(c) FPN RPN, {Pk} {Pk} 2fc X X 56.9 33.9 17.8 37.7 45.8
Ablation experiments follow:
(d) bottom-up pyramid RPN, {Pk} {Pk} 2fc X 44.9 24.9 10.9 24.4 38.5
(e) top-down pyramid, w/o lateral RPN, {Pk} {Pk} 2fc X 54.0 31.3 13.3 35.2 45.3
(f) only finest level RPN, {Pk} P2 2fc X X 56.3 33.4 17.3 37.3 45.6

Table 2. Object detection results using Fast R-CNN [11] on a fixed set of proposals (RPN, {Pk}, Table 1(c)), evaluated on the COCO
minival set. Models are trained on the trainval35k set. All results are based on ResNet-50 and share the same hyper-parameters.

Faster R-CNN proposals feature head lateral? top-down? AP@0.5 AP APs APm APl

(*) baseline from He et al. [16]† RPN, C4 C4 conv5 47.3 26.3 - - -
(a) baseline on conv4 RPN, C4 C4 conv5 53.1 31.6 13.2 35.6 47.1
(b) baseline on conv5 RPN, C5 C5 2fc 51.7 28.0 9.6 31.9 43.1
(c) FPN RPN, {Pk} {Pk} 2fc X X 56.9 33.9 17.8 37.7 45.8

Table 3. Object detection results using Faster R-CNN [29] evaluated on the COCO minival set. The backbone network for RPN are
consistent with Fast R-CNN. Models are trained on the trainval35k set and use ResNet-50. †Provided by authors of [16].

5.2. Object Detection with Fast/Faster R-CNN

Next we investigate FPN for region-based (non-sliding
window) detectors. We evaluate object detection by the
COCO-style Average Precision (AP) and PASCAL-style
AP (at a single IoU threshold of 0.5). We also report COCO
AP on objects of small, medium, and large sizes (namely,
APs, APm, and APl) following the definitions in [21].

Implementation details. The input image is resized such
that its shorter side has 800 pixels. Synchronized SGD is
used to train the model on 8 GPUs. Each mini-batch in-
volves 2 image per GPU and 512 RoIs per image. We use
a weight decay of 0.0001 and a momentum of 0.9. The
learning rate is 0.02 for the first 60k mini-batches and 0.002
for the next 20k. We use 2000 RoIs per image for training
and 1000 for testing. Training Fast R-CNN with FPN takes
about 10 hours on the COCO dataset.

5.2.1 Fast R-CNN (on fixed proposals)

To better investigate FPN’s effects on the region-based de-
tector alone, we conduct ablations of Fast R-CNN on a fixed
set of proposals. We choose to freeze the proposals as com-

puted by RPN on FPN (Table 1(c)), because it has good per-
formance on small objects that are to be recognized by the
detector. For simplicity we do not share features between
Fast R-CNN and RPN, except when specified.

As a ResNet-based Fast R-CNN baseline, following
[16], we adopt RoI pooling with an output size of 14×14
and attach all conv5 layers as the hidden layers of the head.
This gives an AP of 31.9 in Table 2(a). Table 2(b) is a base-
line exploiting an MLP head with 2 hidden fc layers, similar
to the head in our architecture. It gets an AP of 28.8, indi-
cating that the 2-fc head does not give us any orthogonal
advantage over the baseline in Table 2(a).

Table 2(c) shows the results of our FPN in Fast R-CNN.
Comparing with the baseline in Table 2(a), our method im-
proves AP by 2.0 points and small object AP by 2.1 points.
Comparing with the baseline that also adopts a 2fc head (Ta-
ble 2(b)), our method improves AP by 5.1 points.5 These
comparisons indicate that our feature pyramid is superior to
single-scale features for a region-based object detector.

Table 2(d) and (e) show that removing top-down con-

5We expect a stronger architecture of the head [30] will improve upon
our results, which is beyond the focus of this paper.
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image test-dev test-std
method backbone competition pyramid AP@.5 AP APs APm APl AP@.5 AP APs APm APl

ours, Faster R-CNN on FPN ResNet-101 - 59.1 36.2 18.2 39.0 48.2 58.5 35.8 17.5 38.7 47.8
Competition-winning single-model results follow:
G-RMI† Inception-ResNet 2016 - 34.7 - - - - - - - -
AttractioNet‡ [10] VGG16 + Wide ResNet§ 2016 X 53.4 35.7 15.6 38.0 52.7 52.9 35.3 14.7 37.6 51.9
Faster R-CNN +++ [16] ResNet-101 2015 X 55.7 34.9 15.6 38.7 50.9 - - - - -
Multipath [40] (on minival) VGG-16 2015 49.6 31.5 - - - - - - - -
ION‡ [2] VGG-16 2015 53.4 31.2 12.8 32.9 45.2 52.9 30.7 11.8 32.8 44.8

Table 4. Comparisons of single-model results on the COCO detection benchmark. Some results were not available on the test-std
set, so we also include the test-dev results (and for Multipath [40] on minival). †: http://image-net.org/challenges/
talks/2016/GRMI-COCO-slidedeck.pdf. ‡: http://mscoco.org/dataset/#detections-leaderboard. §: This
entry of AttractioNet [10] adopts VGG-16 for proposals and Wide ResNet [39] for object detection, so is not strictly a single-model result.

nections or removing lateral connections leads to inferior
results, similar to what we have observed in the above sub-
section for RPN. It is noteworthy that removing top-down
connections (Table 2(d)) significantly degrades the accu-
racy, suggesting that Fast R-CNN suffers from using the
low-level features at the high-resolution maps.

In Table 2(f), we adopt Fast R-CNN on the single finest
scale feature map of P2. Its result (33.4 AP) is marginally
worse than that of using all pyramid levels (33.9 AP, Ta-
ble 2(c)). We argue that this is because RoI pooling is a
warping-like operation, which is less sensitive to the re-
gion’s scales. Despite the good accuracy of this variant, it is
based on the RPN proposals of {Pk} and has thus already
benefited from the pyramid representation.

5.2.2 Faster R-CNN (on consistent proposals)

In the above we used a fixed set of proposals to investi-
gate the detectors. But in a Faster R-CNN system [29], the
RPN and Fast R-CNN must use the same network back-
bone in order to make feature sharing possible. Table 3
shows the comparisons between our method and two base-
lines, all using consistent backbone architectures for RPN
and Fast R-CNN. Table 3(a) shows our reproduction of the
baseline Faster R-CNN system as described in [16]. Under
controlled settings, our FPN (Table 3(c)) is better than this
strong baseline by 2.3 points AP and 3.8 points AP@0.5.

Note that Table 3(a) and (b) are baselines that are much
stronger than the baseline provided by He et al. [16] in Ta-
ble 3(*). We find the following implementations contribute
to the gap: (i) We use an image scale of 800 pixels instead of
600 in [11, 16]; (ii) We train with 512 RoIs per image which
accelerate convergence, in contrast to 64 RoIs in [11, 16];
(iii) We use 5 scale anchors instead of 4 in [16] (adding
322); (iv) At test time we use 1000 proposals per image in-
stead of 300 in [16]. So comparing with He et al.’s ResNet-
50 Faster R-CNN baseline in Table 3(*), our method im-
proves AP by 7.6 points and AP@0.5 by 9.6 points.

Sharing features. In the above, for simplicity we do not
share the features between RPN and Fast R-CNN. In Ta-

ResNet-50 ResNet-101
share features? AP@0.5 AP AP@0.5 AP

no 56.9 33.9 58.0 35.0
yes 57.2 34.3 58.2 35.2

Table 5. More object detection results using Faster R-CNN and our
FPNs, evaluated on minival. Sharing features increases train
time by 1.5× (using 4-step training [29]), but reduces test time.

ble 5, we evaluate sharing features following the 4-step
training described in [29]. Similar to [29], we find that shar-
ing features improves accuracy by a small margin. Feature
sharing also reduces the testing time.

Running time. With feature sharing, our FPN-based
Faster R-CNN system has inference time of 0.148 seconds
per image on a single NVIDIA M40 GPU for ResNet-50,
and 0.172 seconds for ResNet-101.6 As a comparison, the
single-scale ResNet-50 baseline in Table 3(a) runs at 0.32
seconds. Our method introduces small extra cost by the ex-
tra layers in the FPN, but has a lighter weight head. Overall
our system is faster than the ResNet-based Faster R-CNN
counterpart. We believe the efficiency and simplicity of our
method will benefit future research and applications.

5.2.3 Comparing with COCO Competition Winners

We find that our ResNet-101 model in Table 5 is not suffi-
ciently trained with the default learning rate schedule. So
we increase the number of mini-batches by 2× at each
learning rate when training the Fast R-CNN step. This in-
creases AP on minival to 35.6, without sharing features.
This model is the one we submitted to the COCO detection
leaderboard, shown in Table 4. We have not evaluated its
feature-sharing version due to limited time, which should
be slightly better as implied by Table 5.

Table 4 compares our method with the single-model re-
sults of the COCO competition winners, including the 2016
winner G-RMI and the 2015 winner Faster R-CNN+++.
Without adding bells and whistles, our single-model entry
has surpassed these strong, heavily engineered competitors.

6These runtimes are updated from an earlier version of this paper.
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Figure 4. FPN for object segment proposals. The feature pyramid
is constructed with identical structure as for object detection. We
apply a small MLP on 5×5 windows to generate dense object seg-
ments with output dimension of 14×14. Shown in orange are the
size of the image regions the mask corresponds to for each pyra-
mid level (levels P3−5 are shown here). Both the corresponding
image region size (light orange) and canonical object size (dark
orange) are shown. Half octaves are handled by an MLP on 7x7
windows (7 ≈ 5

√
2), not shown here. Details are in the appendix.

On the test-dev set, our method increases over the ex-
isting best results by 0.5 points of AP (36.2 vs. 35.7) and
3.4 points of AP@0.5 (59.1 vs. 55.7). It is worth noting that
our method does not rely on image pyramids and only uses
a single input image scale, but still has outstanding AP on
small-scale objects. This could only be achieved by high-
resolution image inputs with previous methods.

Moreover, our method does not exploit many popular
improvements, such as iterative regression [9], hard nega-
tive mining [35], context modeling [16], stronger data aug-
mentation [22], etc. These improvements are complemen-
tary to FPNs and should boost accuracy further.

Recently, FPN has enabled new top results in all tracks
of the COCO competition, including detection, instance
segmentation, and keypoint estimation. See [14] for details.

6. Extensions: Segmentation Proposals

Our method is a generic pyramid representation and can
be used in applications other than object detection. In this
section we use FPNs to generate segmentation proposals,
following the DeepMask/SharpMask framework [27, 28].

DeepMask/SharpMask were trained on image crops for
predicting instance segments and object/non-object scores.
At inference time, these models are run convolutionally to
generate dense proposals in an image. To generate segments
at multiple scales, image pyramids are necessary [27, 28].

It is easy to adapt FPN to generate mask proposals. We
use a fully convolutional setup for both training and infer-
ence. We construct our feature pyramid as in Sec. 5.1 and
set d = 128. On top of each level of the feature pyramid, we
apply a small 5×5 MLP to predict 14×14 masks and object
scores in a fully convolutional fashion, see Fig. 4. Addition-
ally, motivated by the use of 2 scales per octave in the image
pyramid of [27, 28], we use a second MLP of input size 7×7
to handle half octaves. The two MLPs play a similar role as
anchors in RPN. The architecture is trained end-to-end; full
implementation details are given in the appendix.

image pyramid AR ARs ARm ARl time (s)
DeepMask [27] X 37.1 15.8 50.1 54.9 0.49
SharpMask [28] X 39.8 17.4 53.1 59.1 0.77
InstanceFCN [4] X 39.2 – – – 1.50†

FPN Mask Results:
single MLP [5×5] 43.4 32.5 49.2 53.7 0.15
single MLP [7×7] 43.5 30.0 49.6 57.8 0.19
dual MLP [5×5, 7×7] 45.7 31.9 51.5 60.8 0.24
+ 2x mask resolution 46.7 31.7 53.1 63.2 0.25
+ 2x train schedule 48.1 32.6 54.2 65.6 0.25

Table 6. Instance segmentation proposals evaluated on the first 5k
COCO val images. All models are trained on the train set.
DeepMask, SharpMask, and FPN use ResNet-50 while Instance-
FCN uses VGG-16. DeepMask and SharpMask performance
is computed with models available from https://github.
com/facebookresearch/deepmask (both are the ‘zoom’
variants). †Runtimes are measured on an NVIDIA M40 GPU, ex-
cept the InstanceFCN timing which is based on the slower K40.

6.1. Segmentation Proposal Results

Results are shown in Table 6. We report segment AR and
segment AR on small, medium, and large objects, always
for 1000 proposals. Our baseline FPN model with a single
5×5 MLP achieves an AR of 43.4. Switching to a slightly
larger 7×7 MLP leaves accuracy largely unchanged. Using
both MLPs together increases accuracy to 45.7 AR. Increas-
ing mask output size from 14×14 to 28×28 increases AR
another point (larger sizes begin to degrade accuracy). Fi-
nally, doubling the training iterations increases AR to 48.1.

We also report comparisons to DeepMask [27], Sharp-
Mask [28], and InstanceFCN [4], the previous state of the
art methods in mask proposal generation. We outperform
the accuracy of these approaches by over 8.3 points AR. In
particular, we nearly double the accuracy on small objects.

Existing mask proposal methods [27, 28, 4] are based on
densely sampled image pyramids (e.g., scaled by 2{−2:0.5:1}

in [27, 28]), making them computationally expensive. Our
approach, based on FPNs, is substantially faster (our mod-
els run at 6 to 7 FPS). These results demonstrate that our
model is a generic feature extractor and can replace image
pyramids for other multi-scale detection problems.

7. Conclusion
We have presented a clean and simple framework for

building feature pyramids inside ConvNets. Our method
shows significant improvements over several strong base-
lines and competition winners. Thus, it provides a practical
solution for research and applications of feature pyramids,
without the need of computing image pyramids. Finally,
our study suggests that despite the strong representational
power of deep ConvNets and their implicit robustness to
scale variation, it is still critical to explicitly address multi-
scale problems using pyramid representations.
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A. Implementation of Segmentation Proposals
We use our feature pyramid networks to efficiently gen-

erate object segment proposals, adopting an image-centric
training strategy popular for object detection [11, 29]. Our
FPN mask generation model inherits many of the ideas and
motivations from DeepMask/SharpMask [27, 28]. How-
ever, in contrast to these models, which were trained on
image crops and used a densely sampled image pyramid for
inference, we perform fully-convolutional training for mask
prediction on a feature pyramid. While this requires chang-
ing many of the specifics, our implementation remains sim-
ilar in spirit to DeepMask. Specifically, to define the label
of a mask instance at each sliding window, we think of this
window as being a crop on the input image, allowing us
to inherit definitions of positives/negatives from DeepMask.
We give more details next, see also Fig. 4 for a visualization.

We construct the feature pyramid with P2−6 using the
same architecture as described in Sec. 5.1. We set d = 128.
Each level of our feature pyramid is used for predicting
masks at a different scale. As in DeepMask, we define
the scale of a mask as the max of its width and height.
Masks with scales of {32, 64, 128, 256, 512} pixels map
to {P2, P3, P4, P5, P6}, respectively, and are handled by a
5×5 MLP. As DeepMask uses a pyramid with half octaves,
we use a second slightly larger MLP of size 7×7 (7 ≈ 5

√
2)

to handle half-octaves in our model (e.g., a 128
√
2 scale

mask is predicted by the 7×7 MLP on P4). Objects at inter-
mediate scales are mapped to the nearest scale in log space.

As the MLP must predict objects at a range of scales for
each pyramid level (specifically a half octave range), some
padding must be given around the canonical object size. We
use 25% padding. This means that the mask output over
{P2, P3, P4, P5, P6} maps to {40, 80, 160, 320, 640} sized
image regions for the 5×5 MLP (and to

√
2 larger corre-

sponding sizes for the 7×7 MLP).
Each spatial position in the feature map is used to pre-

dict a mask at a different location. Specifically, at scale Pk,
each spatial position in the feature map is used to predict
the mask whose center falls within 2k pixels of that loca-
tion (corresponding to ±1 cell offset in the feature map). If
no object center falls within this range, the location is con-
sidered a negative, and, as in DeepMask, is used only for
training the score branch and not the mask branch.

The MLP we use for predicting the mask and score is
fairly simple. We apply a 5×5 kernel with 512 outputs, fol-
lowed by sibling fully connected layers to predict a 14×14
mask (142 outputs) and object score (1 output). The model
is implemented in a fully convolutional manner (using 1×1
convolutions in place of fully connected layers). The 7×7
MLP for handling objects at half octave scales is identical
to the 5×5 MLP except for its larger input region.

During training, we randomly sample 2048 examples per
mini-batch (128 examples per image from 16 images) with

a positive/negative sampling ratio of 1:3. The mask loss is
given 10× higher weight than the score loss. This model is
trained end-to-end on 8 GPUs using synchronized SGD (2
images per GPU). We start with a learning rate of 0.03 and
train for 80k mini-batches, dividing the learning rate by 10
after 60k mini-batches. The image scale is set to 800 pixels
during training and testing (we do not use scale jitter). Dur-
ing inference our fully-convolutional model predicts scores
at all positions and scales and masks at the 1000 highest
scoring locations. We do not perform any non-maximum
suppression or post-processing.
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