

Developing Google
Chrome Extensions
Brian Kennish
November 10, 2009

Introduction
What Extensions Are
Why You Should Work on Extensions
When the Extension System Ships

How to Build Extensions

Technical Overview

Step-by-Step Example

Summary

Q&A

Agenda

Introduction

What Extensions Are

Programs that modify and enhance Google Chrome's
functionality

Written in HTML, CSS, and JavaScript

Integrated with browser features using a simple API

Developed iteratively as webpages

What Extensions Are

Installed instantly, without a browser restart

Updated automatically like Google Chrome itself

Transparent about their cross-origin and browser
capabilities

Run in separate processes like Google Chrome tabs

Shows how many unread
messages are in your inbox.

Demo: Gmail Checker

Shows how many unread
messages are in your inbox.

Demo: Gmail Checker

Displays a subscription button
when a page has an available feed.

Demo: Subscribe in a Feed Reader

Displays a subscription button
when a page has an available feed.

Demo: Subscribe in a Feed Reader

Turns URLs and other text into QR codes to
make them easy to transfer to mobile devices.

Demo: Qrome

Turns URLs and other text into QR codes to
make them easy to transfer to mobile devices.

Demo: Qrome

Why You Should Work on Extensions

Part of an important and fast-growing platform

Persistent presence on users' machines

Source of traffic to your site

Easy and fun

When the Extension System Ships

In the Google Chrome Dev channel right now

In the Beta channel later this quarter, along with a
gallery

In the Stable channel soon after

How to Build Extensions

 Compressed directory containing:

manifest file (manifest.json) — metadata that describes the
extension

Structure of an Extension

 And at least one of these components:

browser action or page action — UI surface
content scripts — CSS and JavaScript injected into
pages
background page — long-running script that handles
tasks or state
utility web files — additional content

Structure of an Extension

 And at least one of these components:

plugins — NPAPI binaries (see https://developer.
mozilla.org/en/Plugins)
theme — custom browser skin (see http://code.google.
com/chrome/extensions/themes.html)

Structure of an Extension

https://developer.mozilla.org/en/Plugins
https://developer.mozilla.org/en/Plugins
http://code.google.com/chrome/extensions/themes.html
http://code.google.com/chrome/extensions/themes.html

 Internal:

 External:

Cross-origin XHR (requires permission)

Extension Communication

 chrome is the top-level object and exposes:

chrome.extension.* — sends extension messages and
resolves the URLs of extension files
chrome.browserAction.* — sets the appearance of browser
actions and their badges
chrome.pageAction.* — enables and disables page actions

Layout of the Extension API

 chrome is the top-level object and exposes:

chrome.windows.* — manages windows (requires tabs
permission)
chrome.tabs.* — manages tabs (requires tabs permission)
chrome.bookmarks.* — manages bookmarks (requires
bookmarks permission)

Layout of the Extension API

 Extensions can also access:

standard DOM and JavaScript APIs (e.g., HTML
traversal and manipulation)
HTML5 APIs (e.g., localStorage)
WebKit APIs (e.g., experimental CSS properties)

Other APIs

 Extensions can also access:

V8 APIs (e.g., JSON parsing and stringification)
bundled JavaScript libraries (e.g., jQuery)
more (e.g., Google AJAX APIs)

Other APIs

+
A Twitter button for your toolbar.

Step-by-Step Example: Chritter

Add UI
Step One

-

manifest.json

{
 "name": "Chritter",
 "version": "1.0",
 "description": "A Twitter button for your toolbar.",
 "icons": {"128": "icon.png"},
 "browser_action": {
 "default_icon": "browseraction.png",
 "default_title": "Chritter",
 "popup": "popup.html"
 }
}

Fetch Public Data with XHR
Step Two

-

popup.html

req = new XMLHttpRequest();
req.open(
 'GET',
 'http://twitter.com/statuses/public_timeline.json'
);
req.onload = processTweets;
req.send();

Refactor Non-Presentation Code
Step Three

-

background.html

var res = JSON.parse(req.responseText);
unreadCount += res.length;

if (unreadCount > 0) {
 chrome.browserAction.setBadgeBackgroundColor({
 color: [255, 0, 0, 255]
 });
 chrome.browserAction.setBadgeText({
 text: '' + unreadCount
 });
}

tweets = res.concat(tweets);

Detect Successful Authorization and Fetch Private Data
Step Four

-

content.js

// look for oauth_pin
var pin = document.getElementById('oauth_pin');

// send pin to extension
var port = chrome.extension.connect();

if (pin) {
 pin = pin.innerHTML.replace(/^\s*|\s*$/g, '');
 port.postMessage({success: true, pin: pin});
} else { port.postMessage({success: false}); }

Autoupdate to a New Version
Step Five

-

update.xml

<?xml version="1.0" encoding="UTF-8" ?>
<gupdate
 xmlns="http://www.google.com/update2/response"
 protocol="2.0">
 <app appid="loogiogdnjdgdnmbjdjjbbonkcfpnjdp">
 <updatecheck
 version="6.0"
 codebase="http://localhost/chritter/6.crx"
 />
 </app>
</gupdate>

Summary

Key Takeaways

Small learning curve

Over 30-million active Google Chrome users

Upcoming GTUG and similar community events

Q&A

Online Resources

Documentation: http://code.google.
com/chrome/extensions/

Blog: http://blog.chromium.org/

Discussion group: http://groups.google.
com/group/chromium-extensions

http://code.google.com/chrome/extensions/
http://code.google.com/chrome/extensions/
http://blog.chromium.org/
http://groups.google.com/group/chromium-extensions
http://groups.google.com/group/chromium-extensions

