Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Dec 2016]
Title:The VQA-Machine: Learning How to Use Existing Vision Algorithms to Answer New Questions
View PDFAbstract:One of the most intriguing features of the Visual Question Answering (VQA) challenge is the unpredictability of the questions. Extracting the information required to answer them demands a variety of image operations from detection and counting, to segmentation and reconstruction. To train a method to perform even one of these operations accurately from {image,question,answer} tuples would be challenging, but to aim to achieve them all with a limited set of such training data seems ambitious at best. We propose here instead a more general and scalable approach which exploits the fact that very good methods to achieve these operations already exist, and thus do not need to be trained. Our method thus learns how to exploit a set of external off-the-shelf algorithms to achieve its goal, an approach that has something in common with the Neural Turing Machine. The core of our proposed method is a new co-attention model. In addition, the proposed approach generates human-readable reasons for its decision, and can still be trained end-to-end without ground truth reasons being given. We demonstrate the effectiveness on two publicly available datasets, Visual Genome and VQA, and show that it produces the state-of-the-art results in both cases.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.